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Abstract An important class of ‘physically relevant’ measures for dynamical systems with
hyperbolic behavior is given by Sinai–Ruelle–Bowen (SRB) measures. We survey various
techniques for constructing SRB measures and studying their properties, paying special
attention to the geometric ‘push-forward’ approach. After describing this approach in the
uniformly hyperbolic setting, we review recent work that extends it to non-uniformly hyper-
bolic systems.
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1 Introduction

Let f : M → M be a C1+α diffeomorphism of a compact smooth Riemannian mani-
fold M , and U ⊂ M an open subset with the property that f (U ) ⊂ U . Such a set
U is called a trapping region and the set � = ⋂

n≥0 f n(U ) a topological attractor
for f . We allow the case � = M . It is easy to see that � is compact, f -invariant,
and maximal (i.e., if �′ ⊂ U is invariant, then �′ ⊂ �). We want to study the sta-
tistical properties of the dynamics in U . Let m denote normalized Lebesgue measure
(Riemannian volume) on M and let μ be an arbitrary probability measure on �. The
set

Bμ =
{

x ∈ U : 1
n

n−1∑

k=0

h( f k(x)) →
∫

�

h dμ for any h ∈ C1(M)

}

is called basin of attraction of μ. We say that μ is a physical measure if m(Bμ) > 0.
An attractor with a physical measure is often referred to as a Milnor attractor, see [35,
41].

The simplest example of a physical measure is when � = {p} is a single fixed
point, in which case the Dirac-delta measure δp is a physical measure and U ⊆ Bδp .
A less trivial case occurs when � = M and μ is an ergodic invariant probability mea-
sure with μ 	 m. Then the invariance and ergodicity imply, by Birkhoff’s Ergodic
Theorem, that μ(Bμ) = 1 and thus the absolute continuity immediately implies that
m(Bμ) > 0.

Both of these cases are, however, quite special, and a more general situation is when
� is a non-trivial attractor and m(�) = 0, in which case any invariant measure is
necessarily singular with respect to Lebesgue. In the 1970s Sinai, Bowen, and Ruelle
constructed a special kind of physical measures, which are now called SRB or Sinai–
Ruelle–Bowen measures, to deal with precisely this situation in the special case in which
� is uniformly hyperbolic. One can make sense of the definition of SRB measure in
much more general cases, and a large amount of research has been devoted in the last
several decades to establishing the existence of SRB measure for attractors � which
are not necessarily uniformly hyperbolic (see the survey [58] written on the occasion
of D. Ruelle and Y. Sinai 65th birthdays). The purpose of this note is to survey the
results and techniques which have been used to prove the existence of SRB measures
in increasingly general situations, with an emphasis on the geometric ‘push-forward’
approach.

1.1 Overview of the Paper

In Sect. 2 we give the definition of an SRB measures and state some of its basic prop-
erties, such as that of being a physical measure. In Section 3 we briefly describe some
of the main strategies which have been used to construct SRB measures in various cases.
In the remaining sections we discuss in a little more details the applications of some of
these strategies to various classes of attractors: uniformly hyperbolic attractors, as origi-
nally considered by Sinai, Ruelle, and Bowen, in Sect. 4, partially hyperbolic attractors in
Sect. 5, attractors with dominated splittings in Sect. 6, non-uniformly hyperbolic attrac-
tors in Sect. 7 and, finally, uniformly hyperbolic attractors with singularities in Sect.
8.
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2 Definition of SRB Measures

2.1 Hyperbolic Measures

We recall some important facts from non-uniform hyperbolicity theory, referring the reader
to [8] for more details. Let f : M → M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M and � a topological attractor for f . Given x ∈ � and v ∈ Tx M ,
the Lyapunov exponent of v at x is defined by

χ(x, v) = lim sup
n→∞

1

n
log ‖d f nv‖, x ∈ M, v ∈ Tx M.

The function χ(x, ·) takes on finitely many values, χ1(x) ≤ · · · ≤ χp(x), where p = dim M .
The values of the Lyapunov exponent are invariant functions, i.e.,χi ( f (x)) = χi (x) for every
i .

A Borel invariant measure μ on � is hyperbolic if χi (x) 
= 0 and χ1(x) < 0 < χp(x);
that is

χ1(x) ≤ · · · χk(x) < 0 < χk+1(x) ≤ · · · ≤ χp(x)

for some k(x) ≥ 1. If μ is ergodic, then χi (x) = χi (μ) for almost every x . The non-uniform
hyperbolicity theory (see [8]) ensures that for a hyperbolic measure μ and almost every
x ∈ �, the following are true.

(1) There is a splitting Tx M = Es(x) ⊕ Eu(x) where

Es(x) = Es
f (x) = {v ∈ Tx M : χ(x, v) < 0},

Eu(x) = Eu
f (x) = Es

f −1(x)

are stable and unstable subspaces at x ; they satisfy

(a) d f Es(x) = Es( f (x)) and d f Eu(x) = Eu( f (x));
(b) 
 (Es(x), Eu(x)) ≥ K (x) for some Borel function K (x) > 0 on � that satisfies

condition (5) below.

(2) There are local stable V s(x) and local unstable V u(x) manifolds at x ; these are C1+α

submanifolds given as graphs

V s,u(x) = exp
{
(v, ψ s,u(v)) : v ∈ Bs,u(0, r(x)) ⊂ Es,u(x)

}

of C1+α functions ψ s,u defined in the ball Bs,u(0, r(x)) centered at zero of radius
r(x) > 0 and mapping it into Eu,s(x); we have that ψ s,u(0) = 0 and Dψ s,u(0) = 0;
these functions are constructed via the Stable Manifold Theorem.

