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Introduction

1. The history of the investigation of geodesic flows is briefly presented

in Anosov’s introduction to the translation of the book [21] by Klingenberg.
The direction this survey takes goes back to Hadamard. From the first
papers onwards, differential-geometric methods have played a large, and at
times even a predominant, part in the investigation. Nevertheless, already
then an exceptionally important observation was made, namely, that the
topological and ergodic properties of a flow, when the curvature is negative,
are in essence determined by instability of the trajectories. However, there
were not (and evidently there could not have been) any exact conceptions
on either of what should be understood by this instability nor, relying only
on it, of how to deduce topological and ergodic properties of the flow. The
results obtained in this period were reflected in the survey [71] by Hedlund
(see also the article [44] by Hopf), which was written in the late 30’s and
summarized, as it were, the whole preceding research.
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In the subsequent years the efforts of mathematicians were directed to the
study of geodesic flows on manifolds of negative curvature. Up to 1962
only isolated and partial results were obtained, until the papers [1], [2],
{371, and {40} were published, and a little later in 1967 the familiar book
by Anosov [3]1() and the article by Anosov and Sinai [4], which include
detailed proofs of the results. These papers not only increased our
knowledge of geodesic flows significantly, but also constituted a move away
from their investigation by differential-geometric methods towards
dynamical techniques. Nowadays geodesic flows are regarded as a particular
(though important) case of a special class of dynamical systems, the so-called
Y-systems. The instability of trajectories mentioned above has finally been
characterized exactly by means of the so-called uniform conditions of
hyperbolicity,?) and forms the basis for an axiomatic definition of these
systems. In the works by Anosov and Sinai cited above there is a fairly full
description of the ergodic and topological properties of Y-systems, and it is
established that geodesic flows on compact manifolds of negative curvature
are Y-flows. It now remained only to reap the fruits by applying the results
of the general theory. This application was almost automatic—there were no
further difficulties of a geometric nature. Here are only a few of the results:
geodesic flows are topologically transitive (and almost every trajectory is
everywhere dense) and even mix topologically; they have the strongest
possible ergodic properties (and, if we include the latest work, even the
Bernoulli property). The methods of the theory of dynamical systems have
enriched differential geometry too: important results have been obtained
about compact Riemannian manifolds of negative curvature. For example, it
turned out that closed geodesics are everywhere dense, and an exact and
simple formula for the asymptotic behaviour of closed geodesics has been
found (Margulis [26]), horospheres have been constructed and it has been
proved that each of these is everywhere dense; also that almost every
geodesic is dense in the manifold and so on. This was a triumph of the
theory of Y-systems. The matter is not confined to manifolds of negative
curvature: the boundaries have been widened.

The study of manifolds of negative curvature is connected in part with the
question (important for Riemannian geometry) of the influence of the
curvature on the properties of a manifold. Research in this direction,
especially that mentioned above, showed however that in many cases this
influence is governed not only by curvature, but also by certain properties of
geodesic flow. For we can take a metric in which a geodesic flow is a
Y-flow, but which has certain parts of positive curvature (such metrics exist
and may even comprise an open set in the space of metrics!; see for

MA short summary of the earlier results is included in §3 of the book.

@ Roughly speaking, these conditions mean that the picture of the behaviour of
trajectories in a given neighbourhood is like that of trajectories near a saddle point; an
exact definition is given in §1.9.
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example, [70]). Again, the results of the general theory of Y-systems allow
us to study the topological and ergodic properties of a geodesic flow, and
also to obtain interesting information both about the Riemannian metric
itself (for example, it turns out that it does not have conjugate points) and
about the global geometry of the manifold (Klingenberg [82]). Such
manifolds are said to be of Anosov type. The study of them led naturally
to an analysis of the question when a geodesic flow is a Y-flow. Eberlein
[S3], [54], obtained interesting results in this direction. Closely related to
manifolds of Anosov type are manifolds of hyperbolic type, that is, those
that admit a metric of negative curvature.(!) The latter arose even earlier in
differential geometry: and in any case, Morse [94] already understood that
on surfaces with negative Euler characteristic (which admit a metric of
constant negative curvature) the geodesic flow, as it were, to some extent
inherits properties of flow in a metric of negative curvature (see also [104]).
In this connection we point to an interesting but so far unsolved question:
is a manifold of Anosov type of hyperbolic type? (see [56], [84]).

However, the penetration of dynamical methods into differential geometry
does not stop here. There arises the interesting and timely problem as to
whether it is possible to extend the class of Riemannian metrics so that a
geodesic flow still has certain hyperbolic properties (though possibly weaker).
The natural candidate is the class of Riemannian metrics without focal points
(and in many cases the more general class of Riemannian metrics without
conjugate points).(z) Episodic results on this topic are of an even earlier
date ([65], [95]). More recently, investigations in this direction have
stimulated the study of the ergodic properties of dynamic systems with non-
zero characteristic Lyapunov indicators (see [32], [33]). One can say with
complete certainty that geodesic flows have already served as a source (and
as an excellent model) for the development of methods in the theory of
dynamical systems of hyperbolic type. But as soon as such a theory was
created the geodesic flows themselves became one of the most important
domains for its application.

On this very path there arose difficulties of a purely geometric nature.
Fortunately, at the same time there appeared a group of remarkable papers
by Eberlein (see [50] -[54]) in which these geometric problems were

(MWe recall once more that in this metric a geodesic flow is a Y-flow.

(@We mention that the conditions for the absence of focal and even of conjugate points
(along all geodesics!) are more complex than the conditions for negative curvature, in the
following respects. Firstly, they are difficult to check since they are global (in contrast
to the conditions for negative curvature, which are local), although manifolds without
conjugate and without focal points constitute an important class for Riemannian
geometry, and their geometric properties have been widely studied (in [54] and [70], for
example, there are geometric criteria for the absence of focal points). Secondly, generally
speaking, they are not coarse (so that the corresponding metrics, in contrast to the case
of negative curvature, do not, generally speaking, form an open set in the space of the
metrics).
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either solved or provided with an apparatus for their solution. Thus, for
Riemannian metrics without conjugate points there were studied limiting
solutions of the Jacobi equation, invariant distributions were constructed

that laid claim to the role of stable and unstable subspaces in the hyperbolic
theory, and so on. Later, in other works by Eberlein, by the present author,

and by others (see [52], [106], [34], [35], [60], [75]) it was proved that
these distributions are integrable and that their maximal integral manifolds
form invariant layers in the geodesic flow. The projections of these integral
manifolds form limiting spheres—objects that undoubtedly play an important
part in differential geometry. All this made it possible to apply the results
achieved for systems with non-zero Lyapunov indicator and to study the
ergodic properties of geodesic flows on manifolds without focal points (or
even without conjugate points).

The works by Eberlein and other authors mentioned above brought about
a turn in the investigations of geodesic flows from dynamical methods to the
methods of differential geometry, by setting up a balance between them.
Thus, relying on arguments of a purely geometric nature and quite apart
from the results given above, it became possible to gain fairly full and
thorough information of a topological nature (which had not been possible
within the framework of the general theory of systems with non-zero
Lyapunov indicator). It turned out that on a compact manifold without
conjugate points (under certain additional assumptions), a geodesic flow is
transitive, the limiting spheres are everywhere dense on the manifold (this
has been proved, for example, for dimension 2), and so on.

2. Side-by-side with geodesic flows there occur in Riemannian geometry
other dynamical systems closely connected with them, the so-called
horocycle flows and frame flows. Horocycles have always played an
important part in non-Euclidean geometry from its very beginnings, but an
exact definition of a horocycle flow in the case of a surface of negative
curvature was given by Hopf and Hedlund in the 30’s. The study of frame
flows is of comparatively recent date: a general definition of them was
given in 1961 by Arnol’d [5].

The study of frame flows on a manifold of negative curvature came about
just when the theory of dynamical systems of hyperbolic type was developed.
Obviously, this was no accident—here, as in a mirror, is reflected the history
of geodesic flows. Again, geometry was one of the sources() of the
development of hyperbolic methods leading to the formation of a theory for
the so-called partial hyperbolic dynamical systems (see [12]), and the results
of an ergodic and topological character established within the framework of
this theory led to a study of the corresponding properties for frame flow

MQther sources were investigations of an algebraic nature (see [42], [101]) and also the
natural question arising within the framework of the hyperbolic theory, of weakening the
requirements of hyperbolicity in the direction of a transition from “full” to “partial”
hyperbolicity.
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(see [12], [10], [11]). Subsequent investigations, in turn, required the
application of new geometric concepts (see [47]).

The theory of horocycle flows developed similarly. In the case of negative
curvature it was possible to study ergodic and topological properties relying
on theorems from the general theory of Y-systems; the most complete
results here were obtained by Marcus [91] -[92] (see also {49]). In
extending these results to wider classes of metrics (without focal and without
conjugate points) it was necessary for the investigation of ergodic properties
to turn to the theory of systems with non-zero characteristic Lyapunov
indicators; and for investigating topological properties supplementary
arguments of a geometric character were used (Eberlein [55]).

3. Mention has been made above of the role played by geodesic flows in
the study of the geometry of manifolds. But their importance grows if we
take into account the fact that geodesic flows are phase flows of certain
conservative mechanical systems; even in the first papers on geodesic flows
they were regarded as models for isclated problems in classical and celestial
mechanics. There are great possibilities in this direction, but we confine
ourselves to a survey of works since 1967 on geodesic flows with hyperbolic
behaviour of the trajectories (in the sense in which we spoke of this earlier).
We are deliberately leaving aside other types of geodesic flows (for example,
we do not look at integrable Hamiltonian systems). Moreover, we consider
only compact manifolds. This is stipulated not only by the rigid constraints
on a journal paper (for the investigation of non-compact manifolds would
increase the size of the paper considerably), but also because in the compact
case the results are most complete. Of course, many of the theorems to be
proved later remain true in the non-compact case (in as much as the
corresponding arguments use not so much compactness as conditions of
uniformity); however, on the whole, the latter case is richer and more
complicated than the compact one(™) (in a few places in the survey we

mention this again). Also, we do not touch on geodesics on Finsler
manifolds.

I should like to express my warmest thanks to D.V. Anosov with whom [
frequently consulted during the work on the survey. He read the manuscript
and made many useful remarks and additions. He also was kind enough to
draw my attention to a number of works (and even to put them at my
disposal) that I did not know and which are now duly included in the survey.

(Mwe mention that in the papers of Morse, Hopf, and Hedlund in the 30’s (see [44],
[94], {771, [73], [74]) there were considered also non-closed surfaces of negative
curvature, and definitive results of a topological and ergodic character were obtained
(topological transitivity, ergodicity, and mixing; the latter under the assumption of finite
volume). However, their generalization to the many-dimensional case or to Riemannian
metrics without conjugate points comes up against considerable difficulties and is not yet
final (especially with regard to ergodic results; certain results of a topological nature have
been obtained by Eberlein [58]).



6 Ya. B. Pesin

PART |
GEODESIC FLOWS

§1. Preliminary information from differential geometry, topology, and
ergodic theory

1. In the present survey we use diverse material from differential geometry,
topology, the theory of smooth dynamical systems, and ergodic theory. For
the convenience of the reader we collect here some of the more important
concepts that occur frequently; the selection is naturally subjective and by
no means complete. For more detailed information we can recommend the
following monographs: on differential geometry [9], [17], [21], [29]; on
differential topology [19], [25], [43]; on ergodic theory [8], [39], [22];
on dynamical systems [6], [16], [30]. Since we have to deal primarily
with the methods of the hyperbolic theory, we can recommend the surveys
[201 and [36], where there is a fairly full bibliography.

2. Riemannian metrics (see [9], Ch. 7and 8; [17], §§3 and 5; [29], Ch. II}
By a manifold M we mean in this work a smooth (of class C*) P-dimensional
compact manifold without boundary, endowed with a Riemannian metric of
class C™ denoted by ¢, ) (special cases when the manifold is not compact or
the Riemannian metric has finite smoothness will be pointed out separately).
We denote by 7M the 2 p-dimensional tangent bundle toM and by 7: TM > M
the natural projection.

The presence of a Riemannian metric allows us to introduce on M various
objects and structures compatible with it. We mention them only in introducing
the corresponding notation, and we dwell only on some of them in more detail.

1) The norm I+ Il in each tangent space T,M, x EM.

2) The distance p between two points x and y (defined as the lower bound
of lengths of possible curves in M joining x and y).

3) The Riemannian connectivity (Levi-Civita connectivity) and the covariant

product induced by it (denoted by “'” or %) and the curvature tensor

R(X, Y)Z (where X, Y, and Z are smooth vector fields on M or along a curve).
4) The connectivity map K: TTM — TM defined by K& = Z'(0), where

£ € TTM and Z(¢) is any curve in TM tangential to £ when ¢t = 0. The map K

is linear and continuous, and its kernel forms a p-dimensional space of

vertical vectors V,. The space of horizontal vectors V,, is defined as the

p-dimensional kernel of the linear operator dn. For each v € TM there exists

the representation

r,TM = (I/V)U & (Vh)ua
which allows us to introduce in TM a canonical Riemannian metric by
(€, 0y = (KE, Kn) + (dng, dan), &, n € I'THM,
in which the spaces V, and V; are orthogonal.
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5) Geodesics—these are curves along which the tangential vector field is
parallel. For any x € M there exists a local chart in which for any v € T,M
the geodesic v, (t) = (v1(), ..., v, (¥)) with v,(0) = x, v,(0) = v satisfies a
certain system of second-order differential equations. We always suppose
that for the geodesic y(¢#) the parameter ¢ is chosen as the arc length; thus,
ly()Il = 1 and (y(¢))) = 0. On complete (in particular, on compact)
manifolds geodesics are infinitely extendable, so that ¢ takes all values from
—oo to oo, For any points x, ¥y € M there exists a geodesic joining x and y
(generally speaking, non-unique). Among such geodesics there always is one
whose length is equal to p(x, y). For any v € TTM there exists a unique)
geodesic, denoted by 7v,(¢), for which v,(0) = 7(), v,(0) = v.

6) The exponential map exp,: T,M — M associates a point v,(1) with a
vector v € T.M. For complete manifolds exp, is defined for all v € T. M,
and is surjective. It is diffeomorphic in the sphere B(r,) in T, M with radius r,
(the radius of injectivity of the exponential map). In the case of compact

manifolds r = min r, > 0.
xEM

7) The Lebesgue dimension v, defined on the @ -algebra of all Borel subsets
of M (one of the methods of constructing it is given in §2.2).

If N C M is a smooth submanifold, then the restriction of the Riemannian
metric ( , ) | N gives a Riemannian metric on N and, consequently, induces
objects analogous to those above. In the appropriate notation we indicate
the subset symbol by a lower index.

3. The universal Riemannian covering manifold.

Let M be a connected Riemannian manifold. Its universal covering
Riemannian manifold is denoted by H (the construction of H is described in,
for example, [17], §7.2). The fundamental group m,(M) acts by isometries
on H and is a proper discrete subgroup of the full group of isometries; here
M = H/m(M). Conversely, if I" is such a subgroup, then it is the fundamental

(MThere is another (more topological rather than differential) approach to the definition
of geodesics as curves of which sufficiently small sections have the smallest length among
all curves joining two given points (and at the same time attaining a distance between two
nearby points). This definition mades sense in an arbitrary metric space; however, in the
general case, geodesic need not exist or need not have the “usual” properties. But if the
metric spaces satisfy a number of axioms of a geometric nature, then geodesic exist and
have the “usual” properties, although they are not, generally speaking, smooth curves.
This approach is developed in the interesting book [13] by Busemann, and he calls the
corresponding metric spaces G-spaces (nowadays, this term is used in a different sense, so
that it is better to call them Busemann spaces).