(3) The local stable and unstable manifolds at x satisfy

d( f n(x), f n(y)) ≤ C(x)λn(x)d(x, y), y ∈ V s(x), n ≥ 0,
d( f −n(x), f −n(y)) ≤ C(x)λn(x)d(x, y), y ∈ V u(x), n ≥ 0

for some Borel function C(x) > 0 on � that satisfies Condition (5) below, and some
Borel f -invariant function 0 < λ(x) < 1.

(4) There are the global stable W s(x) and global unstable W u(x) manifolds at x (tangent
to Es(x) and Eu(x), respectively) so that

W s(x) =
⋃

n≥0

f −n(V s( f n x)), W u(x) =
⋃

n≥0

f n(V u( f −n x));
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470 V. Climenhaga et al.

these manifolds are invariant under f , i.e., f (W s(x)) = W s( f (x)) and f (W u(x)) =
W u( f (x)).

(5) The functions C(x) and K (x) can be chosen to satisfy

C( f ±1(x)) ≤ C(x)eε(x), K ( f ±1(x)) ≥ K (x)e−ε(x),

where ε(x) > 0 is an f -invariant Borel function.
(6) The size r(x) of local manifolds satisfies r( f ±1(x)) ≥ r(x)e−ε(x).

One can show that W u(x) ⊂ � for every x ∈ � (for which the global unstable manifold is
defined).

Since λ(x) is invariant, it is constant μ-a.e. when μ is ergodic, so from now on we assume
that λ(x) = λ is constant on �.

Given 	 > 1, define regular set of level 	 by

�	 =
{

x ∈ � : C(x) ≤ 	, K (x) ≥ 1

	

}

.

These sets satisfy:

• �	 ⊂ �	+1,
⋃

	≥1 �	 = �;
• the subspaces Es,u(x) depend continuously on x ∈ �	; in fact, the dependence is Hölder

continuous:

dG(Es,u(x), Es,u(y)) ≤ M	d(x, y)α,

where dG is the Grasmannian distance in T M ;
• the local manifolds V s,u(x) depend continuously on x ∈ �	; in fact, the dependence is

Hölder continuous:

dC1(V s,u(x), V s,u(y)) ≤ L	d(x, y)α;
• r(x) ≥ r	 > 0 for all x ∈ �	.

2.2 SRB Measures

We can choose 	 such that μ(�	) > 0. For x ∈ �	 and a small δ	 > 0 set

Q	(x) =
⋃

y∈B(x,δ	)∩�	

V u(y).

Let ξ	 be the partition of Q	(x) by V u(y), and let V s(x) be a local stable manifold that
contains exactly one point from each V u(y) in Q	(x). Then there are conditional measures
μu(y) on each V u(y), and a transverse measure μs(x) on V s(x), such that for any h ∈ L1(μ)

supported on Q	(x), we have
∫

h dμ =
∫

V s (x)

∫

V u(y)

h dμu(y) dμs(x). (2.1)

See [25, §1.5] and references therein for further details. Let mV u(y) denote the leaf volume
on V u(y).

Definition 2.1 A measure μ on � is called an SRB measure if μ is hyperbolic and for every
	 with μ(�	) > 0, almost every x ∈ �	 and almost every y ∈ B(x, δ	) ∩ �	, we have the
measure μu(y) is absolutely continuous with respect to the measure mV u(y).
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For y ∈ �	, z ∈ V u(y) and n > 0 set

ρu
n (y, z) =

n−1∏

k=0

Jac(d f |Eu( f −k(z)))

Jac(d f |Eu( f −k(y)))
.

One can show that for every y ∈ �	 and z ∈ V u(y) the following limit exists

ρu(y, z) = lim
n→∞ ρu

n (y, z) =
∞∏

k=0

Jac(d f |Eu( f −k(z)))

Jac(d f |Eu( f −k(y)))
(2.2)

and that ρu(y, z) depends continuously on y ∈ �	 and z ∈ V u(y).

Theorem 2.2 ([8], Theorems 9.3.4 and 9.3.6) If μ is an SRB measure on �, then the density
du(x, ·) of the conditional measure μu(x) with respect to the leaf-volume mV u(x) on V u(x)

is given by du(x, y) = ρu(x)−1ρu(x, y) where

ρu(x) =
∫

V u (x)

ρu(x, y) dmu(x)(y)

is the normalizing factor.

In particular, we conclude that the measures μu(x) and mV u(y) must be equivalent.
The idea of describing an invariantmeasure by its conditional probabilities on the elements

of a continuous partition goes back to the classical work of Kolmogorov and especially later
work of Dobrushin on random fields (see [29]). Relation (2.2) can be viewed as an analog of
the famous Dobrushin-Lanford Ruelle equation in statistical physics, see [36] and [52].

2.3 Ergodic Properties of SRB Measures

Using results of nonuniform hyperbolicity theory one can obtain a sufficiently complete
description of ergodic properties of SRB measures.

Theorem 2.3 Let f be a C1+α diffeomorphism of a compact smooth manifold M with an
attractor � and let μ be an SRB measure on �. Then there is a finite or countable collection
of subsets �0,�1,�2, . . . ⊂ � such that

(1) � = ⋃
i≥0 �i , �i ∩ � j = ∅;

(2) μ(�0) = 0 and μ(�i ) > 0 for i > 0;
(3) f |�i is ergodic for i > 0;
(4) for each i > 0 there is ni > 0 such that �i = ⋃ni

j=1 �i, j where the union is disjoint
(modulo μ-null sets), f (�i, j ) = �i, j+1, f (�ni ,1) = �i,1 and f ni |�i,1 is Bernoulli;

(5) if μ is ergodic, then the basin of attraction Bμ has positive Lebesgue measure in U.