By subjecting a Busemann space to various axioms, we can obtain analogues (and
generalizations) of classical projective and affine geometry, of the geometries of
Minkowsky and Hilbert, of hyperbolic geometry, and so on. On the whole this approach
is more in the spirit of traditional geometry than the differential methods. However, to
obtain for example, ergodic results it is necessary to postulate a definite smoothness of
the manifold and the metric, sometimes even greater than that which guarantees the
existence of smooth geodesics. Naturally, differential methods are more adequate here.
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group on the manifold M = H/T'. If M is compact for some subgroup I',
then we say that H admits a compact factor.

The covering map H — M allows us to “lift” objects we shall later
construct for M to the manifold H (and conversely to “lower” objects on H
into M. This procedure does not, as a rule, present any difficulty, and we
do not consider it in detail on every occassion. Corresponding objects in H
and M are denoted by the same letters.

4. Curvature (see [9], Ch. 5, 6, and 9; [17], §82 and 3).
For any x € M and any two-dimensional space P C T, M given by vectors
v, w € T, M there is defined the quantity

(R (v, w)w, V)
o2 lwi?—(v, w)’

which is called the curvature of M at x in the two-dimensional direction P (it
can be shown that K,(P) does not depend on the choice of v and w
specifying the plane P). The Riemannian metric is said to have negative
(non-positive) curvature if the curvature at each point and in each two-
dimensional direction is negative (non-positive).

5. The Fermi co-ordinates (see [17], §3.8).

We consider any geodesic y(¢) and fix an arbitrary orthonormal basis {e;(t)}
(i=1,2,..,p)in the space Tyq M such that e, = y(0). Let e;(¢) be the
vector field along y(¢) obtained by a parallel shift of e; along y(¢). Then the
vectors {e;(t)} (i = 1, 2, ..., p) form an orthonormal basis in 7M. The
corresponding coordinates in T, M are called the Fermi coordinates. (We
do not need to go to coordinates on M itself, as is usually done.)

6. Jacobi fields (see (9], §9.4; [17], §4.2; [29], Ch. II).
The Jacobi field along a geodesic y(¢) is vector field Y(¢) satisfying the Jacobi
equation

(1.1) Y'(t) + R(X, )X = 0,

where X(¢) = y(¢). In the Fermi coordinates {e;()} (i = 1, 2, ..., p) along
¥(t), (1.1) can be rewritten in the form of the second-order linear differential
equation

a2

(1.2) G Y )+ R @)Y (2)=0,

where Y(z) = (Y, (1), ..., Y,(?)) is a vector, and R(¢) = (K;;(¢¥)) is a matrix
whose element Kj;(¢) is the curvature at y(¢) in the two-dimensional direction
given by the vectors e;(¢) and ¢;(¢). From this it follows that the Jacobi
field is defined for all ¢ and is given by Y(0) and Y'(0). The space of
Jacobi fields is 2p-dimensional and is denoted by J(7).

A Jacobi field is said to be orthogonal to the velocity vector (or simply
“orthogonal”) if {(Y(#), y(¢)) = O for all ¢£. In this case (Y'(¢), ¥(¢)) = O for
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each . A Jacobi field is orthogonal if {(Y(0), ¥(0)) = (Y '(0), ¥(0)) = 0.
The space of orthogonal Jacobi fields is (2p — 2)-dimensional, and is denoted
by Jo(7).

Together with the Jacobi vector equation (1.2) we consider the Jacobi
matrix equation of the form

(1.3) PD()+R () D) =0,

where D(t) = (d;;(t)), (i, j = 1, ..., p) is a matrix. (1.3) describes the
complete set of linearly independent solutions of (1.2). For any two
solutions X and Y of (1.3) the “Wronskian™

W (X, Y) () = X*(5)o Y () — X* (8) o = ¥ (£)

(“*” denotes the transposed matrix) is constant. If a solution D(¢) of (1.3)
is non-degenerate in an interval (¢,, ¢;), (that is, det (D(¢)) # 0 for € (¢, t;)),

then the matrix function U(¢) =gdg D(t) o D7X(t) is a solution on that interval

of the Riccati matrix equation
(1.4) LU (1) +U (%24 R (#)=0,

where U(?) is symmetrical if and only if W(D, D) (¢) = 0 on (¢,, #;). More
will be said in §2, 3 and 4 about some other properties of the solutions of
the Jacobi and Riccati equations.

The Jacobi equations arise in the calculus of variations (in the formula for
the second variation of the geodesic). An account of these questions is not
part of our task (the topic is treated in [17], §4 and [29], Ch. II, see also
below §2.2). However, we quote one result showing how to describe the
infinitesimal properties of geodesics by means of Jacobi fields. Let y(¢) be a
geodesic and Z(s), —e<{ s ¢ a curve in TM with Z(0) = y(0). We look at
the variation r(t, s) of v of the form

(1.5) r(t, s) = exp(tZ(s)), t =0, —e{s<Ce.

Proposition 1.1 (see [29], Lemma 14.3). The vector field
. 9

(1.6) Y (&)=—-1( 8) =0
along the geodesic v is the Jacobi field along y.
7. Conjugate points (see [9], §11.3 and [17], §4.3).
Let y(¢#) be a given geodesic. Two points x; = y(¢,) and x, = y(t,) are said
to be conjugate if there exists a Jacobi field Y(¢) along y that does not
vanish identically and is such that Y(¢#;) = 0 and Y(¢,) = 0. A Riemannian
metric (and, loosely speaking, the manifold itself) is said not to have

conjugate points if no two points are conjugate along any geodesic in M. In
what follows we consider only Riemannian metrics without conjugate points.



10 Ya. B, Pesin

The absence of conjugate points along y(¢) is equivalent to saying that for
any t, and ¢, and for any vectors Y; and Y, there exists a unique Jacobi
field Y(¢) such that Y(¢,) = Y; and Y(¢,) = Y, (thus, the corresponding
boundary-valued problem is soluble, in fact uniquely, for any boundary
conditions). We give a geometric criterion for the presence of conjugate
points,

Proposition 1.2 (see [17]). Two points y(0) and y(t,), t; > 0, are conjugate
if and only if there is a variation r(t, s) of the form (1.5), with r(0, s) = ¥(0),
—e< s &, for which () is a limiting point of intersection of the
geodesics y(t), and t = r(t, s) as s > 0 and t is close to t,.

Although manifolds without conjugate points may have “‘small” parts of
positive curvature, nonetheless, they have many properties of manifolds of
negative curvature.(!) To illustrate this we denote by SP-1(z, t) the (p— 1)-
dimensional sphere on the universal Riemannian covering manifold H.

Proposition 1.3. Suppose that a Riemannian metric on M does not have
conjugate points. Then
1) H is diffeomorphic to R* by means of the map exp, for any x € H;
2) a geodesic in H attains the distance between any two of its points;
3) any two geodesics in H intersect at most once; any two intersecting
geodesics v,(t) and v,(t) in H diverge, that is,

P(¥1(2), Y2(t)) > 00 as t— oo;

4) for any x € H, t > 0, and y € SP"(x, t) the geodesic v,,(s) is
orthogonal to the sphere S*(z, t).

1) is called the Hadamard-Cartan theorem (see [17], §7); 2) is proved,
for example, in [17], §7.2; 3) for the two-dimensional case is proved by
Green in [67] (see Theorem 3.1); in the general case by Eberlein in [50], 168.
A generalization of this assertion to manifolds with poles is given in [62].

A proof of 4) can be found, for example, in [29], Lemma 10.5.

8. Focal points (see [9], §11.3 and [17], §4.3).
Let y(¢) be a geodesic. Two points x; = y(¢,) and x, = v(f,) are said to be
focal if there exists a Jacobi field Y (¢) along v such that Y(#) = 0,

Y'(t;) # 0, and -(%—(ll Y (@) |P) l4=¢, = 0. We say that a Riemannian metric

(and, loosely speaking, the manifold itself) does not have focal points if no
two points are focal along any geodesic in M. (In this case, as Goto has
shown (see [64], Theorem 1), for any geodesic y and any Jacobi field Y(¢)
along v for which Y(0) = 0 and Y'(0) # O, the function ¢(t) = 1 Y(5)
tends monotonically to +oo as ¢ &> +oo, If a Riemannian metric does not

(WWe mention that when the curvature is negative there are no conjugate points (see also

§1.8).
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have focal points, then it does not have conjugate points. If a manifold has
non-positive curvature, then it does not have focal points.

The absence of focal points means that | ¥(¢)!l is monotonic for any
Jacobi field Y(¢#). This circumstance (taking Proposition 1.1 into account)
allows us to establish the following geometric properties of manifolds
without focal points.

Proposition 1.4 (see [54]). Suppose that a manifold M has no focal points.
Then

1) for any two geodesics v{(t) and v,(t) on H the function ¢(t) = p(y,(t),
v2(t), t € R, to convex

2) the sphere SP-Y(x, 1)is a convex set.

We introduce here two criteria, the first of which establishes the presence
of focal points, and the second their absence.

Proposition 1.5. 1) Two points y(t,), t, > 0, and ¥(0) are focal if and only
if there exists a variation r(t, s) of the form 1.5 such that the curve w(Z(s))
is a geodesic and y(t,) is a limiting point of intersection of the geodesics y(t)
and t = r(t, syas s > O and t is close to t, (see [17]).

2) A Riemannian metric on M does not have focal points if and only if
for any geodesic v € H and any point p € H not lying on vy there exists a
unique geodesic o in H passing through p orthogonally to v. Moreover,
o(t) = p(p, ¥(t)) is differentiable, ¢' > 0 and "' = Q at the point t = t,
only, and the geodesic joining p and y(ty) is just perpendicular dropped from
p to y (for dimM = 2, this was proved by Green in [67]; in the general
case, by Eberlein in {54], Proposition 2).

Remark 1.1, Propositions 1.1~1.5 are true not only for compact but for
arbitrary complete Riemannian manifolds [note that in 3) of Proposition 1.3
it must be required, in addition, that either the curvatures K, (P) be
uniformly bounded below (see [50], p.168) or that the metric does not have
focal points (see [103], Proposition 2, and {64], Theorem 2]. O’Sullivan
gained interesting information on the structure of the fundamental groups of

compact manifolds without conjugate or focal points (see [102], [103], also
[571, {1061, [591).

9. Flows with hyperbolic behaviour of the trajectories.
Let f*: M —> M be a flow on a manifold M of class C’, r = 1, given by a
vector field X. We denote by Z, the one-dimensional subspace of T, M
generated by the vector X(x), and by W the smooth invariant one-
dimensional layer generated by the trajectories of the flow.

The flow f* gives rise to a flow F’ in the tangent bundle 7M, acting
according to the formula

(1.7) Ft(z, v)=(f'(2), dfv), z€M, vETM.
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The vector field specifying the flow F* (and defined on TM) is called the
vector field of variation (in local coordinates the classical “‘variational
equations’ correspond to it), and the trajectories of F? are called solutions
of the variational equations. These equations describe the infinitesimal
properties of the trajectories of the flow f7.

A flow f? is called Y-flow if there exist two continuous distributions E~
and E*t such that

I M=E.®E.® 2, for each x € M;
2) df'Ez =E,,, df'Ex =Ej,, foranyx €M andt € R;
3) there exist constants ¢ < 0 and A € (0, 1) such that for any x € M,

¢ >0,

(1.8) {Ildf’vll<c7»tllvll if  vek,

Hdfvli=c A ol if veE.

The subspaces E; and Ey are said to be, respectively, contracting (stable)
and expanding (unstable). The distribution E~ (or EV) is integrable and its
maximal integral submanifolds form a continuous variable fibration, denoted by
W~ (or W*). The fibration W~ (or W) is contracting (or expanding): there
exists a K > 0 such that for any x €M, y € W(x) (or y € Wt(x)), and for
any t > 0 (or t <0)

1.9) o (@), I'W)< KEMp(z, ) (or p*(*(@), /') < KMp*(z, p)),
where p~ (or p*) denotes the distance on the corresponding fibre of W~
(or W) induced by the Riemann metric (see §1.1). The distributions
E- & Z and E+@Z are also integrable. The corresponding filtrations are
denoted by W™ and W*°. Here W™(x) is also called the stable sheet at x
and is defined as follows:

W@ =U fW @)=y W (@)

Wt0(x) is also called the unstable sheet at x and is defined analogously.
The characteristic Lyapunov indicator for the flow f? is the function
X*: TM - R defined by

x* (z, v)=Tim - log || df'v I, z€M, vET:M.
t-+o00

We assume that f* preserves a certain Borel measure u. We say that £ has
non-zero characteristic Lyapunov indicators if the set

(110) A ={x€EM: y*z, v) =0 forevery vE€ T M\Z.}

has positive measure. On A the flow f? satisfies the conditions of non-
uniform hyperbolicity, which is analogous to 1), 2), 3) with this difference
only that in 3) the constants ¢ and A are replaced by certain measurable
functions on M.
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We do not dwell here in more detail on the theory of Y-flows with non-
zero characteristic Lyapunov indicators, referring the reader a4 propos the
first to [3] and (4], and a propos the second to [32], [33], and [80].
About the results of these works that we used in what follows we have more
to say in the course of the exposition.

In conclusion we indicate another version of weakening of the requirements
of hyperbolicity, which consists in the transition to so-called partial
hyperbolicity. Mor exactly, a flow f* on a manifold M is said to be partially
hyperbolic (see [12]) if there exist distributions E~, E™, and E° such that

1) T.M=E;® E:® E., Z.cEy
2) df'Ez=Epu,, df'Ex=E,,, df'Ex=Ey, forallx €M;

3) there exist constants ¢ > 0, 0 <<TA,<Cpy <A, <y <T A3y, Py <1 <TAg,
such that for allt > 0

i v <l dffr I<<ept || vll, v€Ex,
v Il dfv |<eut [lv ], vEES,
A v Il dft v |<<eptllvll, vEEx.

The distribution E~ (E*1) is integrable.

10. Topological and ergodic properties.

When we speak of topological properties, we have in mind such properties as
topological transitivity, topological mixing, minimality. By ergodic
properties we mean ergodicity, mixing, the K-property, the Bernoulli
property (isomorphism to a Bernoulli flow). We need also the concepts of
topological and metric entropy. Definitions of the properties and concepts
can be found, for example, in the survey [20], and a more detailed account
is in the book mentioned at the beginning of this section.

§2. Local theory

1. A geodesic flow M on a manifold is a flow in TM whose action is given
by the formula

f(z, v)=vo (), €M, vETM.

It belongs to the class €71, where r is the smoothness class of the Riemannian
metric. We denote by ¥V the vector field specifying f*. We describe another
way of defining V suggested by classical mechanics.

We consider the cotangent bundle T*M whose elements are the linear
1-forms on the spaces tangential to M and let 7*: T*M — M be the natural
projection. We define on T*M the canonical 1-form w by

o(z, g)=q(dn*(z,q)), z € M, ¢ € TZM
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(note that dn*(x, q) € T, M), and set £+ = dw. The canonical 2-form Q« is
non-degenerate and gives on T*M a symplectic structure (see [6], Ch. 8 and

[21], Ch. 3). The Riemannian metric allows us to define the identity map()
L: TM > T"M

x(x7 U)= (x, Q)v xEMa UETxMr QGT.;M,

where the 1-form g satisfies the relation (v, w) = gq(w) for any w € T, M.
We now give the canonical 2-form S in TM by setting

QY, Z) = QuL(Y), £(2)), Y, Z€TM.
We define a function K: TM - M by

K (z, )=, =g llv |2

The vector field ¥ giving the geodesic flow can now be defined as the field
corresponding to the 1-form dK with respect to the canonical 2-form £2, so
that for any x € M, v € LM, and z € Ty, ,, TM

(2.1) QV(z, v), Z) = dK(Z)
(see [6], [25]).