For smoothmeasures this theoremwas proved by Pesin in [43] and an extension to the general
case was given by Ledrappier in [37] (see also [8]).

We stress that the final item of Theorem 2.3 can be paraphrased as follows: ergodic
SRB measures are physical. The converse is not true; physical measures need not be SRB.
Easy examples are given by (1) the Dirac measure on an attracting fixed point, which has
all exponents negative and hence is not hyperbolic, and by (2) Lebesgue measure for an
irrational circle rotation, which has zero exponent but is still physical.

A more subtle example is given by the time-1 map of the flow illustrated in Fig. 1, where
the Dirac measure at the hyperbolic fixed point p is a hyperbolic physical measure whose
basin of attraction includes all points except q1 and q2. (In fact, by slowing down the flow
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Fig. 1 A physical measure that
is not SRB

p
q1

q2

near p, one can adapt this example so that p is an indifferent fixed point and hence, the
physical measure is not even hyperbolic.)

Returning to our discussion of SRB measures, one can show that a hyperbolic measure μ

on � of positive entropy is an SRB measure if and only if the entropy hμ( f ) of μ is given
by the entropy formula:

hμ( f ) =
∫

�

∑

χi (x)>0

χi (x) dμ(x).

For smooth measures (which are a particular case of SRBmeasures) the entropy formula was
proved by Pesin [43] (see also [8]) and its extension to SRBmeasureswas given byLedrappier
and Strelcyn [38]. The fact that a hyperbolic measure satisfying the entropy formula is an
SRB measure was shown by Ledrappier [37].1

It follows fromTheorem 2.3 that f admits at most countablymany ergodic SRBmeasures.
It is shown in [47] that a topologically transitive C1+α surface diffeomorphism can have at
most one SRB measure but the result is not true in dimension higher than two, see Sect. 5.4.

3 Approaches to the Construction of SRB Measures

There exist at least three distinct methods for the construction of SRB measures. In this
section we briefly describe these approaches and mention the different settings in which they
have been applied. Then beginning in Sect. 4 we give some more details of specific results
and of the inner workings of each of the arguments.

The first approach, used by Sinai, Ruelle, and Bowen in their pioneering work, is based
on the non-trivial fact that uniformly hyperbolic attractors admit a finite Markov partition
and consequently a symbolic coding by a subshift of finite type (SFT ). This coding makes
it possible to translate questions about invariant measures for the diffeomorphism f into
the language of symbolic dynamics, and hence to borrow results from statistical mechanics
regarding Gibbs measures and equilibrium states for certain potential functions ϕ : � → R.
Of particular importance is the potential functionϕ = − log | det d f u |, where det d f u denotes
the determinant of the differential of f restricted to the “unstable” subspace of the uniformly
hyperbolic system; Gibbs measures for ϕ correspond to SRB measures for (�, f ).

We give a rough outline of the symbolic approach.

1 Our definition of SRB measure includes the requirement that the measure is hyperbolic. In fact, one can
extend the notion of SRB measures to those that have some or even all Lyapunov exponents zero (in the latter
case we take W u(x) = {x}). It was proved by Ledrappier and Young [39] that a measure satisfies the entropy
formula if and only if it is an SRBmeasure in this more general sense, but we stress that such an SRBmeasure
may not be physical, i.e., its basin may be of zero Lebesgue measure.
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(1) Use a finite Markov partition to code (�, f ) by a two-sided SFT 
 ⊂ AZ, where A is
a finite alphabet.

(2) Pass from 
 to the corresponding one-sided shift 
+ ⊂ AN; roughly speaking, this
corresponds to identifying points on � that lie on the same local stable manifold.

(3) Consider a certain transfer operator associated to 
+ and the potential function, and
obtain aGibbsmeasure in terms of the eigendata of this operator using Perron–Frobenius
theory.

(4) Project this Gibbs measure on 
+ to an SRB measure on �.

The extension of this argument tomore general attractors which are not uniformly hyperbolic,
or even to uniformly hyperbolic systems with singularities, is made more challenging by
the fact that one cannot hope to have finite Markov partitions in more general settings.
Even though one can construct countable Markov partitions in some settings, the theory of
Gibbs measures for shift maps on countable symbolic spaces is not as complete as for finite
symbolic spaces, and thus some new ideas are needed in order to generalize this approach to
the construction of SRB measures.

It is worth mentioning that the heart of the symbolic approach lies in the application
of Perron–Frobenius theory by finding the appropriate Banach space on which the transfer
operator acts with a spectral gap, and that for uniformly hyperbolic systems, this functional
analytic strategy can in fact be carried out without relying on symbolic dynamics [6,13,32].
The key is to identify the right Banach space; roughly speaking one should consider objects
that behave like smooth functions along the unstable direction, and like measures (or more
generally, distributions) along the stable direction; for a more complete description of this
approach, and for the current state of the art, see the paper by Baladi in this issue [7].

An alternative to the functional analytic approach, which is more “geometric”, was devel-
oped in [44] to deal with partially hyperbolic attractors for which Markov partitions do not
exist and the above symbolic approach fails (we describe the result in [44] more precisely
in Sect. 5). The idea here is to follow the classical Bogolyubov–Krylov procedure for con-
structing invariant measures by pushing forward and a given reference measure. In our case
the natural choice of a reference measure is the Riemannian volume m restricted to the
neighborhood U , which we denote by mU . We then consider the sequence of probability
measures

μn = 1

n

n−1∑

k=0

f k∗ mU . (3.1)

Any weak* limit point of this sequence of measures is called a natural measure and while
in general, it may be a trivial measure, under some additional hyperbolicity requirements on
the attractor one obtains an SRB measure.