2. The connection with classical mechanics (see (6], [4], [25], [21]).
The approach described above is connected with an interpretation of
geodesic flows as mathematical models of classical mechanics, that is, as the
phase flows of certain Hamiltonian systems. Here the manifold M plays the
role of a configuration, and 7M is the phase space of the mechanical system;
points x from M are treated as ‘‘generalized” coordinates, vectors v from TM
as “generalized” velocities, and elements from 7 *M as “generalized” impusles.
In accordance with Hamilton’s principle, a trajectory of the mechanical
system in the configuration space passing through x, y is the extremal of the
energy functional (in more classical terminology: the action
31
E = % S ((t), v(t))dt (there is no potential energy). Here, lu(t®)Il = const
to
along the extremal. It is well known that these extremals are geodesics, that
is, the equation of the geodesics is the Euler equation for the corresponding
variational problem with fixed end-points.
For a description of the trajectories of a mechanical system in the phase
space we look again at K(x, v), which is also called the Hamiltonian. A

(The map £ is a particular case of the Legendre transformation, which is defined not
only for Riemannian metrics, but also in a more general situation including Finsler
metrics, which makes it possible to study geodesic flows in the relevant manifolds.
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geodesic flow is a phase flow of the corresponding Hamiltonian system®)
(that is, a Hamiltonian flow), and its vector field in local co-ordinates (x, v)

has the form (6K 6K).

ov’ ox

Since the total energy of the system is a first integral, the surfaces
K(x, v) = const, (that is, lvl = const), are invariants of the geodesic flow;
therefore, we usually consider the geodesic flow on the manifold (which we
denote by SM) of the unit linear elements (that is, the pairs (x, v), x € M,
v € T.M, vl = 1), which is a smooth fibration with basis M and the
(p— 1)-dimensional unit sphere as fibre.

This representation allows us to define an invariant measure u for a
geodesic flow: in accordance with Louiville’s theorem, this measure is given
by

dn = do dv,

where do is a surface element on the (p— 1)-dimensional unit sphere.

3. Variational equations.
Letv € TM and £ € T,SM. We associate with a vector £ the Jacobi field Y,
given by the initial conditions

2.2) Y(0) = dnk, Yi(0) = KE.

Proposition 2.1 (see [53], Proposition 1.7). The map & — Y; is a linear
isomorphism of 1,SM onto J(v,).

2) Y1) = dn o df*E, Yi(t) = K o df*E for every t € R.

3) For v € SM the map & - Y, is a linear isomorphism of V(v)* (the
orthogonal complement to V(v) in T,SM) onto Jy(v,), that is, ¢ € T,SM, and
(& V(v)) = 0if and only if the Jacobi field Y(¢) is orthogonal.

Corollary 2.1. 1) If v € SM, £ € T,SM, and (&, V(v)) = 0, then {df ¢,
V(f{w))) =0 forall t € R.

2) If v € TMand § € T,TM, then || dj*E |P = || Y+(2) |P + WYi(t) | (the
norm induced by the canonical Riemannian metric in TM, see §1.1).

MHamiltonian systems of a more general form are defined on an arbitrary symplectic
manifold N (that is, a manifold on which the symplectic 2-form £ is given with the help
of a certain Hamiltonian function A: N = R. The vector field specifying the Hamiltonian
flow is a field corresponding to the 1-form dH relative to the 2-form Q (see (2.1)). In the

local coordinates (x, p) in which Q= 2 dp; \dzt this vector field has the form

(0H/ap, ~0H/dx). For a conservative mechanical system with a configuration manifold
M we have N = T'M (with corresponding ), H = K — U, where K is the kinetic and U is
the potential energy of the system. For a fixed value E of the Hamiltonian function H,
the motion can be reduced to a geodesic flow on M by the introduction of a new
Riemannian metric {, )y =(E — U (2))(, )» and a certain change of time (the
Maupertuis-Lagrange-Jacobi principle). In our case all this simplifies since U = 0 and
T"M is naturally isomorphic to TM.
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From these propositions it follows that, (to within a correspondence
Y, > (Y, Y{)) the Jacobi equation (1.1) (or in the form (1.2)) is the
variational equation for the geodesic flow (compare with (1.7)). This
assertion has undoubtedly been known for a long time. In [3] a proof is
given by means of direct calculations using local coordinates; another
method of argument in “invariant’ terms is given in [21], §3.

4. Limiting solutions.

To begin with, we give one proposition, which plays an important role in the
study of the properties of solutions of Jacobi and Riccati equations on
manifolds without conjugate points.

Proposition 2.2 (see [53], Lemma 2.8). Let M be a complete Riemannian

manifold without conjugate points for which the curvatures K, (P) are

uniformly bounded below by —k?, k > 0. Thenv € R~ ! lvl = 1 for any

symmetric solution U(t) of the Riccati equation (1.4), and for any t > 0
(U, vy < k coth(kt).

For manifolds of negative curvature the principal fact of the boundedness of
U(t) (but without this estimate) was proved in [3] and in other terms in [4].

Corollary 2.2 (see [531, Proposition 2.7). Under the conditions of
Proposition 2.2, for any orthogonal Jacobi field Y(t) along a geodesic y(t)
such that Y(0) = 0,

1Y) 1<k coth(kt) [| Y(2) II.

We consider the Jacobi matrix equation (1.3) and let Dy(¢), s > 0, be its
solution subject to the boundary conditions D,(0) = I, Di(s) = 0.

Theorem 2.1. Under the conditions of Proposition 2.2 there exists a
solution D™ (t) of (1.3) with the initial conditions

- d - . d
DTO)=1, D" (0)|_,=lim 5-D,)],_,.

This solution has the following properties:

1) it is non-degenerate, that is, for every t € R

(2.3) det(D~(2))  O;

2) D-(t) = lim Dy(t) forevery t ER,;

$—>o00

3) for every t > 0

D)=A@) | 47 ) (™ ()" ds,
i

where A(t) is the solution of (1.3) with the initial conditions A(Q) = 0,
FAW | = I.
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This D7(¢) is called the negative limiting solution of (1.3). A positive
limiting solution D™ (t) is constructed similarly (in the preceding constructions,
s > —o), The existence of limiting solutions was established by Green in
[66] and [67] and reproduced by Eberlein in [53}; for two-dimensional
manifolds without focal points a corresponding (but naturally simpler)
argument was given in [23] (see also [64], §1).

5. Invariant distributions.
For v € SM we put

X)) = {E€T,SM: (&, V() =0, Ye(t) = D~(t)dnt},
X*w) = {E€ T,SM: (&, V(v))y = 0, Yi(t) = D*(t)dnt}.

Then X (v) and X T(v) are called stable and unstable subspaces of T,SM,
respectively. We write

vl = {w € TreyM: w orthogonal to v}

and let 7: SM — SM be the involution 7(v) = —v.

Theorem 2.2 (see [531, 82). Suppose that the manifold M is complete and
the curvatures K, (P) are uniformly bounded below by —k?, k > 0. Then

1) X (v) and X *(v) are vector subspaces of T,SM of dimension p— 1,
2) df*X~(v) = X-(f'(v)), df*X*(v) = X*(f'(V));

3) dunX~(v) = daX*(v) = vi;

4) if E€ X-(v) or § € X*(v), then Y¢(t) % 0;

9) X*H(—v) = dtX~(v), X (—v) = diX*(v);

6) | KE |k |ldnk || forany veESM, E€ X (v) or E€X*()

Nifv€ESM, §€ T,SM, (¢ V(v))= 0, and || dn - df*E ||<< const for all
t=0(ort<0), then £ € X (v) (or £ € Xt (v)).

Here 1) means that the collection of subspaces X {(v) and X (v) form two
(p— 1)-dimensional distributions in 7SM; 2) means that these distributions
are invariant under the geodesic flow. From 3) it follows that for any
w € v! there is a unique “stable limiting” Jacobi field Y,,(¢) for which
Y,(0) = w and (Y,;)'(0) = K&, where £ is the uniquely determined vector
from X (v), for which dn§ = w. An “unstable limiting” Jacobi field Y, ()
can be constructed similarly. For manifolds of negative curvature (and in
some other cases) these fields can be defined by the boundary conditions
Y,(0) = w and Y, (+°) = 0 (or Y,;/(0) = w and Y, (—) = 0, respectively).
By virtue of 4) (see also (2.3)) the Jacobi fields Y, (¢) and Y,(¢) are non-
singular.

For stable limiting Jacobi fields on manifolds of non-positive curvature the
following comparability theorem holds.
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Theorem 2.3 (see [75], Theorem 2.4). Let M be a complete Riemannian
manifold such that —b* < K, (P) <—a? for all curvatures K, (P). Then for any
v € SM and w € v', the stable limiting Jacobi field Y (t) along the geodesic
v, (t) satisfies the inequalities

lwll e <[ Yo @) I w et

We lift the distributions X~ and X to the universal Riemannian covering
manifold H (and denote the resulting distributions by the same letters; see
§1.3). Then

(2.4) d(de)X ~(v) = X~(dgv), d(de)X*(v) = X*(dgv),

where ¢ is an isometry of H.

The existence of the subspaces X (v) and X *(v) confirms the view that a
geodesic flow on a manifold without conjugate points inherits certain
hyperbolic properties. From Theorem 2.2.7) it follows that a vector
£ € T,SM for which x*(v, §£) < 0 (or xT(v, §) > 0) lies in X (v) (or X T(v)).
Of course, a vector £ € T,SM for which x*(v, £) = 0 may lie in both
X" (v) and X*(v). In particular the intersection of X (v) and X *(v) need not
be trivial. ()

It is not known whether the distributions X~ and X* are continuous. The
most general sufficient conditions known at present are given by Theorem 5.6.

On manifolds without focal points X~ and Xt have certain supplementary
properties.

Proposition 2.3 (see [53], §2 and [34], 84). Suppose that under the
conditions of Theorem 2.2 a Riemannian metric in M has no focal points.

D If £ € X~ (v) (or £ € Xt (v)), then the function ¢(t) = 1Y ()l is non-
increasing (non-decreasing);

2)if v ESM, £ € T,SM, and (&, V(v)) = 0, then || dnodf't ||<C const for all
t=0(rt<0)ifand only if £ € X () (or £ € X*(v)).

§3. Hyperbolic properties of geodesic flows

1. Manifolds of negative curvature.

Geodesic flows on manifolds of negative curvature have extremely strong
hyperbolic properties. This follows from a remarkable theorem that was
proved by Anosov in [3] (another proof is in the article by Asonov and
Sinai [4]).

(MFor such vectors the quantity || drodftE || can be unbounded (but the rate of growth
must be less than exponential); therefore, the property established by 7) is sufficient but,
generally speaking, not necessary (it is so if the metric has no focal points, see
Proposition 2.3).

(Z)Compare with Theorem 8.4.
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Theorem 3.1. A geodesic flow on a manifold whose curvature is negative
and bounded below is a Y-flow. Moreover,

E; = X~(v), E¥ = X*(v)

(in particular, X~ (v) 0 X (v) = 0 and (1.8) holds for any £ € X (v) or
£EE€ Xt().

The second assertion follows directly from Theorem 2.3 (in essence, the
necessary reasonings are in {4]; see also [21] and [53]).

The proof of Theorem 3.1 is based on the argument that if along a given
geodesic vy the curvature at each point y(¢) and in each two-dimensional
direction is negative (and bounded below), then along the corresponding
trajectory of the geodesic flow the conditions of uniform hyperbolicity are
fulfilled. Thus, these arguments are, so to speak, trajectorial: they operate
only with one unique trajectory, and uniformity is achieved at the expense
of uniform bounds on the curvature. This approach has far-reaching
generalizations and allows us to obtain non-uniform estimates when the
geodesic from time to time goes through parts with positive curvature.

2. Manifolds without focal or conjugate points.
Let v € SM. We choose an arbitrary system of Fermi coordinates along a
geodesic v,(t) and a vector w orthogonal to v. We set

D™ (Qw

W‘ ) Ky, w(t) =(R (v, (), w(f)) v, (), w(),

w(t)=
where D71(¢) is the orthogonal limiting solution of the Jacobi equations (1.3).
We consider the set

A= {UE SM: w is orthogonal to v, for any w € SM, and

mi§Kv,w(s)ds<0}.
0

{—>o00 t

The following theorem, which is proved in [32] (Theorem 10.5) describes
the hyperbolic properties of a geodesic flow on A,.

Theorem 3.2. Suppose that a Riemannian manifold M has no focal points.
Then xT(v, £) <0, (or xH (v, £) > 0) for any v € Ay and £ € X (v) (or
£ € XHv)).

In the two-dimensional case this theorem has a converse.

Theorem 3.3 (see [34], Theorem 8.2). Suppose that a Riemannian manifold
M does not have conjugate points and that dimM = 2. Let v € SM be such
that x*(v, £) < 0 for some (and consequently for any) £ € X (v). Then

v E A,.
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One can speak of hyperbolic properties of a geodesic flow only if the set A
defined by (1.10) has positive measure. (It can be shown under certain
supplementary assumptions that in this case g(A) = 1.) We quote sufficient
conditions for u(A) > 0.

Theorem 3.4 (see [34], 89 and [32], §10).' 1) If a Riemannian metric does
not have focal points and u(Agy) > 0, then p(A) > 0.

2) If dimM = 2, the Euler characteristic x(M) is negative, and the
Riemannian metric does not have focal points, then u(A\,) > 0.

3) If dimM = 2, the Riemannian metric does not have conjugate points,
and the entropy of the geodesic flow h,(f) is positive, then u(A) > 0.

§4. The axiom of visibility and the axiom of asymptoticity

1. Definition of the axiom of visibility.
At the beginning of the 70’s Eberlein introduced and systematically studied
in a group of papers [50] -[52] (see also [106]) a condition on a Riemannian
metric which he called the axiom of visibility. Originally, this condition
arose from attempts to find a geometric analogue for the ‘“‘cosine law” and
for a number of other properties inherent in a metric with non-negative
curvature (see below 84.6). However, a generalization which Eberlein found
turned out to be exceptionally successful and productive. It became clear
that this condition concerns not only the given Riemannian metric but also
the whole class of Riemannian metrics without conjugate points (see
Theorem 4.2); to some extent it reflects the topological properties of the
manifold as such.(!) Moreover, it ensures the topological transitivity of a
geodesic flow (see Theorem 6.1) and, as was established later, it has a
relation to its hyperbolic properties. As we have already shown, the class of
Riemannian metrics without conjugate points is a natural generalization,
from the point of view of the preservation of hyperbolic properties, of the
class of Riemannian metrics with negative curvature. Nevertheless, it is fairly
broad in so far as it contains, for example, Riemannian metrics of zero
curvature,® in which a geodesic flow does not have any hyperbolic
properties (for such metrics X (v) = X t(v), v € SM). Therefore, some
additional conditions (excluding specifically the case of Riemannian metrics
of zero curvature) are required, one of which is precisely Eberlein’s condition.
The axiom of visibility is stated for a given Riemannian metric in terms of
the universal covering Riemannian manifold A (in other words, for simply-

(I)Although the connection between the axiom of visibility and topology has not been
clarified directly, one can obtain some information in, for example, the two-dimensional
case: the presence of a Riemannian metric without conjugate points singles out from
among all surfaces those with the Euler characteristic x(M) < 0, and the axiom of
visibility those with x(M) < 0.

®We mention in this context, one result of Hopf [78] to the effect that on a two-
dimensional torus any metric without conjugate points has zero curvature.
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connected Riemannian manifolds) and it consists in the following:
for any x € Hand ¢ > 0 there is an R = R(x, &) such that for every
geodesic segment (1), t, <t < t,, in H for which p(x, v) 2 R we have

X (v(te), V())&

(%,(a, b) denotes the angle between the vectors ¥,,(0) and ¥,,(0)). A
manifold H is said to satisfy the axiom of uniform visibility if") the
constant R can be chosen independent of x.

We say that a connected (not necessarily simply-connected) manifold M
satisfies the axiom of (uniform) visibility if its universal covering Riemannian
manifold satisfies this axiom.