For attractors with some hyperbolicity one can use a somewhat different approach which
exploits the fact that SRB measures are absolutely continuos along unstable manifolds. To
this end consider a point x ∈ �, its local unstable manifold V u(x), and take the leaf-volume
mV u(x) as the reference measure for the above construction. Thus one studies the sequence
of probability measures given by

νn = 1

n

n−1∑

k=0

f k∗ mV u(x). (3.2)

The measures νn are spread out over increasingly long pieces of the global unstable mani-
fold of the point f n(x) and, in some situations, control over the geometry of the unstable
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manifold makes it possible to draw conclusions about the measures νn by keeping track of
their densities along unstable manifolds, and ultimately to demonstrate that any weak-star
limit of νn is in fact an SRB measure. This approach applies to the uniformly hyperbolic
setting, as an alternative to the symbolic coding approach, as we will discuss in Sect. 4. It
can also be applied to significantly more general situations such as partially hyperbolic and
non-uniformly hyperbolic settings, which we discuss in Sects. 5–7.

Before discussing the key ideas necessary to extend either approach to the non-uniformly
hyperbolic situation, we pause to describe the relationship between these two approaches.
Because the definition of SRB measure is so closely tied to the unstable direction, any
approach to constructing SRBmeasures must somehowwork with the unstable direction and
ignore the stable one (at least at certain stages).

• In the symbolic approach, this is done in Step 2 by passing from
 to
+; for shift spaces,
the location of a point along a stable manifold is encoded in the negative indices, while a
location along an unstable manifold is encoded in the positive indices.

• In the geometric approach, we privilege the unstable direction by working with mV u(x)

(instead of mV s (x)) and by keeping track of densities along unstable manifolds.

Next one must take the dynamics of f into account; after all, we are looking for an invariant
measure.

• In the symbolic approach, this is done via the transfer operator, which acts on the space
of Hölder continuous functions on 
+, viewed as densities of a measure.

• In the geometric approach, this is done via the time-averaging process in (3.2).

Now suppose we wish to extend these approaches to settings with non-uniformly
hyperbolic dynamics. Both approaches rely on having uniform expansion and contraction
properties, and as we will see in Sects. 5–7, the key to extending the second (geometric)
approach to the non-uniformly hyperbolic setting is to restrict one’s attention to orbit seg-
mentswhere expansion and contraction occur uniformly (in a sense thatwill bemade precise).
That is, instead of considering all iterates f k(x), one considers only hyperbolic times; that
is, values of k such that f k has some uniformly hyperbolic properties at x (the set of such
times depends on the point where the orbit starts). This notion was introduced by Alves [3]
in the context of non-uniformly expanding maps.

In a number of situations, it has proven possible to combine this idea with the symbolic
coding techniques from the first approach, which leads us to the third approach, based on the
concept of inducing. If � ⊆ � is some appropriately chosen subset, and τ : � → N is an
inducing time, or return time, function, i.e., f τ(x)(x) ∈ � for every (or almost every) x ∈ �,
then we can define the induced map F : � → � by F(x) = f τ(x)(x). The point here is that
it may be possible to choose � with a much more amenable and regular geometric structure
than the attractor � as a whole, and that it may be possible to choose a return time function
τ such that the induced map F has some good properties, for example F may be (piecewise)
uniformly hyperbolic. In these conditions we can then construct an SRB measures for F and
by elementary and standard arguments, under some integrability conditions on the inducing
time τ , use this to obtain an SRB measure for f . The general notion of inducing is quite
classical in ergodic theory but the specific application to SRB measures was first applied in
the setting of certain Hénon maps [11] and developed as a general theory by Young [57],
from which specific kinds of induced maps required for SRB measures are often refereed to
as Young towers.

Although the Young Tower approach is in principle more involved and complicated than
the geometric “push-forward” approach, it has the advantage that the symbolic structure
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allows an application of techniques from functional analysis and spectral theory that give
significantly more information about the structure and properties of SRB measure, including
information on the statistical properties such as decay of correlations.

Ourmain focus in the remainder of this paperwill be the geometric approach. The symbolic
approach (for finite alphabets) is very well described in the original literature (see especially
[20]). We will also discuss some results related to Young towers.

To carry out the construction of SRBmeasures using the push-forward geometric approach
one needs certain information on the dynamics and geometry of “unstable admissible man-
ifolds” (in the setting of non-uniform hyperbolicity these are used as substitutions for local
unstable manifolds, see Sect. 4.2) and their images. In particular, this includes hyperbolicity.
If it is uniform one can carry out the construction without too much trouble, see Sect. 4. If
hyperbolicity is not uniform, one may still hope to have the following.

(1) Domination: if one of the directions does not behave hyperbolically, then it at least is
still dominated by the other direction.

(2) Separation: the stable and unstable directions do not get too close to each other, more
precisely, there is a “good” way to control how close they can be.

In the case of attractors with dominated splittings (see Sect. 6) these two conditions hold
uniformly and so one only needs to control the asymptotic hyperbolicity (expansion and con-
traction along stable and unstable directions). In the more general non-uniformly hyperbolic
case both domination and separationmay fail at some points, and in order to control the geom-
etry and dynamics of images of admissible manifolds, one needs to replace “hyperbolicity”
with “effective hyperbolicity”, see Sect. 7.