The following theorem gives sufficient conditions under which a
Riemannian manifold satisfies the axiom of uniform visibility.

Theorem 4.1 (see [106], Proposition 5.9 and [50], Theorem 4.1).

1) A complete Riemannian manifold for which K, (P) < c¢ < 0 for all x
and P satisfies the axiom of uniform visibility.

2) A simply-connected Riemannian manifold with a compact factor for
which K,(P) < 0 for all x and P satisfies the axiom of uniform visibility if
and only if it does not admit of a global geodesically isometric embedding of
the Euclidean plane R? (in particular, plane manifolds 4o not satisfy the
axiom of visibility).(®)

3) For simply-connected manifolds with a compact factor for which
K, (P) < O for all x and P, the axioms of visibility and of uniform visibility
are equivalent.

The following important proposition shows that the axiom of uniform
visibility characterizes at one stroke the whole class of Riemann metrics
without conjugate points.

Theorem 4.2 (see [50], Theorem 5.1). Let M be a compact manifold with a
Riemannian metric without conjugate points saiisfying the axiom of uniform
visibility. Then any metric in M without conjugate points also satisfies this
axiom.

To prove this theorem we use one proposition of independent interest.

Theorem 4.3. Let {,) and {,)* be two equivalent Riemannian metrics® on a
simply-connected manifold H satisfying the axiom of uniform visibility (not
necessarily without conjugate points). Then there is an R > Q such that for

(M These definitions do not formally assume the absence of conjugate points, indeed
some of the results quoted below can be obtained without this assumption.

®)That is, an embedding of R? under which the complete geodesic on the corresponding
two-dimensional submanifold is at the same time a geodesic on the manifold.

O)That is, allvll < Ivh* < bllivl for some @ >0, b > 0 and any v € TM.
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any two geodesic segments vy and v* (in the metrics {,) and ()",
respectively), with the same end-points and with v* minimizing®) for any
x €y

plz, y¥)<<R.

This assertion was proved by Morse in [93] for the case when (,)* is the
standard metric on the Lobachevskii plane, and by Klingenberg in [83] for
arbitrary manifolds of negative curvature (in [21] the case of a manifold of
hyperbolic type is examined, see also [61]). In the general case a proof was
given by Eberlein in [50] (see Proposition 5.5).

Theorem 4.4. Let M be a two-dimensional compact Riemannian manifold
with Euler characteristic x(M) < Q and with a Riemannian metric without
conjugate points. Then M satisfies the axiom of uniform visibility.

This follows directly from Theorem 4.2, since any compact two-
dimensional manifold with x(M) < 0 admits of a Riemannian metric of
negative curvature.

2. The absolute.
Two geodesics 7y; and 7y, on a simply-connected manifold H are said to be
positively asymptotic (or simply asymptotic)® if

(4.1) P(y1(2), v2(2)) < const

for all t+ > 0, and negatively asymptotic if (4.1) holds for all # < 0. The
relation of asymptoticity is an equivalence relation. The class of geodesics
positively (or negatively) asymptotic to a geodesic y(¢) is denoted by y(+ o)
(or y(—o0)) and is called a point at infinity. Since vy, (—o) = v_,(+°), the
sets of equivalence classes of positively and negatively asymptotic geodesics
are equal and form an absolute of H, denoted by H(e). We put H = H U H(o).
Although these definitions are applicable to any Riemannian metric one can
gain substantial information on the structure and properties of an absolute
only under an additional assumption on the metric. We quote here one of the
most general conditions of this kind, which was introduced in [34].

3. Definition of the axiom of asymptoticity.

Apart from the axiom of visibility there are also other stronger or weaker
conditions on a Riemannian metric with an analogous role: they allow us to
study geometric properties of a manifold (with a given Riemannian metric).
We formulate one of these conditions whose significance will be made clear
below. We recall that we only consider Riemannian metrics without conjugate
points.

MThat is, p"(x, ¥) = |ty =ty | for any z, y € y*, 2= y* (t), y = v* (ty).
(2)Thus, contrary to etymology, parallel straight lines in the Euclidean plane are
asymptotic.



Geodesic flows 23

We choose an arbitrary point x on a simply-connected Riemannian
manifold H and a vectorv € SH. Letz, € H, z, > 2, v, € SH, v, > v and
t, > too. Let v, be the geodesic joining the points x,, and yv,(¢,). The
sequence of vectors v,,(0) is compact, consequently, the sequence of
geodesics has a limiting geodesic.(!? We say (see [34]) that the Riemannian
metric in A (and, loosely, H itself) satisfies the axiom of asymptoticity if for
any choice of z,,, x € H, x,, > 2, v,, v € SH, v, — v and for ¢,, &> +oo, any
limiting geodesic of the sequence v,, is positively asymptotic to the geodesic v.
From Proposition 1.3, 3) it follows that in this case the sequence of
geodesics 7, has a single limit geodesic, that is, it converges.

We say that a connected (not necessarily simply-connected) manifold
satisfies the axiom of asymptoticity if its universal Riemannian covering
manifold does.

Theorem 4.5 (see [34], Theorem 5.1 and Proposition 5.4). A complete
simply-connected Riemannian manifold H satisfies the axiom of asymptoticity
if one of the following conditions holds: 1) the Riemannian metric does not
have focal points;®) 2) H satisfies the axiom of uniform visibility ;3

3) dimM = 2, x(M) < 0.

4. The topology of an absolute.
Let x € H, v € SH, n(v) = x. We call the set

C(U, 8) = {y €H: 4x(?v(+oo)v y) < 8}
a cone in H with vertex at x, axis v and angle &, and the set
T, e r) = C(v, &)\ {y€H :p(z, y)<r}a truncated cone in H with vertex
at x, axis v, angle ¢ and radius 7.

Theorem 4.6. Let H be a simply-connected Riemannian manifold with a
compact factor and a Riemannian metric satisfying the axiom of
asymptoticity. Then a topology T can be introduced on H such that

1) the restriction of T to the space H is the same as the topology on H
induced by the Riemannian metric,

2) the set H is open and dense in H; the sets H(>c) and H are compact;

3) for each p € H(o0) the set of cones containing p is a local basis for the
topology T at p;

4) for any p € H(e0), x € H, the set of truncated cones with vertex x
containing p is a local basis for the topology T at p;

OF sequence of geodesics ¥, tends to v if ¥,(0) = ¥(0) and ¥,(0) = ¥(0).

@) This is proved in [34] under the additional assumption that all curvatures K,.(P) are
uniformly bounded below. Using results of Goto (see [64], Theorem 1) and O’Sullivan
(see [103], Proposition 1) it can be proved without this assumption.

(dWe mention a consequence of the axiom of visibility, which establishes a property
close to the axiom of asymptoticity (but stronger; see [SO], Lemma 1.6): if x,,, ¥,,

z, €H, x, > x, y, >y and z, diverges, if v, and o, are geodesics joining the points

Xp, Zp and ¥y, z,, respectively, and if 7y and o are the limiting geodesics of the sequences
Y» and 0,, then vy and o are asymptotic.
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5) for any x € H, the map ¢,:. B~ H (B is the open unit ball in T.M)
defined by

fexpel(1—1lv, )71, yEB,
ez (y) = N’vy(-{—oo), €GB

(where vy, is the vector in T, M with initial point at zero and end-point at y)
is a homeomorphism.

For the Lobachevskii space this was already known to Poincaré, and for
the case of variable negative curvature it is in Busemann’s book [13]. For
complete (not necessarily compact) manifolds without focal points, in
dimension 2 or on the supposition that the manifold is of Anosov type, this
result was obtained by Goto in [64] (see Theorems 5 and 6) and was
announced by her for any complete manifold without focal points). For
complete simply-connected manifolds satisfying the axiom of uniform
visibility it was established by Eberlein in [50] (see Proposition 1.12 and
1.13). In full generality it was proved in [34] (see Theorem 7.6). It can
also be proved that the topology 7 is admissible in the sense of [106], p.50.

The following proposition is an important consequence of the axiom of
asymptoticity.

Proposition 4.1 (see [34], Proposition 5.1). If a simply-connected Riemannian
manifold satisfies the axiom of asymptoticity, then for any geodesic v and
for any point x € H there is a geodesic ¥’ through x and asymptotic to 7.
This geodesic is uniquely determined if H has a compact factor or, more-
generally, if all the curvatures K,.(P) are uniformly bounded below (see
Proposition 1.3, 3) and Remark 1.1).

Special cases of the proposition are in Eberlein [SO] for manifolds of non-
positive curvature or satisfying the axiom of visibility, and in Goto [64] and
O’Sullivan [103] for manifolds without focal points (and even without the
assumption that the curvatures are bounded, see footnote®) on p.23).

Proposition 4.1 allows us to define the following functions:

1) ¥y : SH—~H, ¥, (v) = v,(t), t €10, ool;
2) ¢ : H X H(o) > SH, ¢(x, p) = vxp(0).

Proposition 4.2 (see [34], Corollaries 7.3 and 7.4). The functions ¥; and ¢
are continuous.

5. Elements of uniqueness. The strong axiom of uniform visibility.

In a complete simply-connected Riemannian manifold any two points can be
joined by a geodesic (see [29], the Rhinov-Hopf theorem). This is uniquely
determined if the Riemannian metric does not have conjugate points (see
Proposition 1, 2)). As Eberlein has shown in [50], the axiom of visibility
makes it possible to extend these propositions to the space H.
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Theorem 4.7 (see [50]). Let H be a complete simply-connected manifold
with a Riemannian metric without conjugate points and satisfying the axiom
of uniform visibility. Then for any p, q € H() there is a geodesic vy such
that

(4.2) Y(+4o0) = p, p(—o0) = g.

However, such a geodesic need not be unique. In this context we
introduce the following concepts. We call a vector v € SH an element of
non-uniqueness if there exists a vector w € SH such that

(4.3) Yo+ 00) = Yu(+00), Vp(—00) = Yu(—o0).

Otherwise, v € SH is called an element of uniqueness. We say that a
Riemannian metric without conjugate points satisfies the strong axiom of
uniform visibility if it satisfies the axiom of uniform visibility and for any
P, q € H(oo) there exists a unique geodesic +y satisfying (4.2); an equivalent
definition is that every v € SH is an element of uniqueness.

In [106] (see Corollary 5.2) it is proved that a manifold of (strictly)
negative curvature satisfies the strong axiom of visibility.

Theorem 4.8. Let H be a simply-connected Riemannian manifold without
focal points. The following assertions are equivalent.

1) H does not satisfy the strong axiom of visibility.

2) There exists a globally geodesically isometric embedding") of the strip
{(z, y) : 0L 2e<Ce, —co<Ty << oo}in H for some ¢ > 0.

3) There exists a geodesically isometric embedding of the rectangle
{(z, y) : 0L 2z <L e, 0L y< T} in H for some ¢ > 0 and any T > 0.

This proposition is called “‘the theorem of the plane strip”. For manifolds
of non-positive curvature it was proved by Eberlein in [50] (see Proposition
5.1); for manifolds without focal points in the two-dimensional case by
Green in [67], and under the assumption that H has a compact factor, in
[34]; finally, for arbitrary manifolds without focal points by Eschenburg in
[60] (the same result was also found by O’Sullivan in [103] under some
additional assumptions which are easily removed with the help of Goto’s
results [64]). Theorem 4.8, 2) can be sharpened somewhat.

Proposition 4.3 (see [34], Theorem 7.3). Suppose that a manifold H
satisfies the conditions of Theorem 4.8 and has a compact factor, and that

v € SH is an element of non-uniqueness. Then there exists a vector w € SH
orthogonal to v and a geodesic segment 8(s), 0 <s <a, such that 8(0) = n(v),
8(0) = w, and the union of the geodesics passing orthogonally through the
points of 6(s) is the image under the globally geodesically isometric
embedding of the strip {(s, t) e R? : 0<{s<Ca, —o0 <t << 00}

(Dgee footnote to Theorem 4.1.
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This assertion has an interesting consequence about the totalities of all
geodesics joining two given points p and g on the absolute H(ec), which was
established in [106] for manifolds of non-positive curvature.

Proposition 4.4. Suppose that a manifold H has a compact factor and
satisfies the conditions of Theorem 4.8, and that p, q € H(o°). Then there
exists a compact set K = K(p, q) such that any geodesic joining p and q
intersects K.

6. Manifolds of non-positive curvature. Classification of isometries.

An Hadamard manifold is a complete simply-connected Riemannian manifold
of non-positive curvature. For such manifolds the “cosine law” holds:
a’>+b%*—c? < 2ab cosB, where a, b, and c are the sides of a geodesic triangle
and 6 is the angle formed by a and ». Using this property only, one can
advance a long way in the investigation of the geometry of the manifold H,
in particular, construct an absolute and prove the propositions stated in
Theorem 4.6 (see [106], §8§1 and 2). Besides this, it follows from this fact
that Hadamard manifolds satisfy the axiom of asymptoticity (see Theorem
4.5). Deeper information can be obtained if we suppose that these
manifolds satisfy the axiom of uniform visibility, which in the given case is
equivalent to the assertion that any two points on the absolute H(oo) can be
joined by a geodesic (see [106], §4; compare Theorem 4.7).

The axiom of visibility allows us to classify the isometries on an Hadamard
manifold: every isometry ¢ gives rise to a map of H, and the classification is
based on the number of fixed points of ¢. This approach was suggested by
Poincaré’s work on the theory of automorphic functions and, in particular,
on his study of the linear fractional transformations of the Lobachevskii
plane (the Poincaré model). We give a short summary of the relevant results
from [50], [51], and [106].

Let ¢ be an isometry of an Hadamard manifold H. The action of ¢ can
be extended to the absolute H(ee), by putting

(4.4) ?@) = (poy) (+00),

where x € H(e0) and vy is any geodesic fo_r which y(+%) = x (the result does
not depend on the choice of y). Since H is compact, the map ¢ has a fixed
point.

Theorem 4.9. For each isometry p on an Hadamard manifold H satisfying
the axiom of visibility only one of the following three possibilities can occur:

1) @ has at least one fixed point belonging to H,

2) ¢ has exactly one fixed point belonging to H(~) and has no fixed
points in H;

3) @ has exactly two fixed points belonging to H(e°) and has no fixed
points in H.
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In the first case the isometry is said to be elliptical, in the second
parabolic, and in the third axial. Some properties of axial isometries are
described in the following theorem.

Theorem 4.10. 1) An isometry ¢ is axial if and only if there exists a
geodesic vy such that (@oy)(t) = y(t+a), a > 0, (this geodesic is called the
axis of the isometry); here y(—=) = x, y(+o) = y, where x and y are the
fixed points of .

2) If «v is the axis of an axial isometry ¢, then for any x € H, under a
suitable orientation, @ ™(x)— y(— o), "(x) - p(+o0), as n = oo,

Let I" be the proper discrete group of isometries of H (we assume that H
satisfies the axiom of visibility). Let L(I') = {¢(z), ¢ € I'}, where x € H.
The set L(I") is said to be limiting; it does not depend on the choice of the
point x, lies in H(e°), is closed and invariant under I'. We call two points
X, ¥ € H(*) dual if there exists a sequence ¢, € I' such that for some (and
consequently for any) point z € H

ot (z2) > 2, @,(z) >y as n— oo,

If two points x, y € H(e0) are dual, then x, y € L(I"); for any x € L(I")
there exists a dual point y € L(I') (possibly x = y). L(I') can be classified
by the action of I' on H.

Theorem 4.11. Let T be the proper discrete group of isometries of a
manifold H satisfying the axiom of visibility. Then one of the following
three possibilities holds:

1) L(T) = {a}: in this case every isometry ¢ € I is parabolic, and x is a
common fixed point.

2) L) = {x, y}; in this case every isometry @ € I' is axial, x and y are
common fixed points, and T is infinite cyclic;

3) L(I) is an infinite set; in this case T does not have common fixed
points; any two points x, y € L(T") are dual;, if x # y, then there exist

open sets U 3 z,and V 3 y and points x' € U, y' € V that are fixed points
of some axial isometry ¢ € T.

Remark 4.1. Many of the theorems above (or many of their analogues) can
be proved without the assumption that the curvature is non-negative (but
that the axiom of visibility holds, see [S0], §2). The results obtained may
be generalized to manifolds without focal points satisfying the axiom of
visibility (because the arguments use either the ~’law of cosines™, for which
the axiom of visibility serves as a substitute, or certain properties of convex
functions, which hold for manifolds both of non-positive curvature and
without focal points, see §1.8). The results above can be used for the
investigation of fundamental groups, ends, and convex functions on an
Hadamard manifold A (see [106], §89-11).
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§5. Limiting spheres

1. Let H be a simply-connected Riemannian manifold without conjugate
points. A limiting sphere in H is a hypersurface orthogonal to a bundle of
asymptotic geodesics.(!) It is given by a point p € H(s) (corresponding to
the asymptotic bundle) and a point x € H, or by one vector v € SH (such
that x = w(v) and p = v,(+0)). We call the limiting sphere L(x, p) or L(v),
respectively.

In the simplest case of a Lobachevskii plane in the Poincaré model, L(x, p)
is a neighbourhood (punctured at the point p) touching the absolute (that is,
the unit circle in R?) at p and passing through the point x on the unit circle.®)

For more general classes of Riemannian metrics there exist various
approaches to the construction of limiting spheres. For one of these, which
goes back to Busemann [13], the limiting sphere is defined as a level surface
of the Busemann function f,: H — R given by the equation

(5.1) fo(z) = tlim (o (z, vy (1)) —1).

This approach is developed systematically in [S1] and [106] for manifolds
of non-positive curvature. The existence of the limit in (5.1) and the
properties of limiting spheres are established by means of the law of cosines.
Some generalizations of these results were obtained by Eschenburg in [60].

In another approach due to Grant [65], Hedlund [72], and partially
Busemann [13], the limiting sphere L(v) is constructed as the limit of the
spheres S”-'(y,(?), t), as ¢ = . This method, developed in [34] and [35],
gives more information (in any event for complex manifolds); it leads to a
construction of limiting spheres on manifolds satisfying the axiom of
asymptoticity; also to a proof that L(v) is a submanifold of H of class €72
(where r is the smoothness class of the Riemannian metric) and to a number
of other important properties.

The “‘equipping™ of the limiting spheres L(v), v € SM, with orthornormal
vectors (that is, the union of sets like {w € SM : y,(+00) = yu(+ ),
n(w) € L(v)}, forms a continuous fibration of SH that is invariant under the
geodesic flow.(® This circumstance opens up a further possibility for the
construction of limiting spheres: these arise as projections into H of fibres of
the fibrations in SH that are invariant under the geodesic flow. This approach
is possible for manifolds of negative curvature: in this case the compressing
and expanding fibrations W-and W™ are invariant (see §1.9).

(I)Usually limiting spheres are called horospheres, but we reserve this term for other
purposes (see §5.2).

@1t is useful to present at the same time the contrasting case of the plane R? in which
the limiting sphere L(x, p) is the straight line through x orthogonal to the direction
corresponding to p.

(3)Depending the choice of direction of the equipping vectors “within” or “without™ the
limiting sphere we obtain two fibrations; the first tangent to the distribution X, and the
second to X,
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We now proceed to the exact statements, following the scheme proposed in
[34] and [35].

2. Invariant fibrations for a geodesic flow.

Theorem 5.1 (see [34], Theorems 6.1 and 6.3, [35], Lemma 2). Let Hbea
simply-connected Riemannian manifold with a compact factor and a
Riemannian metric of class C",r = 3, without conjugate points and satisfying
the axiom of asymptoticity. Then the distributions X~ and X are
integrable, and their maximal integral submanifolds form continuous C™2-
fibrations @~ and &*, respectively, (that is, S~(v)- and ©*(v)-submanifolds in
SH of class C™*), which are invariant under the geodesic flow f*.

S-(v) and @*(v)are said to be the stable and unstable horosphere passing
through the finear element v.

Some properties of horospheres are established in the following theorems
(we cite them only for §-(v); for @*(v) analogous theorems hold).

Theorem 5.2 (see [34], Propositions 6.1 and 6.2). Under the conditions of
Theorem 5.1:

1) @ (v) is a connected (p— 1)-dimensional (p = dimM), closed
submanifold of SH;

2) @ (—v) - &F(v).

3) if ¢ is an isometry of H, then de&—(v) = &S~ (dyv) (see 2.4).

4) there exists a &6 > 0 such that for any v € SH and w € S(v) | B(v, §)
(where B(v, 8) is the ball in SH with centre at v and of radius 8) the
geodesic v,,(t) is orthogonal to the submanifold n(&-(v) N B(v, 8)) and is
asymptotic to the geodesic vy, (t);

5 & (v)) NS (v) == & for any t F 0 (a sharper result is given in
Proposition 5.1).

We denote by &° the smooth fibration of SH formed by the trajectories
of the geodesic flow. :

Theorem 5.3 (see [34], Theorem 6.4). Under the conditions of Theorem 5.1
&-and & are integrable in the sense of [3] (see §4), and the fibres of the
corresponding fibration (denoted by &°) are integral submanifolds of the
distribution X~ @ Z (Z is the one-dimensional distribution generated by the
vector field that specifies the flow). @7° is invariant under the geodesic flow,
and its fibres have the following properties:

1) w € @) if and only if the geodesics v, (t) and v, (t) are positively
asymptotic;

2) if ¢ is an isometry of H, then do(©~"()) = & °(dyv).

@'Y can be constructed similarly. @ () and &*°(v)are called a stable and
unstable sheet passing through v.

Let M be a compact Riemannian manifold satisfying the axiom of
asymptoticity. Theorem 5.2, 3) and Theorem 5.3, 2) allow us to “lower”’
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horospheres and sheets to SM. In particular, horospheres and sheets can be
constructed on any compact Riemannian manifold satisfying one of the
following conditions:

1) the manifold does not have focal points;

2) the manifold does not have conjugate points and satisfies the axiom of
visibility;

3) the manifold does not have conjugate points, d(M) = 2, and x(M) <O
(see Theorem 3.5, 3)).

Let v € SH, w € G~ (v). We put

¥ (t) = P&t wy) (ft (U), ft (UJ)).

@~ is said to be contracting as f > +oo if ¥(t) > 0 as t > +oo,
Similar definitions (with ¢ replaced by —¢) hold for @*. We mention that
invariant fibrations for a Y-flow (in particular, for a geodesic flow on a
compact Riemannian manifold of negative curvature) have these properties
(see 1.9).

Theorem 5.4 (see [34], Theorems 7.3 and 7.4). Let M be a compact
Riemannian manifold without focal points and let v be an element of
uniqueness. Then Y(t) > +o° monotonically, as t - —oo,

2) Let M be a compact Riemannian manifold without focal points
satisfying the axiom of uniform visibility. Then &~ is expanding, as t —> —o°,
Moreover, if dimM = 2, then &~ is compressing, as t ~> +oo,

The following two propositions give sufficient conditions for each @-(v) to
be dense in SM.

Theorem 5.5 (see [52], Theorem 6.1 and [55], §4). 1) Let M bea
complete Riemannian manifold of non-negative curvature satisfying the
axiom of visibility. Then @‘—(v) = SM for each v € SM if and only if M is
compact.

2) Let M be a compact two-dimensional Riemannian manifold without
conjugate points and x(M) < 0. Then @-(v) = SM for each v € AM.

In conclusion we mention one consequence of Theorem 5.1.

Theorem 5.6 (see [34], Theorem 7.1). Under the conditions of Theorem 5.1,
the distributions X~ and X% are continuous.

Special cases of this assertion are in [53] (see Proposition 2.13).

3. Limit spheres.

Here we assume that H is a simply-connected Riemannian manifold with a
compact factor and a Riemannian metric without conjugate points satisfying
the axiom of asymptoticity. Let v € SH, x = 7(v), g = v,(+°). The set
L(z, g0 = n(&~(v)) is called the limiting sphere with centre at g passing
through x. The following theorem describes the basic properties of limiting
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spheres on manifolds without conjugate points (some of these were
mentioned in §5.1).

Theorem 5.7 (see [34], Theorem 7.2 and Lemma 6.4, and [35], Lemma 2).

1) For any x € H and q € H(o°) there exists a unique limiting sphere with
centre at q passing through Xx.

2) The limiting sphere L(x, q) is a (p— 1)-dimensional closed submanifold
of H of class C™-2 (where r is of the smoothness class of the Riemannian
metric and v = dimM).

3) For any v € SH for which vy, (+o) = q the geodesic v,,(t) intersects
the limiting sphere L(x, q) orthogonally at a unique point.

4) For any y € L(x, q) there exists a sequence of numbers t, > +o and
points y, = y such that y, € SP~(y.(t,), t,). (Moreover, any compact
submanifold of L(x, q) can be approximated by a sequence of compact
submanifolds of SP~1(v,(t,), t,))

5) If ¢ is an isometry on H, then ¢(L(x, q)) = L(p(x), ¢(q)) (the action
of ¢ is extended to H in accordance with (4.4)).

6) @~ (v) is the equipping of L(x, q) with orthogonal unit vectors directed
towards the same side as v. ©@*(v) is the equipping of the limiting sphere
L(x, q") (¢’ = v,(—2)) with orthogonal unit vectors directed towards the
same side as —v.

For y € L(x, q) we denote by y(y, ¢) the geodesic passing through y that
is orthogonal to the limiting sphere L(x, q) and is parametrized in such a
way that y(y, 0) = y and y(y, +9°) = q. The following proposition means
that limiting spheres with a common centre are parallel.

Proposition 5.1 (see [34], Proposition 7.1). Let y € H and t, be such that
Y(x, ty) € L(y, q). Then-

o(L(z, 9)s L(y, 9)) = p(x, v(z, 1)) = [ |-

4. The horocycle topology.
For x € H and g € H(e) we put
B (x, 9= U Uv 8, B @ag9= U Uv® i
YEL(x, ) 1>0 YEL(x, @) <0
The set B7(x, q) is called the interior of the limiting sphere or the (open)
limiting ball with centre at g and passing through x. The set B*(x, q) is
called the exterior of the limiting sphere.

Proposition 5.2 (see [34], Proposition 7.2).
1) H = B~(z, 9 UB*z, q) UL, 9)
2) The sets B™(x, q) and Bt (x, q) are open and simply-connected.
3) 0B (x, q) = L(x, q).
4) B~(z, q) =, '>do B?(y(t), t), where BP(y,r)is the ball in H with centre at y

and radius r; y(t) is a geodesic for which y(0) = x and y(+) = q.
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We put B-(z, p) = B-(z, p) U{p}. The sets B™(x, p), called closed
limiting balls, constructed from all x € H and p € H(<0) give a topology 4 in
H, which is called horocyclic.

Proposition 5.3. 1) The topology h has the properties formulated in
Theorem 4.6, 1), 2), and S) (and are admissible in the sense of [106], p.50).
2) The topology h is weaker than t.
3) For an Hadamard manifold H satisfying the axiom of visibility the
topologies and h are T equivalent.

The first two assertions follow directly from Theorem 5.7 and Propositions
5.1 and 5.2. In the case of the space R” the topology % is not Hausdorff.
3) is proved in [106] (see Proposition 4.8).

5. Further properties of limiting spheres.

On manifolds of non-positive curvature or without focal points one can
obtain a certain amount of additional information about properties of
limiting spheres. Using the convexity of spheres on manifolds without focal
points we can prove the following proposition.

Proposition 5.4 (see [34], Proposition 7.3). If a manifold H with a compact
factor does not have focal points, then the limiting sphere is convex.

It follows from this that the function ¢(¢) = p(y(¢), o(¢)), where v and o
are positively asymptotic geodesics, decreases monotonically for £ > 0. The
following fact was established in [103] (see Proposition 4) without the
assumption that H has a compact factor. From Theorem 5.4, 2) it follows
also that when dim H = 2 and H satisfies the axiom of uniform visibility,
@(t) > 0, as t > +oo,

In [75] Heintze and Im Hof, using comparison theorems for Jacobi fields
(see Theorem 2.3), obtained some results on properties of horospheres on an
Hadamard manifold H whose curvatures K, (P) satisfy the conditions

—0* < Ko(P) < —a?, a€ll, o), bel0, ool

For example, in [75] (see Theorem 4.6) it is proved that for any limiting
sphere L(x, q) and for any y, z € L(x, q)

2 . 2 . b
= sinh 50 (4, 2)<prx, o (¥, <5 sinh 50 (¥, 2).

We cite one further result (see [75], Theorem 4.7). Let L(x, q) be a
limiting sphere, v a geodesic touching L(x, q) at some point, and ¢ the
projection of(!) vy onto L(x, q). y, z are the end points of 6. Then

2 2
+<PLx, 9 (¥, 2)<X length of o<

(WThat is, a(¢) is the point of intersection of the limiting sphere L(x, q) with the geodesic
joining y(¢) to q.
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Im Hof obtained in [79] interesting results on the geometry of limiting
spheres. In particular, he proved that the family of limiting spheres passing
through two given points in H cut off in H(e) a set homeomorphic to SP~2
(so that when p = 2, there exist exactly two limiting spheres passing through
two given points—a result obtained earlier in [651]).

6. The Busemann function.
Let H be an Hadamard manifold, x € H, and v,(¢) any geodesic in H with
initial vector v. The function ¢t = p(x, v,(¢))—t decreases monotonicaily and
is bounded below. Therefore, (5.1) gives the well-defined function on H,
which is called the Busemann function. 1t has the following properties:

1) f, is uniformly continuous and convex; moreover

| fv(x) - fv(y) I < p(xa y);
2) if two geodesics vy, and v,, are asymptotic, then f,—f,, is constant.

Proposition 5.5 (see [106], §3 and [35], 86). L(z, q) ={y € H: f,(y) =
= f,(x)}, where v is a vector in SH such that v,(0) = x and v,(+) = q.

This allows us to regard the Busemann function as a function of two
variables: points x € H and points g = v,(+°) € H(e). The function f,(x)
is jointly continuous in the variables, and as Eberlein has shown (unpublished;
for published proofs, see [75] and [60]) it is twice continuously differentiable
in x.

We fix g € H(*°) and consider the vector field V, in H that is given by

V (@) = 7x4(0)

and is called the radial vector field. It is orthogonal to the limiting spheres
L(x, q), moreover, grad f, = —V, (see [106], Proposition 3.5).

(5.1) specifies the Busemann function on an arbitrary simply-connected
Riemannian manifold H without conjugate points, therefore, it defines the
limiting spheres on H as level surfaces of f,. Some properties of limiting
spheres can be established under fairly weak restrictions. For example, a
property analogous to parallelism can be proved provided that the
distribution X is continuous (see [60], Proposition 3). However, to prove
the properties of limiting spheres expressed in Theorem 5.7 more rigid
restrictions are needed. The most general conditions of this kind are given
in Theorem 5.1. In [60] Eschenburg establishes some of these properties
under a stronger assumption, the so-called condition of restricted
asymptoticity (which means that Il Y;(¢)Il < const.uniformly in all # > 0,

v € SH, and £ € X (v), I¢ll = 1, this condition is satisfied by manifolds
without focal points and manifolds of Anosov type). With the same
assumption he proves that the Busemann function f, (x) lies in C?. From
Theorem 5.7, 2) there follows a stronger assertion.
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Proposition 5.6 (see [35], §6). On a simply-connected Riemannian
manifold with a compact factor satisfying the axiom of asymptoticity, the
Busemann function fo(x) lies in C7~2 (where r 2 3 is the smoothness class of
the Riemannian metric).

§6. Topological properties of geodesic flows

1. Topological transitivity and mixing.

The most general results establishing topological transitivity and mixing are
due to Eberlein. We denote by £ a set of non-wandering points for a
geodesic flow in SM.