4 SRB Measures for Uniformly Hyperbolic Attractors

4.1 Definition of Uniformly Hyperbolic Attractors

Consider a topological attractor� for a diffeomorphism f of a compact smooth manifold M .
It is called (uniformly) hyperbolic if for each x ∈ � there is a decomposition of the tangent
space Tx M = Es(x) ⊕ Eu(x) and constants c > 0, λ ∈ (0, 1) such that for each x ∈ �:

(1) ‖dx f nv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
(2) ‖dx f −nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

Es(x) and Eu(x) are stable and unstable subspaces at x . One can show that Es(x) and Eu(x)

depend continuously on x .
In particular, 
 (Es(x), Eu(x)) is uniformly away from zero. In fact, Es(x) and Eu(x)

depend Hölder continuously on x .
For each x ∈ � there are V s(x) and V u(x) stable and unstable local manifolds at x . They

have uniform size r , depend continuously on x in the C1 topology and V u(x) ⊂ � for any
x ∈ �.

We describe an example of a hyperbolic attractor. Consider the solid torus P = D2 × S1.
We use coordinates (x, y, θ) on P; x and y give the coordinates on the disc, and θ is the
angular coordinate on the circle. Fixing parameters a ∈ (0, 1) and α, β ∈ (0,min{a, 1−a}),
define a map f : P → P by

f (x, y, θ) = (αx + a cos θ, βy + a sin θ, 2θ).

P is a trapping region and � = ⋂
n≥0 f n(P) is the attractor for f , known as the Smale–

Williams solenoid.
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4.2 Existence of SRB Measures for Hyperbolic Attractors

The following result establishes existence and uniqueness of SRB measures for transitive
hyperbolic attractors.

Theorem 4.1 Assume that f is C1+α and that � is a uniformly hyperbolic attractor. The
following statements hold:

(1) Every limit measure of either the sequence of measures μn (given by (3.1)) or the
sequence of measures νn (given by (3.2)) is an SRB measure on �.

(2) There are at most finitely many ergodic SRB measures on �.
(3) If f |� is topologically transitive, then there is a unique SRB-measure μ on �, which is

the limit of both sequences μn and νn; moreover, Bμ has full measure in U.

This theorem was proved by Sinai, [51] for the case of Anosov diffeomorphisms, Bowen,
[20] and Ruelle [48] extended this result to hyperbolic attractors, and Bowen and Ruelle,
[21] constructed SRB measures for Anosov flows.

We outline a proof of this theorem to demonstrate how the geometric approach works;
further details can be found in [27]. Note that the geometric proof we give here is not the
original proof given by Sinai, Bowen, and Ruelle, who used the symbolic approach. Given
x ∈ M , a subspace E(x) ⊂ Tx M , and a(x) > 0, the cone at x around E(x) with angle a(x)

is

K (x, E(x), a(x)) = {v ∈ Tx M : �(v, E(x)) < a(x)}.
There exists a neighborhood Ũ ⊂ U of the attractor � and two continuous cone families
K s(x) = K s(x, Es(x), a) and K u(x) = K u(x, Eu(x), a) such that2

d f (K u(x)) ⊂ K u( f (x)) for all x ∈ Ũ ,

d f −1(K s( f (x))) ⊂ K s(x) for all x ∈ f (Ũ ).

Let W ⊂ U be an admissible manifold; that is, a submanifold that is tangent to an unstable
cone K u(x) at some point x ∈ U and has a fixed size and uniformly bounded curvature.
More precisely, fix constants γ, κ, r > 0, and define a (γ, κ)-admissible manifold of size r
to be V (x) = expx graphψ , where ψ : BEu (x)(0, r) = B(0, r) ∩ Eu(x) → Es(x) is C1+α

and satisfies

ψ(0) = 0 and dψ(0) = 0,

‖dψ‖ := sup
‖v‖<r

‖dψ(v)‖ ≤ γ,

|dψ |α := sup
‖v1‖,‖v2‖<r

‖dψ(v1) − dψ(v2)‖
‖v1 − v2‖α

≤ κ.

(4.1)

Write I = (γ, κ, r) for convenience and consider the space of admissible manifolds

RI = {expx (graphψ) : x ∈ U, ψ ∈ C1(Bu(0, r), Es(x)) satisfies (4.1)}.
Given an admissiblemanifold W , we consider a standard pair (W, ρ)where ρ is a continuous
“density” function onW . The idea ofworkingwith pairs of admissiblemanifolds anddensities
was introduced by Chernov and Dolgopyat [23] and is an important recent development in
the study of SRB measures via geometric techniques.

2 Note that the subspaces Es (x) and Eu(x) for x ∈ Ũ need not be invariant under d f .
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Now we fix L > 0, write K = (I, L), and consider the space of standard pairs

R′
K = {(W, ρ) : W ∈ RI, ρ ∈ Cα(W, [ 1L , L]), |ρ|α ≤ L}.

These spaces are compact in the natural product topology: the coordinates in RI are

{x ∈ M, ψ ∈ C1(Bu(0, r), Es(x)) with ‖Dψ‖ ≤ γ, |Dψ |α ≤ κ}
and the coordinates in R′

K are

{x, ψ, ρ ∈ Cα(W ) with ‖ρ‖α ≤ L}.
A standard pair determines a measure �(W, ρ) on U in the obvious way:

�(W, ρ)(E) :=
∫

E∩W
ρ dmW .

Moreover, each measure η on R′
K determines a measure �(η) on U by

�(η)(E) =
∫

R′
K

�(W, ρ)(E) dη(W, ρ)

=
∫

R′
K

∫

E∩W
ρ(x) dmW (x) dη(W, ρ).