Theorem 6.1 (see [50], Theorem 3.7). Let M be a complete Riemannian
manifold satisfying the axiom of uniform visibility, and let 2 = SM. Then
the geodesic flow is topologically transitive on SM. In particular a geodesic
flow on a compact Riemannian manifold satisfving the axiom of visibility is
topologically transitive.

For two-dimensional compact manifolds without conjugate points with
X(M) < 0 (that is, satisfying the axiom of uniform visibility, see Theorem 4.4)
this was proved by Green in [67].

Let M be a complete Riemannian manifold, A its universal Riemannian
covering manifold such that M = H/I", where T" is the proper discrete group
of isometries on H (see §4.6). The topological transitivity of a geodesic
flow is closely connected with the action of I on H(e0). By reproducing the
proof of Theorem 4.14 in [52] (see the implication (1) = (2)) we can prove
the following proposition.

Proposition 6.1. Under the conditions of Theorem 6.1, the action of T" on
H(o°) is topologically transitive.

We look now at manifolds of non-positive curvature.

Theorem 6.2 (see [52], Theorem 4.14). Let M = H/T be a complete
Riemannian manifold of non-positive curvature and S = SM. Then the
following conditions are equivalent:

1) a geodesic flow is topologically transitive on SM;
2) the action of T on H(%0) is topologically transitive,
3) {qp(z): @ €T} = H(co) for each x € H(),

4) () = SM for some v € SM;

5) @) = SM for each v € SM;

6) for any two open sets U and V there exists a sequence of numbers
t, =~ +oosuch that f'n (U) NV # &.
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Theorem 6.3. Let M be a compact Riemannian manifold of non-positive
curvature satisfying the axiom of visibility. Then
1) a geodesic flow has the properties 1)-6) of Theorem 6.2,

2) € (v) = SM and @*(v) = SM for each v € SM (see Theorem 5.5);
3) a geodesic flow mixes topologically (see [52], Theorem 6.3).

The last assertion is true for any (not necessarily compact) manifolds
satisfying the conditions of Theorem 6.2 and the axiom of visibility.

2. Closed geodesics.(!)

In the case of manifolds of negative curvature we can gain fuller information
on the topological properties of geodesic flows, using Theorem 3.1. Thus,
their topological transitivity and topological mixing are consequences of the
corresponding results for the theory of Y-flows. We now consider the
question of periodic trajectories of geodesic flows, to which there correspond
closed geodesics on the manifold.

Theorem 6.4 (see [3], Theorem 3). Let M be a compact Riemannian
manifold of negative curvature. Then a geodesic floww has a countable dense
set of periodic trajectories.

Thus, on a compact manifold of negative curvature closed geodesics form
a countable dense set (in SM). Also the number of closed geodesics of
length not exceeding R is finite, We denote this number by v(R).

The first asymptotic estimate of the number of closed geodesics on a
compact Riemannian manifold of negative curvature was given by Sinai in
[38]. His result was substantially refined by Margulis.

Theorem 6.5 (see [26], [28]). There exists a d > 1 such that

dRv (R)
LR

(6.1) lim

R

=1.

The number d is the topological entropy of the geodesic flow, and is the
coefficient of expansion of the sets lying on @*(v) relative to a certain
special measure constructed by Margulis (see [27], 86, and also Footnote 2
to Proposition 12.1). In [26] there are also other asymptotic characteristics
of manifolds of negative curvature.

Theorem 6.6. Let M be a two-dimensional compact Riemannian manifold
without focal points and with x(M) < 0. Then a geodesic flow has a
countable dense set of periodic trajectories, that is, the closed geodesics form
a countable dense set (in SM).

(MWe do not dwell on results about the existence and the number of closed geodesics for
arbitrary compact Riemannian manifolds (in this connection, see [17], §7.5, Remark 6;
also [21] and [7]), but we confine ourselves to manifolds of negative curvature and some
other special cases.
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This theorem follows from Theorem 7.5 and from the results of [80].
We can also obtain an asymptotic estimate of the number of closed
geodesics, namely,

6.2) V(R) > cehhR,

where ¢ > 0 is a certain constant and A(f) is the topological entropy of the
flow f*. Theorem 6.6 and the estimate (6.2) (with i(f) replaced by a,(f))
are valid in the multi-dimensional case if we assume in addition that the
manifold M satisfies the axiom of uniform visibility and that u(Ay) > 0 (see
[80], Theorem 4.3; the set A, is defined in §3.2).

We quote one more lower estimate of the topological entropy of a
geodesic flow, which is due Manning [88].

Theorem 6.7. Let M be a compact Riemannian manifold, H its universal
Riemannian covering manifold, B(x, r) the ball in H with centre x and radius r,
V(x, r) the volume of B(x, r).

1) The following limit exists:

lim 28V D >

2)h(f) =N
3) if the curvature of M is non-positive, then h(f) = \.

§7. Ergodic properties of geodesic flows

1. Isomorphism to a Bernoulli flow.

According to Theorem 3.1, a geodesic flow on a compact Riemannian
manifold of negative curvature is a Y-flow. This permits us to apply to the
study of its ergodic properties, relative to the measure u (see §1.2) the
general results of the theory of Y-flows due to Anosov [2], Sinai [37] and
Bunimovich [14]; and to prove the following theorem.

Theorem 7.1. A geodesic flow on a compact Riemannian manifold of
negative curvature is isomorphic to a Bernoulli flow; in particular, it is
ergodic, has the mixing property of all degrees and the K-property.

We leave aside such properties of geodesic flows on manifolds of negative
curvature as the existence of Markov partitions, Gibbs measures, the central
limit theorem and the like, which have been established within the framework
of the general theory of Y-systems (and even systems satisfying axiom A of
Smale) by means of the construction of symbolic models for them. The
proofs of the corresponding assertions contain nothing specifically geometric,
althouth historically symbolic models emerged precisely for geodesic flows.

Geodesic flows on manifolds without conjugate or focal points have,
generally speaking, fairly weak hyperbolic properties (see §3.2) and the
investigation of their ergodic properties can be pursued by using the results
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of the general theory of dynamical systems with non-zero characteristic
Lyapunov indicators (see [32] -[34]). Here the central question is whether
the set A defined by (1.10) has positive measure. In general the answer is
not known, but the following alternative holds.

Theorem 7.2 (see [34], Theorem 9.1). Let M be a compact Riemannian
manifold without focal points satisfying the axiom of uniform visibility.
Then either u(A) = 0 or w(A) = 1. In the latter case the geodesic flow is
isomorphic to a Bernoulli flow.

Another version of this alternative is as follows.

Theorem 7.3 (see [34], Theorem 9.5). Let M be a compact Riemannian
manifold without conjugate points satisfying the strong axiom of uniform
visibility. Then either w(A) = 0 or u(A) = 1. In the latter case the geodesic
flow is isomorphic to a Bernoulli flow.

More complete and definitive results can be obtained in the two-
dimensional case.

Theorem 7.4 (see [34], Theorem 9.2). Let M be a compact two-dimensional
Riemannian manifold without conjugate points, with x(M) < 0. Then either
(A) = 0 or u(A) = 1. In the latter case the geodesic flow is isomorphic to
a Bernoulli flow.

This and Theorem 3.4 leads to the following theorem.

Theorem 7.5 (see [34], Theorems 9.3 and 9.5). A geodesic flow on a
compact two-dimensional Riemannian manifold with x(M) < 0 is isomorphic
to a Bernoulli flow if one of the following conditions holds:

1) the Riemannian manifold does not have focal points;

2) the entropy of the geodesic flow is positive.

A weaker proposition is in [23].

We quote one other condition, which is weaker than 1) of 7.5, but still
guarantees that a geodesic flow is isomorphic to a Bernoulli flow. We put
A = {v € SM: no two points on the geodesic v,(¢) are focal }.

Theorem 7.6 (see [32], Theorem 10.8). Let M be a compact two-dimensional
Riemannian manifold without conjugate points and with x(M) < 0. Further,
let u(A N A) > 0. Then the geodesic flow is isomorphic to a Bernoulli flow.
Moreover, uW(A) = u(A) = 1.

2. Formulae for the entropy of a geodesic flow.
Our presentation here follows [35]. For v € SM we define a linear map
S,: vt—>vt by

S,w = KE(w)
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(we recall that v' is the orthogonal complement to v in TryM, and &(w) is a
vector in X (v) such that dwé(w) = w). §, is a linear bounded self-adjoint
operator. We denote by {e;}, (@ = 1,...,p— 1, p = dimM), the orthonormal
basis in v! consisting of the eigenvectors of S,; and by K;) i=1,..,p— 1)
the corresponding eigenvalues. The K;(v) are called the principal curvatures
of the element v, and the vectors e;(v) the directions of the principal
curvatures. The justification of these names is the following assertion.

Theorem 7.7 (see [35], Lemma 3). Let M be a compact manifold with a
Riemannian metric of class C* satisfying the axiom of asymptoticity. Then
S, for any v € SM is the operator of the second quadratic form of the
limiting sphere L(n(v), y,(+ o)) at the point n(v).

For v € SM we put
Kij(v) = (R, e;0))v, e;(0)) Ki(v) = Kiy(v).

The last number is the curvature of M in the two-dimensional direction given
by the vectors v and e;(v). We now quote the two basic formulae for the
entropy of a geodesic flow.

Theorem 7.8 (see [35]). The entropy of geodesic flow on a compact
Riemannian manifold without conjugate points the following equation holds:

p-1
(1) k()= — [ SpS)dn=— | 3 K@ duw).

SM SM i=1

(Sp(S,) is the trace of S,),

K
ha()= — | 5 e 1=K @) dp @)
SM i=1
In the two-dimensional case (7.1) can be rewritten in a somewhat different
form.

Theorem 7.9 (see [35], Corollary 7). Let M be a compact two-dimensional
manifold without conjugate points. Then

b (1) = — | tana @) dp ),
SM
where a(v) is the angle between the lines X (v) and (Vr), (see §1.2) counted
off from the last anti-clockwise arrow.

An important consequence of Theorem 7.8 is the following assertion,
which supplements Theorem 7.2.

Proposition 7.1 (see [35], Corollaries 4 and 5). Let M be a compact
Riemannian manifold without focal points. We suppose that there exists a
vo € SM for which Ki(vy) <O foralli = 1, ..., p— 1 (that is, the limiting
sphere L(su(vo), ¥,,(-+o0)) is strictly convex at m(vy)): Then u(A) > 0. In



Geodesic flows 39

particular, the entropy of the geodesic flow is positive, and if the manifold
satisfies the axiom of uniform visibility, then the geodesic flow is isomorphic
to a Bernoulli flow.

We give a further consequence of 7.8.

Proposition 7.2 (see [35], Corollary 3). A geodesic flow on a non-plane
Riemannian manifold without focal points has positive entropy. (A
Riemannian manifold is said to be plane if its curvature tensor is identically
Z€ero.)

To conclude this subsection we indicate two identities for the curvatures
Ki(U) and K,'(U).

Proposition 7.3 (see [35], Corollaries 2 and 6). Let M be a compact
Riemannian manifold without conjugate points. The following relations hold:

p-1 -
K2 (04K (v)
K )~ @) =0,
SM i=1
p=1
(1.2) | 3 K@ dp ) = ——Z2 [ K (@) dva),
SM =1 i1

where w,_y Is the volume of the (p— 1)-dimensional unit sphere in R?, K(x)
is the scalar curvature at x € M (if {e;}/—1 is an orthonormal basis at x, then

Y4
K (z) = E 1 K. (P;, jywhere Py is the plane spanned by the vectors e; and e;:
i, j=

see [17], p.114, and also [66]).

3. Estimate of the entropy of a geodesic flow.
From (7.1) and (7.2) and the Cauchy-Bunyakovskii inequality one can derive
the following upper bound on the entropy.

Theorem 7.10. Let M be a p-dimensional compact Riemannian manifold
without conjugate points. Then")

(T.3) I (F) <o, v (M) ]/ ot \, (—K (2) dv (x)

For two-dimensional manifolds without focal points this result was
obtained by Manning in [87] (see Theorem 1). in the same paper he
obtained a lower bound on the entropy.

MNote that, as follows from the results of [66] (see also (7.2)), g K (@) dv ()<< 0 if

M
the Riemannian metric in M does not have conjugate points.
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Theorem 7.11 (see [87], Theorem 2). Let M be a compact surface with a
Riemannian metric of non-positive curvature of class C®. Then

b (1) > 2000 (M) | V= Eo (@) dv (3),
M

where Ky(x) is the curvature®) of the surface at x.

For compact surfaces with an arbitrary Riemannian metric o6 and Euler
characteristic x(M) = 0 Katok obtained in [81] interesting relations between
the asymptotic number of closed geodesics

logvg (R)

Ps=lim ——

R-x
(where v,(R) is the number of closed geodesics of length << R), the
topological entropy A°(f?), and the metric entropy Py (ff) (Where p(0) is
the measure on SM induced by the Riemannian metric ¢). Namely,
P=h? (1> — 22 )2,
[
where V, is the volume of M in the metric o; if 0 does not have focal
points, then

hior (1)< po (— 22 ) P < (=22,

where
P = S Pao (x)uzdl*(co)a
M
and the function p,(x) is uniquely determined by the condition o(z) =
= p4(2)0o(z) (Where gp(x) is the metric of constant negative curvature, see
[107)); compare with (7.3) and (6.2)

88. Geodesic flows on manifolds of Anosov type

1. Manifolds of Anosov type.

A compact Riemannian manifold M is said to be of Anosov type if there is a
Riemannian metric on M (which in this subsection is denoted by (,)") in
which the geodesic flow is a Y-flow.

Hopf [77] already drew attention to the fact that geodesic flows on
manifolds of negative curvature and on manifolds having only small parts of
positive curvature may have similar properties. What is decisive here is not
that the curvature is negative but that the trajectories have a certain
instability, and this can occur even if there are parts with positive curvature.
Hopf had in mind the case when focal points are altogether absent. It is
substantially more complicated to construct a Riemannian metric with focal
points such that the geodesic flow corresponding to it is a Y-flow. Examples
of this kind were constructed by Anosov and Gulliver [70].

(Note that K(x) = 2K (x).
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In [82] Klingenberg studied the geometric properties of manifolds of
Anosov type with regard to a Riemannian metric {,)* and proved the
following theorem (see [82] Theorem 5.3.4).

Theorem 8.1. Let M be a compact Riemannian manifold of Anosov type.
Then the Riemannian metric ,)" does not have conjugate points and satisfies
the axiom of uniform visibility.

This theorem, the general properties of Y-systems, and the results of §86
and 7 give rise to the following properties of manifolds of Anosov type:

1) geometric properties of Riemannian metrics: each Riemannian metric
without conjugate points satisfies the axiom of uniform visibility; the universal
Riemannian covering manifold (with respect to any Riemannian metric
without conjugate points) allows the compactification described in §4.4;

2) topological properties of the same manifold: the universal Riemannian
covering manifold is homeomorphic to R? (p = dimM); the fundamental
group m, (M) has exponential growth; each non-trivial Abelian sub-group of
m, (M) is infinite cyclic;

3) ergodic and topological properties of a geodesic flow f* (with respect
to the Riemann metric {,)*): the flow f7 is ergodic (and isomorphic to a
Bernoulli flow); f? mixes topologically and has a countable dense set of
periodic trajectories, and their number of period < T grows exponentially
with T (see (6.1));

4) topological properties of a geodesic flow f' (with respect to any
Riemannian metric without conjugate points): f! is topologically transitive.
We also note that on manifolds of Anosov (and a fortiori of hyperbolic)
type an arbitrary Riemann metric has geodesics that inherit, as it were, the
properties of geodesics in the metric €,)* (see [93], [21], [104]).

To the assertions cited we add the following.