(4.2)

[Compare this to (2.1) in the definition of conditional measures.] WriteM(U ) andM(R′
K)

for the spaces of finite Borel measures on U and R′
K, respectively. It is not hard to show

that � : M(R′
K) → M(U ) is continuous; in particular, MK = �(M≤1(R′

K)) is compact,
where we write M≤1 for the space of measures with total weight at most 1.

On a uniformly hyperbolic attractor, an invariant probability measure is an SRB measure
if and only if it is in MK for some K.

Consider now the leaf volume mW on W that we view as a measure on Ū . Its evolution is
the sequence of measures

κn = 1

n

n−1∑

k=0

f k∗ mW . (4.3)

By weak* compactness there is a subsequence κn j that converges to an invariant measure μ

on � which is an SRB measure.
Consider the images f n(W ) and observe that for each n, the measure f n∗ mW is absolutely

continuous with respect to leaf volume on f n(W ). For every n, the image f n(W ) can be
covered with uniformly bounded multiplicity3 by a finite number of admissible manifolds
Wi , so that

f n∗ mW is a convex combination of measures ρi dmWi , (4.4)

where ρi are Hölder continuous positive densities on Wi .
We see from (4.4) that MK is invariant under the action of f∗, and thus κn ∈ MK for

every n. By compactness of MK, one can pass to a subsequence κnk which converges to a
measure μ ∈ MK, and this is the desired SRB measure.

3 This requires a version of the Besicovitch covering lemma, which is usually formulated for geometrical
balls, so one must choose the Wi in such a way that each f n(Wi ) is ‘sufficiently close’ to being a ball in
f n(W ).
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Choosing W = V u(x), x ∈ � we obtain that any limit measure of the sequence νn (see
(3.2)) is an SRB measure. It is then not difficult to derive from here that any limit measure
of the sequence μn (see (3.1)) is an SRB measure.

In the particular case when � = M (that is, f is a C1+α Anosov diffeomorphism), the
above theorem guarantees existence of an SRBmeasureμ for f . In fact, if f is topologically
transitive one can show that μ is a unique SRB measure. Reversing the time we obtain the
unique SRB measure ν for f −1. One can show that μ = ν if and only if μ is a smooth
measure.

5 SRB Measures for Partially Hyperbolic Attractors

5.1 Definition of Partially Hyperbolic Attractors

Consider a topological attractor � for a diffeomorphism f of a compact smooth manifold
M . It is called (uniformly) partially hyperbolic if for each x ∈ � there is a decomposition of
the tangent space Tx M = Es(x) ⊕ Ec(x) ⊕ Eu(x) and numbers 0 < λ < λ1 ≤ λ2 < λ−1

and c > 0 such that for n ≥ 0:

(1) ‖dx f nv‖ ≤ cλn‖v‖ for v ∈ Es(x);
(2) c−1λn

1‖dx f nv‖ ≤ cλn
2‖v‖;

(3) ‖dx f −nv‖ ≤ cλn‖v‖ for v ∈ Eu(x).

Here Es(x), Ec(x) and Eu(x) are strongly stable, central and strongly unstable subspaces
at x . They depend (Hölder) continuously on x . In particular, the angle between any two of
them is uniformly away from zero.

For each x ∈ � there are V s(x) and V u(x), the strongly stable and strongly unstable local
manifolds at x . They have uniform size r , depend continuously on x in the C1 topology and
V u(x) ⊂ � for any x ∈ �.

A simple example of a partially hyperbolic attractor is a map which is the direct product
of a map f with a hyperbolic attractor � and the identity map Id of any manifold.

5.2 u-Measures

In light of the absolute continuity condition for SRB measures, the following definition for
a partially hyperbolic system is natural. A measure μ on � is called a u-measure if for
every x ∈ � and y ∈ B(x, δ) ∩ � the conditional measure defined in Sect. 2.2 satisfies
μu(y) ∼ mV u(y). (Recall that μ ∼ ν if μ 	 ν and ν 	 μ).

Theorem 5.1 ([44]) Any limit measure of the sequence of measures μn (see (3.1)) is a u-
measure and so is any limit measure of the sequence of measures νn (see (3.2)).

This theorem is a generalization of Theorem 4.1 in the uniformly hyperbolic case and its
proof uses the “push-forward” techniques. Indeed, recalling the definition of the push-forward
of a measure we have f k∗ mV u (x)(A) = mV u (x)( f −k(A)) = mV u(x)({x : f k(x) ∈ A}) and
hence, the measures f k∗ mV u(x) are supported on the image f k(V u(x)) of the starting chosen
piece of local unstable manifold. If f is uniformly expanding along Eu one can divide up
V u(x) into pieces, each of which grows to large scale with bounded distortion at time k, and
thus f k∗ mV u(x) is supported on some collection of uniformly large unstable disks. Therefore,
the same is true for measures νn in (3.2) and this is the crucial property used to show that
any limit measure μ has absolutely continuous conditional measures along unstable leaves
and therefore is an SRB measures (see Sect. 4.2).
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One can prove the following basic properties for u-measures.

(1) Any measure whose basin has positive volume is a u-measure, [19].
(2) If there is a unique u-measure for f , then its basin has full volume in the topological

basin of attraction, [30].
(3) Every ergodic component of a u-measure is again a u-measure, [19].

The first of these says that for a partially hyperbolic attractor, every physical measure is
a u-measure. In particular, every SRB measure is a u-measure. What about the converse
implications? Are u-measures physical? When is a u-measure an SRB measure? We address
these questions next.

5.3 u-Measures with Negative Central Exponents

We say that f has negative (positive) central exponents (with respect to μ) if there exists
an invariant subset A ⊂ � with μ(A) > 0 such that the Lyapunov exponents χ(x, v) < 0
(respectively, χ(x, v) > 0) for every x ∈ A and every vector v ∈ Ec(x).

If f has negative central exponents on a set A of full measure with respect to a u-measure
μ, then μ is an SRB measure for f .

Theorem 5.2 ([15,17]) Assume that a C1+α diffeomorphism f has negative central expo-
nents on an invariant set A of positive measure with respect to a u-measure μ for f . Then
the following statements hold:

(1) Every ergodic component of f |A of positive μ-measure is open (mod 0); in particular,
the set A is open (mod 0) (that is there exists an open set U such that μ(A�U ) = 0).

(2) If for μ-almost every x the trajectory { f n(x)} is dense in supp(μ), then f is ergodic with
respect to μ.

We provide the following criterion, which guarantees the density assumption in Statement
(2) of the previous theorem.

Theorem 5.3 Let f be a C1 diffeomorphism of a compact smooth Riemannian manifold M
possessing a partially hyperbolic attractor �. Assume that for every x ∈ � the orbit of the
global strongly unstable manifold W u(x) is dense in �. Then for any u-measure μ on � and
μ-almost every x the trajectory { f n(x)} is dense in �.

This result is an immediate corollary of the following more general statement. Given ε > 0,
we say that a set is ε-dense if its intersection with any ball of radius ε is not empty.

Theorem 5.4 ([15]) Let f be a C1 diffeomorphism of a compact smooth Riemannian man-
ifold M possessing a partially hyperbolic attractor �. The following statements hold:

(1) For every δ > 0 and every ε ≤ δ the following holds: assume that for every x ∈ �

the orbit of the global strongly unstable manifold W u(x) is ε-dense in �. Then for any
u-measure μ on � and μ-almost every x the trajectory { f n(x)} is δ-dense in �.

(2) Assume that for every x ∈ � the orbit of the global strongly unstable manifold W u(x) is
dense in �. Then supp(μ) = � for every u-measure μ.

In light of the ‘negative central exponent’ hypothesis in Theorem 5.2, it is natural to ask
whether a corresponding result holds for an attractorwith positive central exponents. This case
turns out to bemore difficult since it is easier to handle non-uniformities in the contracting part
of the dynamics than it is to handle non-uniformities in the expanding part of the dynamics.
Wediscuss this situation inmore detail in Sect. 6 butmention here that the study ofu-measures
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with positive central exponents was carried out in [4,5] under the stronger assumption that
there is a set of positive volume in a neighborhood of the attractor with positive central
exponents.

5.4 Uniqueness of u-Measures and SRB Measures

In the case of a hyperbolic attractor, topological transitivity of f |� guarantees that there
is a unique u-measure for f on �. In contrast, in the partially hyperbolic situation, even
topological mixing is not enough to guarantee that there is a unique u-measure. Indeed,
consider F = f1 × f2, where f1 is a topologically transitive Anosov diffeomorphism and
f2 a diffeomorphism close to the identity. Then F is partially hyperbolic, and any measure
μ = μ1 ×μ2, where μ1 is the unique SRB measure for f1 and μ2 any f2-invariant measure,
is a u-measure for F . Thus, F has a unique u-measure if and only if f2 is uniquely ergodic.
On the other hand, F is topologically mixing if and only if f2 is topologically mixing.

Theorem 5.5 ([15,17]) Let f be a C1+α diffeomorphism of a compact smooth Riemannian
manifold M possessing a partially hyperbolic attractor �. Assume that:

(1) there exists a u-measure μ for f with respect to which f has negative central exponents
on an invariant subset A ⊂ � of positive μ-measure;

(2) for every x ∈ � the orbit of the global strongly unstable manifold W u(x) is dense in �.

Then μ is the only u-measure for f and f has negative central exponents at μ-almost every
x ∈ �. In particular, ( f, μ) is ergodic, supp(μ) = �, and the basin Bμ has full volume in
the topological basin of attraction of �. μ is the only SRB measure for f .

Let us comment on the assumption of this theorem. Shub and Wilkinson [50] considered
the direct product F0 = f × Id, where f is a linear Anosov diffeomorphism and the identity
acts on the circle. Themap F0 preserves volume. They showed that arbitrary close to F0 (in the
C1 topology) there is a volume-preserving diffeomorphism F whose only central exponent
is negative on the whole of M . The result continues to hold for any small perturbation of F .

Bonatti and Diaz [16] have shown that there is an open set of transitive diffeomorphisms
near F0 = f ×Id ( f is an Anosov diffeomorphism and Id is the identitymap of anymanifold)
as well as near the time-1 map F0 of a topologically transitive Anosov flow. This result was
used by Bonatti, Diaz and Ures [18] to construct examples of partially hyperbolic systems
with minimal unstable foliation (i.e., every unstable leaf is dense in the manifold itself).

If f is a small perturbation of F0 then f is partially hyperbolic and by [34], the central
distribution of f is integrable. Furthermore, the central leaves are compact in the first case
(when F0 = f × Id) and there are compact leaves in the second case (when F0 is the time-1
map of a topologically transitive Anosov flow). It is shown in [15] that if there is a compact
periodic central leaf C for f such that f n(C) = C and the restriction f n |C is a minimal
transformation, then the unstable foliation for f is minimal.

5.5 Stable Ergodicity for Dissipative Maps

Let � f be a topological attractor for a diffeomorphism f . We say that f is stably ergodic if
there exists a neighborhood U of f in Diffr (M), r ≥ 1 such that any diffeomorphism g ∈ U
possesses a topological attractor �g and there is a unique SRB measure μg on �g (and
hence, g is ergodic with respect to μg). This is an analog of the notion of stable ergodicity
of systems preserving a given smooth measure, which was introduced by Pugh and Shub,
[46]. For systems with topological attractors smooth measures are replaced by (unique) SRB
measures.
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If the attractor � f is (partially) hyperbolic then there exists a neighborhood U of f in
Diff1(M) such that any diffeomorphism g ∈ U possesses a (partially) hyperbolic attractor
�g .