Theorem 8.2 (see [82]). Let M be a compact Riemannian manifold of
Anosov type with Riemannian metric (,)*. Then the index of each closed
geodesic in M is zero (for the definition of index, see [17], §4).

In [53] Eberlein investigated the infinitesimal properties of geodesics on
manifolds of Anosov type (that is, properties of solutions of the variational
equations for a geodesic flow in the metric {,)*).

Theorem 8.3 (see (53], Theorem 3.2, Corollary 3.4). Under the conditions
of Theorem 8.2
1) there exist an A > 0 and an sy > 0 such that for any geodesic y(t) of
any orthogonal Jacobi field Y(t) along (t) such that Y(0) = 0, and for any
numbers t =2 s 2 s,
- HY @) II* =AY (s) [I*;
2) ggL(t)dt < o0, 20e g(t) = inf {|| Y () I*: Y € Jy(y), Y(0) =0,
: NY'(0) [* =1, t >0}
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3) for any geodesic vy and any orthogonal field E(t) along y(t) parallel
along (t) (that is, E'(t) = O for all t), there exists a ty such that
Ky (P) << 0, where P is the plane spanned by the vectors E(ty) and y(t,).

Theorem 8.3 remains true if the requirement of compactness of the
manifold is replaced by the assumption that K, (P) = —k?, k > 0, for all x
and p.

2. The question of when a geodesic flow is a Y-flow is of undoubted
interest. Necessary and sufficient conditions for this were obtained by
Eberlein in [53] and [54]. In the light of Theorem 8.1 we can immediately
confine ourselves to the analysis of Riemannian metrics without conjugate
points, which allows us to apply the results of §§2-4.

Theorem 8.4 (see [53], Theorem 3.2). Let M be a complete Riemannian
manifold with a Riemannian metric {,) without conjugate points. Suppose
also that K, (P) =2 —k?, k> 0, for all x and P. Then the following propositions.
are equivalent:

1) a geodesic flow is a Y-flow,

2) X)) N X (v) = O for each v € SM,

DT, SM = X+v) & X~(v) ® Z(v) for each v € SM (where Z(v) is the
one-dimensional subspace spanned by V(v);

4) there is no non-zero orthogonal Jacobi field Y(t) along a geodesic y(t)
for which 1Y ()|l is bounded for all t € R.

Theorem 8.5 (see [53]), Corollary 3.3). Under the conditions of Theorem 8.4
suppose that the Riemannian metric does not have focal points. Then the
following conditions are equivalent:

1) a geodesic flow is a Y-flow

2) there is no orthogonal Jacobi field Y(t) along any geodesic y(t) parallel
along y(t) (that is, 1 Y' (O = 0 for all t € R).

T 1

Theorem 8.6 (see [53], Corollary 3.6). Under the conditions of Theorem 8.5
suppose that dimM = 2. Then a geodesic flow is a Y-flow if and only if for
each geodesic y(t) there exists a ty such that K,(y(t,)) << 0 (Where Ky(x) is
the curvature of M at x).

Now we give sufficient conditions for a geodesic flow to be Y-flow.

Theorem 8.7 (see [53], Corollary 3.5). Let M be a compact Riemannian
manifold without focal points. Suppose that for any geodesic y and any
orthogonal and parallel field E(t) along v there exists a t, such that
Ky (P) < 0, where P is the plane spanned by E(ty) and Y(ty). Then a
geodesic flow is a Y-flow.
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In the next theorem M is a compact Riemannian manifold without focal
points, H is its universal covering manifold; P, H — v is the orthogonal
projection of H onto the geodesic vy in H (see Proposition 1.5), and Y(¢) is
an orthogonal Jacobi field along .

Theorem 8.8 (see [54)). The following conditions are equivalent and imply
that a geodesic flow is a Y-flow. Moreover if the curvature of M is non-
positive, then these conditions are equivalent to the statement that a
geodesic flow is Y-flow.

1) There exists a ty > 0 such that for any geodesic v in H, any x € H for
which p(x, v) = ty, and any v € T.H, v # 0,

HaP@) I << llvll

2) There exist an a > 0 and a ¢ > 0 such that for any geodesic v in H
and for any x € Hand v € T, H,

| dP@) | < ae=* v,

where t = p(x, 7v).
3) There exists a ty > 0 such that for any geodesic vy in H and any t > t,

1Y@ 11 >1Y©) i,

where Y(0) # 0 and (Y(0), Y'(0)) = 0.
4) There exists an x € H, a ¢ > Oand a ty > Q such that for any geodesic vy
in H for which ¥(0) = x and for any t = t,

(8.1) L (log |l Y [I?) (1) >,

where Y(0) = 0and Y'(0) # 0.

5) There exists a ¢ > 0 and a t > 0O such that for any geodesic vy in H and
forany t =ty (8.1) is satisfied and either Y(0) = 0 and Y'(0) # 0, or
(Y(0), Y'(0)) = 0.

In the two-dimensional case S) was proved by Anosov (see [3]).

3. Speical examples of manifolds of Anosov type are manifolds of
hyperbolic type which are defined as those that admit a Riemannian metric
of negative curvature. Such manifolds were studied by Morse and Hedlund
(see [95]), Green (see [67]), and others (see, for example [21], Ch. 5).
Some results were obtained that were special cases of those mentioned in §8.1.
Thus, in [95] it was proved that a geodesic flow on a compact surface
without conjugate points is topologically transitive if the manifold is
orientable and of genus > 1, or if the manifold is not orientable and of
genus > 2 (such surfaces admit a metric of negative curvature).
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PArT Il
FRAME FLOWS AND HOROCYCLE FLOWS
89. Definition of a frame flow

1. Let M be a complete Riemannian manifold, dimM = p. A k-frame on M
is a pair w = (x, £¥), where x € M and £* is an ordered orthonormal frame
(&1 - - - En), & € ToM. The set of all k-frames on M forms a locally trivial
fibration 7: £2, - SM, whose basis is the Stiefel manifold V,_;, »-; (the set
of (k— 1)-frames in T, M orthogonal to §;). We denote by P(v, ) the
parallel displacement of the frame ' = (n, ..., m;) at the time ¢ along the
trajectory of the geodesic flow f? passing through the linear element v. A
k-frame flow on M is defined as a one-parameter group ®? of transformation
of the £ acting in the following way:

CDt(w) = (ft(v)s Pt(v’ Ehbl))v

where w = (z, B*) = (w, E"!). Sometimes instead of using the term
“k-frame flow”’ we talk of a “frame flow”. This definition is due to Arnol’d
(see [5]1).() OQObviously a frame flow is a fibre bundle over a geodesic flow
(see [12], § 1), and moreover, for each k a k-frame flow is a natural factor of
a (k+ 1)-frame flow.

More can be asserted: a k-frame flow is an SO (k — 1)-extension of a
geodesic flow.®> For we can interpret a k-frame (z, &*) = (v, £*!) as an

isomorphism of R*-! into the space T, M spanned by the vectors &,, ..., &,
and we can define for each g € SO(k— 1) its action on E*-! by the formula
(9.1) (R E* () = E*'(g(w), u € R*L

We now take 2; as a smooth principal right SO(k)-bundle over M by
specifying the action of an element g € SO(k) on a k-frame (x, £¥) by (9.1)
with u € R*¥. To each element 4 of the Lie algebra of SO(k) there
corresponds a vector field A(A4) on £2;, whose integral curves coincide with
the orbits of the one-parameter group exp tA. To each vectoru € R¥ llull =1,
there corresponds a vector field B(u) on £, whose integral curve passing
through the k-frame (x, £*) coincides with the curve in £, that is obtained as a
result of a parallel translation of the k-frame £* along the geodesic YEw). Itis
easy to see that the vector field B(e, ) specifies the flow ®*. It can be shown

(DEven earlier this definition was given by Hopf [44] for the case k = 2. However, he
did not investigate 2-frame flows as such, but simply used them as an instrument to study
ergodic properties of geodesic flows.

O Gisa compact connected Lie group (in our case, the group SO(k — 1), then a
G-extension of a flow ' on a manifold M is defined as a flow f? on a manifold N such
that NV is a smooth principal right G-bundle (see [45], p.65), with a projection m: N >M
and nt (ft (w)) = bt (v W)), floRy W) = Rgof W) for any w€ N, g€ G, t€ R (where Rg:
N = N is the right action of G).
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that the variational equation for the flow ®* is a special case of the Cartan
structure equations and has the form (see [68]):

[MA), Ble;)] = B(A(ey)).

The compact manifolds V,,_;, -, form a fibering of £2; that is invariant
under ®’, which we denote by &°. It is smooth, and the maps Pi(v, £*1)
are isometries of &°(v) onto &°(f'(v)).

When the curvature of M is negative, the following important assertion
holds.

Theorem 9.1 (see [12}, Theorem 6.1 and Proposition 6.2). A k-frame flow
on a compact Riemannian manifold M of negative curvature is a partially
hyperbolic dynamical system. In particular it has an invariant and contracting
fibration &€ and an expanding ©°¢ where n(&%w)) = &~ (n(w)), n(S¢(w)) =
= @*(n(w)), (S-and @* are invariants of the geodesic flow).

@°and &€ are absolutely continuous (for the definition, see [3] or [4])
and each of them is integrable together with &°.

Remark 9.1, The existence of @°and &° for a frame flow is a consequence
of the more general assertion concerning the following situation: f7 is a
fibre bundle over g, having an invariant fibration W, that contracts at an
exponential rate. Under these conditions there exists a contracting fibration
W that is invariant relative to f* and can be projected into W. This includes,
of course, the case when g’ is a Y-flow, but this situation permits us also to
investigate the case when g’ has almost everywhere non-zero characteristic
Lyapunov indicators. In particular, this makes it possible to construct
invariant contracting and expanding fibrations passing through almost every
point of £ for a frame flow on manifolds satisfying the conditions of
Theorems 7.2-7.4 and u(A) > 0 (or u(Ay) > 0) or the conditions of
Theorem 7.5.

Remark 9.2. The method described above for the construction of &° and ©¢
is based on the use of topological properties of €~ and &* (contraction of
the fibres at a fairly fast rate). Unfortunately, geometric approaches to the
construction of @°and @€ are unknown: as happens for example in the case
of geodesic flows, they would probably permit us to define them in more
general cases. The only exceptions are two-dimensional manifolds: a
2-frame flow on a compact surface with a Riemannian metric without
conjugate points and with non-positive Euler characteristic has invariant
fibrations @€ and &'¢that can be projected into @-and &* of the geodesic
flow, respectively. The fibre of &°(or &¢) passing through a 2-frame (v, §)
consists of all 2-frames (w, 7n), oriented like (v, §), for which w € &-(v)(or

w € &*(v)).
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8§ 10. Topological and ergodic properties of a frame flow

1. The investigation of topological and ergodic properties of frame flows

on compact Riemannian manifolds of negative curvature proceeds within the
framework of the general theory of partially hyperbolic dynamical systems.
At its basis lies the concept of transitivity of the pair of fibrations introduced
in [12] (see §4). A pair of continuous fibrations &, and &, on a manifold M
is said to be transitive if there exists a natural number N and an R > 0 such
that for any x, x’ € M there exist x,, ..., xy € M for which x; = x, x' = xp,
2,41 €Gix) @ =1,..,N—1,j=1o0or?2)and

p@j(xi) (xir x‘H—i) << R.

It turns out that this property is preserved under sufficiently small
perturbations of the partially hyperbolic dynamic system under the condition
that the latter has a sufficiently high class of smoothness. Moreover, a
partially hyperbolic dynamic system with a transitive pair of fibrations is
topologically transitive.

Not every frame flow on a compact Riemannian manifold of negative
curvature has a transitive pair of fibrations. A relevant example was
constructed by Margulis and described in [12] (see §6). We mention that
this flow is not ergodic and has first integrals. However, this situation is
untypical.

Theorem 10.1 (see [10], Proposition 3.1). Let ®* be a frame flow on a
compact Riemannian manifold M with a metric {,) of class C", r 2 2, of
negative curvature. Then () can be perturbed by a sufficiently small amount
within the class C" of metrics on M such that the pair &° and G° for the
frame flow ®* of the induced perturbed metric is transitive.

A simple modification of the proof of this theorem yields the following
important result.

Theorem 10.2 (see [10], Theorem 3.1). In the space of all metrics of
negative curvature of class C', r 2 2, on a manifold M, an open and dense
set is formed by those for which the frame flow is topologically transitive
forany k =1, ..., p— 1, where p = dim M.

2. A frame flow ®* on a manifold M has a smooth invariant measure x
induced by the Riemannian metric and given by

dx = du do,

where u is the measure in SM (see §2.2) and d w is the element of measure
on the Stiefel manifold V,_; ;.

Using general results on ergodic properties of partially hyperbolic
dynamical systems and Theorem 3.1, we can prove the following assertion.
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Theorem 10.3 (see [10], Theorem 3.2). In the space of all metrics of
negative curvature of class C', r = 3, on a manifold M, an open and dense
set is formed by those for which a k-frame flow is a Y-flow (it can be shown
that in this case it is isomorphic to a Bernoulli flow) forany k =1, ..., p—1,
where p = dim M.

This last assertion can be strengthened considerably when the dimension
of M is odd.

Theorem 10.4 (see [47]). Let M be a compact Riemannian manifold with a
Riemannian metric of class C", r = 3, of negative curvature. We assume that
dimM = p is odd and p # 7. Then a k-frame flow is ergodic and also
isomorphic to a Bernoulli flow for any k=1, ..., p— 1.1

In the case dim M = 3 this result was obtained earlier in [11], and for
dimM = S it was established by Anosov. In [47] it was proved that when
dimM = 7, a 2-frame flow is ergodic.

We mention in conclusion that a k-frame flow on a compact manifold of
constant negative curvature has a transitive pair of fibrations, is topologically
transitive, ergodic, and isomorphic to a Bernoulli flow (see [12], Proposition
6.5). These same properties hold for a frame flow in a metric sufficiently
close (in the class of C®-metrics) to a metric of constant negative curvature
(this was proved in {24] for 2-frame flow).

3. We now consider frame flows on manifolds without focal points. If

the conditions of Theorem 7.5 are satisfied, then a geodesic flow has almost
everywhere non-zero characteristic Lyapunov indicators, so that the
corresponding frame flows can be presented as G-extensions over systems
with non-zero Lyapunov indicators (see Remark 9.1). By using this
circumstance we can prove the following assertion by the methods developed
in [46].

Theorem 10.5. If the conditions of Theorems 7.2-7.4 are satisfied and

u(A) > 0, or if the conditions of Theorem 7.5 are satisfied, then a k-frame
flow on a manifold M has a finite number of ergodic components A,, ..., A,
such that n(4;) = SM (i = 1, ..., I) and there exist subgroups Gy, ..., G, of
SO(k — 1) such that for almost every v € SM the subgroup G; corresponds to
the intersection w '(v) N A;. Moreover, the restriction ®'|A; is isomorphic to
a Bernoulli flow.

M Anosov pointed out to me the following fact: as is clear from[11] the question of the
ergodicity of a k-frame flow reduces to that of the construction of the structure group of
the bundle of (p— 2)-frames over a (p— 1)-dimensional sphere; the latter is treated fully
in [86], and this allows us to obtain the conclusion of Theorem 10.4 (at least in that
part that refers to ergodicity for p # 7).
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§11. Definition of the horocycle flow

1. The first significant results in the study of horocycle flows were
obtained by Hopf and Hedlund in the 30’s (see [44] and [72]). They
examined compact connected orientable surfaces of constant negative
curvature.(!) Their research was continued in [15], [31], and [63] (see also
the recent papers [48], [97]-[99], [105]). The approach developed by
these authors was algebraic and based on the presentation of horocycle flows
as actions of a one-parameter group on a compact homogeneous space,
which allowed them to use the representation theory of Lie groups etc.?)
However, such a good algebraic structure is intrinsic in horocycle flows
only in a metric of constant negative curvature, and attempts to transfer the
results to more general classes of Riemannian metrics (for example, to those
having variable negative curvature) led to the development of new methods
based on a wide use of the hyperbolic properties of geodesic flows. The
relevant results were obtained by Marcus, Bowen, Eberlein, and, in part,
Margulis (see [89] -[92], [49], [55], [27]).

2. The construction of the horocycle flow.

Let M be a compact orientable connected surface with non-positive Euler
characteristic and a Riemannian metric without conjugate points; let H be
the universal Riemannian covering manifold.

For each x € H and p € H(e°) the limiting sphere L(x, p) is a smooth
curve in H, which can be parametrized by the “arc length” (the “length’ is
induced by the Riemannian metric). We introduce a ““direction” on the
limiting sphere L(x, p) by specifying for y € L(x, p) a unit vector Vi, p)(»)
touching L(x, y) at y and directed so that the pair {V... ;) (¥), v(y)} (where
v(y) € SM is the vector for which n(v(y)) = ¥ and v,(,)(+) = p) is
positively orientated. The fact that this “direction” can be prescribed
continuously by the method given above follows from the properties of
limiting spheres (see §5.3 and also [55], Proposition 2.1). Thus,on each
L(x, p) we have a concept of “left and right””. We now define a map
h: SM x R - SH by putting

h(v, 0) = v, whent =0
h(v, t) =w, whent # 0

(M As for the existence of horocycles and the minimality of the horocycle bundle, they
were known also for the case of variable negative curvature.

®n this presentation: 1) M = I'YG, where G = SL(2, R), e = ((1) (1)) and I'is a

discrete subgroup of G; 2) the Riemannian metric is left-invariant in G; 3) the horocycle
flow A' on M is defined by

1 0
h‘(Fg)=1‘g(t 1), geG, tcR,

For details, see [22].
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where w € SM is the vector such that

1) ‘\’v(_*—oo) = Yup(+o0) = p,

2) y = n(w) € L(x, p), where z = n(v),

3) PL(x, p) (z, y) = t,

4) y lies to the right of x.

We now define the horocycle flow h?: SH — SH by putting

hi) = h(v, t).
It follows directly from these definitions that for any s and ¢
(11.1) h#tt = h%o ht.
Since the map # is continuous, this means that A’ is a continuous flow in

SH. It can be projected into the horocycle flow in SM (also denoted by h*).
Since its trajectories are smooth cuwves in SM, the vector field

Z(v) = 2 1) | 1=o is well-defined.

Proposition 11.1 (see [55], §2, or [76]). 1) The vector field Z is continuous,
and for any v € SM there is a unique curve in Z passing through v.

2) If K, (P) < O for all x and P, thenV) Z € C*, and {Z(v), V(v)) = O for
all v € SM (where V(v) is the vector field giving the geodesic flow, and (,) is
the canonical Riemannian metric in TTM (see §1.2).

Between geodesic and horocycle flows there exists the following important
relation: for any v € SM and s, t € R

(11.2) (' o h)(w) = (b o ),

where s*(¢, s, v): R x R x SM = R is a certain function connected with the
given horocycle flow. For manifolds of zero curvature (K, (P) = 0) we have
s*(¢, 5, v) = s and for manifolds of constant negative curvature

s¥(t, s, v) = se—V KL,

We have defined the horocycle flow using &-; the horocycle flow whose
trajectories are the fibres of @* can be constructed analogously. The
function s* in (11.2) is “expanding”: in the case of constant negative
curvature, s*(¢, s, v) = seV=Ki,

3. Generalized horocycle flows.

The construction above of the horocycle flow has the following far-reaching
generalization. Let f* be a smooth flow on a compact Riemannian manifold M
and W a stable invariant orientable one-dimensional C!-fibration. Each fibre
W(x) can be parametrized by the “arc length’ and the concept of “left and
right” is well-defined and gives a direction field on W(x). Let 8: M x R->M
be a W-parametrization, that is, a constant map such that for any x € M the
function B(s, t) € W(x) is strictly monotonic. We define a continuous flow
h* by putting A*(x) = y, where y is a point on W(x) to the right of x, such

(MHere it is essential that we consider only compact manifolds; for non-compact
manifolds this assertion, generally speaking, is not true.
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that py)(x, ¥) = B(x, £). It is easy to check that (11.1) holds for any s
and ¢ and the trajectories of #” are the fibres of W. Then A’ is called a
generalized horocycle flow (sometimes we speak loosely of a horocycle flow)
or W-flow. It is uniquely connected with the W-parametrization of M. The
flows A* and f* are connected by (11.2), where the functions®: R x R x
x M = R is determined by the given W-parametrization. We mention two
special W-parametrizations:

1) uniformly expanding, for which

(11.3) s¥(t, s, x) = Als

for some A > 1;
2) standard, for which

B(xv ty =y,

where y is a point in W(x) to the right of x, for which py )(x, ¥) = ¢, that
is, each fibre W(x) is parametrized by the ‘“‘arc length”.

Theorem 11.1 (see [91], Corollary 6.3). Let f* be a Y-flow on a compact
Riemannian manifold M, and dim W*(x) = 1 (or dim W(x) = 1). Then
there eixsts a uniformly expanding W* (or W™) parametrization for which
log X = h(f) (the topological entropy of f*). If ! is topologically mixing
(so that the W*- and the W™ -flows are minimal), then the parametrization is
uniquely determined (to within a scalar change of time).

A uniformly expanding W T -parametrization is continuous (see [89]).
Flows for which it is smooth form a nowhere dense set in the space of all
Y-flows of class C2. (This and various sharper assertions are established in
[91], §6.)

In what follows we shall understand by a W*-flow a generalized horocycle
flow corresponding to a certain parametrization of the one-dimensional
extending invariant fibration of a Y-flow.

When f? is a geodesic flow, then we take for W the fibration &* (we could
equally well take @~ for brevity we call the corresponding generalized
horocycle flows ©*-and €~ -flows). The horocycle flow introduced above
corresponds to the standard parametrization. For a metric of constant
negative curvature the standard and the uniformly expanding parametrization
are the same.

§12. Topological and ergodic properties of the horocycle flow

1. Minimality.

Let M be a connected orientable surface with non-positive Euler characteristic
and a Riemannian metric without conjugate points; and let f* be a geodesic
flow in SM and A* a horocycle flow (with any parametrization). We denote
by £, the set of non-wandering points of A’
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Theorem 12.1. If M is compact, then h' is minimal.

This proposition for Riemannian metrics of negative curvature was known
to Hopf and Hedlund (see [44] and [72]), and was proved in full generality
by Eberlein in [55].

For compact surfaces of negative curvature Theorem 12.1 follows from a
more general assertion (see [3], §4).

Theorem 12.2. If f' is a topologically mixing Y-flow on a compact
p-dimensional Riemannian manifold and dimW7*(x) = 1 (or dimW™(x) = 1)
then any W*- (or W™-) flow is minimal,

b

From Theorem 12.1 it follows that any trajectory of the horocycle flow A*
is dense in SM, and the flow has no periodic trajectories.

We say a few words on non-compact manifolds. In [55] Eberlein proved
an assertion stronger than Theorem 12.1.

Theorem 12.3 (see [55], Theorem 4.5 and Proposition 4.8). If the
horocycle flow on a surface M is minimal, then this surface is compact.
Moreover, if A C Q, is a non-empty compact and minimal set, then either
A = SM (in particular, M is compact) or M is non-compact and A coincides
with a certain periodic trajectory.

In particular, if M is non-compact, then the horocycle flow has periodic
trajectories. Moreover, if, in addition, M is finitely-connected, then any
minimal set in £, coincides with some periodic trajectory (see [55],
Corollary 4.7).

2. Topological transitivity and mixing.
Theorem 12.4 (see [55], Theorem 4.1 and Corollary 4.2). 1) If 8, = SM
(in particular, if M is compact), then a horocycle flow h* is topologically
transitive. If, in addition, M is finitely connected, then any trajectory {h'(z)}
is either dense in M or periodic.

2) If there exist vy, vy, € SH such that the trajectories {f'(v,)} and {f'(vy)}
are periodic with periods T, and T,, respectively, and the ratio T,/T, is
irrational, then U, = SM and the flow h'|S, is topologically transitive.

It is quite obvious that such properties as minimality and transitivity do
not depend on the choice of the &*- or @ -parametrization. The matter is
different with the property of topological mixing, the presence of which
depends a priori on the choice of parametrization. Nevertheless the
following theorem holds.

Theorem 12.5 (see [91], Theorem (3.2)). Any minimal W*-flow is
topologically mixing. In particular, any &*- or &~ -flow on a compact
connected orientable surface of negative curvature is topologically mixing.

This was generalized by Eberlein to a Riemannian metric of non-positive
curvature.
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Theorem 12.6 (see [55], Theorem 4.11). Let M be a compact connected
orientable surface with negative Euler characteristic and non-positive
curvature. Then a horocycle flow (in the standard parametrization) is
topologically mixing.

3. The invariant measure for the horocycle flow.
Theorem 12.7. Any W*-flow f*? has an invariant Borel measure (denoted by
Kn). This measure is unique if h* is minimal.

This was proved) by Marcus in [90], but it follows easily in essence
from results of Margulis (see [27] and [28], and also Plante [96]). In [49]
Bowen and Marcus generalized it to W™*-flows connected with invariant
fibrations of a flow satisfying axiom A.

We now give a brief description of the measure y; (see [91], §2).
Suppose that x € M, and that a, b, and & be sufficiently small positive
numbers. Also, let Ui(z) be the ball on Wt(x) with centre at x and radius e.
We put

V= U A ( U fU: @)
r€[0, a] te[o, o]
Then V is a neighbourhood of x in M and there exists a natural
homeomorphism y: [0, al x [0, &] X Uf(x) > V given by

x(ry &, y) = B o fH(y).

Proposition 12.1 (see [91], Proposition 2 or [90], §4). Letg: V —> Rbea
continuous function. Then, when we multiply the identities by X, we obtain

b a
fewamw= | [ [rtwrer@)dratap ),
¢ 0

v Ukx)

where X = e > 1 is the constant in (11.3) (the existence of \ is established
in Theorem 11.1) and u* is a finite Borel measure® on Uj(x).

The following assertion establishes one remarkable property of a uniformly
expanding W *-parametrization.

M Analogues of this assertion for W*-flows connected by invariant foliations of
Y-diffeomorphisms and diffeomorphisms satisfying axiom A can be found in [41] and
[100].

@]ndeed, there exists a compatible uniformly expanding system of Borel measures {p;}
on {W*(2)}, where p* = px| Ut (z) (uniform expansion means that wie ., (f/(4)=rtut (4),

A < W* (z) is a Borel set, and compatibility that | uj (4) — u (B) | < 8, (4) for any

two 8-canonically isomorphic Borel sets 4 C WT(y) and B C W¥(z); see [91], §6).
The existence of such a system of measures can be proved by various methods [27],
[28], [90], [49]. The measures uy are non-atomic, o-finite, and positive on open sets
(these facts lie at the basis of the proof of Theorem 11.1).
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Theorem 12.8 (see [91], Remark (6.4)). If a W*-flow is minimal, then an
invariant measure for a uniformly expanding W*-parametrization is also
invariant for the flow f* and coincides with the measure of maximum
entropy for f' (denoted by p).

The converse is also true.

Theorem 12.9 (see [91], Proposition (6.8)). Suppose that: 1) h' is a
minimal W*-flow:; 2) the function s'(t, s, x) is continuously differentiable(")
ins; 3) the flows h' and f* preserve a common finite measure. Then the
W*-parametrization corresponding to h' is uniformly expanding.

From the assertions above it follows that the horocycle flow on a compact
connected orientable surface of negative curvature has a unique invariant
measure. When the curvature is constant (and negative), this measure is
smooth and invariant for a geodesic flow with maximum entropy.®)

4. Ergodic properties.
It follows directly from Theorem 12.7 and criteria of strict ergodicity®) that

Theorem 12.10 (see [90], [91]). Any minimal W*-flow is ergodic. In
particular, if g is a continuous function on M, then

t—+4o0 v

i
lim + [ g (b (@) ds = | b (@) dwn (@
0

uniformly in x € M.

In [91] Marcus established the mixing property for W -flows.

Theorem 12.11 (see [91], 8§4). A minimal W*-flow h' is mixing if one of
the following conditions is satisfied:

1) 02s*/0tds exists and is continuous in t, s, and z;

2) ft € C?, and the W " -parametrization determining h' is standard,

3) the W -parametrization determining h' is uniformly expanding.

Each of the last two conditions implies the first.
We now consider the question of the topological entropy of a W*-flow.
In [91] Marcus proved, in effect, the following assertion.

Theorem 12.12 (see [91], proof of Theorem (5.1)). Any minimal smooth
W*-flow has zero topological entropy (and consequently zero metric entropy
in the measure [y).

MThis condition is automatically satisfied if f7 € C? (see [91], Corollary (4.3).
@Green proved in [69] that if the curvature is not constant, then the invariant measure
for the horocycle flow is not smooth.

(3)By strict ergodicity of a flow we mean the existence of a unique invariant measure

(which then is ergodic). Sometimes, in addition, minimality of the flow is assumed
(which in our case is also true).



54 Ya. B. Pesin

These results have the following consequence.

Theorem 12.13. The horocycle flow on a compact connected orientable
surface of negative curvature is strictly ergodic, mixing, and has zero
topological entropy.

Recently Gura proved that this flow has the property of separating the
trajectories (unpublished).

For the case of metrics of constant negative curvature the strict ergodicity
of a horocycle flow was established earlier by Furstenberg in [63], and the
fact that the entropy is zero by Gurevich in [18]. Moreover, Parasyuk proved
in [31] that this flow had a Lebesgue spectrum. Ratner proved in [99] that
a horocycle flow is standard (this is true for any W*-flows). It is interesting
to mention that its Cartesian square is no longer standard (see [98]) and this
flow gives so far the only “natural” (and smooth) example of this kind.

Finally, in [92] Marcus proved that the horocycle flow (in the standard
parametrization) mixes to any degree of multiplicity in a metric of constant
negative curvature (this is also true for Riemannian metrics of variable
negative curvature provided that the parametrization is uniformly expanding).

We give one further result of Ratner for the horocycle flow on a connected
orientable surface of negative curvature.

Theorem 12.14 (see [97]). Let h', and h% be two horocycle flows on
manifolds M; = T',/G and M, = T,/G (see §11.1, footnote")), where the
subgroups Ty, Ty, C G are hyperbolic (that is, \trg|> 2 for any g €T, or I,
g e, —e). Then the flows hi and h% are isomorphic (that is, there exists a
metric isomorphism ¥: M, = M, such that Wh!(z) =h!(¥ (z)) for almost all
x €M, and t € R) if and only if Ty = gI",g~* for some g € G.

S. Horosphere flows.

In the case of metrics of constant negative curvature an analogue of a
horocycle flow can be defined for manifolds of dimension greater than 2.
The corresponding flow (denoted by ®7) acts in the space of 2-frames on the
manifold M: ® (v, w) = (v', w'), where v’ and w' are obtained by a parallel
shift of the vectors v and w along the geodesic in L(v) defined by the vector w
(touching L(v) at m(v)) at the time . This definition is due to Hopf (see [44]).
Another definition, using an algebraic approach is a generalization of that in
§11.1, footnotet) and consists in the following: horosphere flows are actions
of certain one-parameter subgroups on the homogeneous space of a locally
compact Lie group (see [24], Ch. 4, §4). The ergodic properties of such flows
have been studied by Veech [105], who proved that they are strictly ergodic;
certain generalizations of his results were obtained by Bowen [48].

An attempt (as yet incomplete) has been made to introduce the concept
of a horocycle flow for multi-dimensional manifolds of variable negative
curvature: a vector field is constructed, but its smoothness has not been
proved (see [68]).
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