Theorem 5.6 ([15]) Let � f be a partially hyperbolic attractor for a diffeomorphism f . If
f satisfies the conditions of Theorem 5.5, then f is stably ergodic with r = 1 + α.

A related result on continuity under small perturbations of SRB measures for systems with
mostly contracting central direction was obtained in [31]. The stable ergodicity of partially
hyperbolic attractorswith positive central exponentswas studied byVásquez [54]who proved
a result similar to Theorem 5.6 under the stronger requirement that there is a unique u-
measure with positive central exponents on a subset of full measure.

6 SRB Measures for Attractors with Dominated Splitting

Let f be a C1+α diffeomorphism and A a forward-invariant compact set. A splitting

TA M = Ecs ⊕ Ecu

is dominated if there is χ < 1 such that

‖d f |Es (x)‖ < χ‖d f |−1
Eu (x)‖−1

for all x ∈ A. The set

� =
∞⋂

j=0

f j (A)

is an attractor for f with dominated splitting.

Remark 6.1 Wenote that the domination condition does not imply anything aboutwhether the
derivative is contracting or expanding in each of the sub-bundles, but just that it is contracting
in Ecs relative to Ecu . There are no general results on the existence of SRB measures for
dominated splitting in full generality, but only with some additional assumptions, including
that either Ecs is uniformly contracting or that Ecu is uniformly expanding. It will be useful
to distinguish these two cases by using the notation

TA M = Es ⊕ Ecu and TA M = Ecs ⊕ Eu (6.1)

respectively. Notice that if Ecs is uniformly contracting and Ecu is uniformly expanding then
we are in the uniformly hyperbolic situation with a splitting TA M = Es ⊕ Eu . A partially
hyperbolic splitting TA M = Es ⊕ Ec ⊕ Eu is also a special case of dominated decomposition
since we can combine the central bundle with either the stable one to get a dominated splitting
of the form TA M = Ecs ⊕ Eu where Ecs = Es ⊕ Ec or combine the central bundle with
the unstable one to get a splitting of the form TA M = Es ⊕ Ecu where Ecu = Ec ⊕ Eu . We
emphasize however that dominated decompositions, even under the additional assumptions
that one of the two bundles is uniform, does not imply that the center-stable bundle Ecs or the
center-unstable bundle Ecu can be further split into a center bundle Ec and either a stable or
unstable bundle. This additional splitting can play a key role in some results about partially
hyperbolic attractors which therefore do not immediately extend to attractors with dominated
splittings.
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The existence of SRB measures has been proved for attractors with dominated splittings
of the form (6.1) as long there is also some degree of (non-uniform) contraction or expansion
in the center-stable or center-unstable bundles respectively.

Theorem 6.2 ([17]) Let f : M → M be a C1+α diffeomorphism, A a forward invariant
compact set with m(A) > 0 on which f admits a dominated splitting of the form

TA M = Ecs ⊕ Eu

and suppose that the dynamics on Ecs is nonuniformly contracting:

lim sup
n→+∞

1

n
log ‖d f n |Ecs

x ‖ < 0 (6.2)

for all x ∈ A. Then f has finitely many ergodic SRB measures and the union of their basins
has full Lebesgue measure in the topological basin of A.

This theoremcanbe proved by a “push-forward” argument that essentially follows the lines
of the proof of Theorems 4.1 and 5.5 in the uniformly (completely or partially) hyperbolic
case. The full definition of SRB measure requires some (possibly nonuniform) hyperbolicity
(i.e., contraction and expansion in all directions) in order to guarantee existence and absolute
continuity of the stable foliation which in turns guarantees that the measure is a physical
measure. Condition (6.2) bridges this gap and yields the statement of Theorem 6.2.

Theorem 6.3 ([4,5]) Let f : M → M be a C1+α diffeomorphism, A a forward invariant
compact set with m(A) > 0 on which f admits a dominated splitting of the form

TA M = Es ⊕ Ecu

and suppose that the dynamics on Ecu is nonuniformly expanding:

lim sup
n→+∞

1

n

n∑

j=1

log(‖d f −1|Ecu
f j (x)

‖−1) > ε (6.3)

for some ε > 0 and for all x ∈ A. Then f has finitely many ergodic SRB measures and the
union of their basins has full Lebesgue measure in the topological basin of A.

This result was first proved in [4] under the slightly stronger assumption obtained by replacing
lim sup by lim inf in (6.3). Because the expansion along Ecu is nonuniform, the argu-
ment there uses a more sophisticated version of the geometric “push-forward” argument
of Lebesgue measure mV u(x) on the local unstable manifolds than the one outlined in Sect.
5.2.

Indeed, it is not longer true that for every k we can divide V u(x) into pieces each of
which grows to large scale with bounded distortion at time k. Instead this will be true just
for some points in V u(x), precisely those for which k is a hyperbolic time. The images at
time k of other parts of V u(x) may be very small and/or very distorted. In particular it is
no longer the case that f k∗ (V u(x)) is supported on a collection of uniformly large unstable
disks. Nevertheless some points do eventually have hyperbolic times and therefore it is the
case that some part of the measures f k∗ (V u(x)), and therefore some part of the measures νn ,
are supported on some such collection of uniformly large unstable disk. Thus it is possible
to write the measures νn as

νn = ν′
n + ν′′

n
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where ν′
n is the “good” part of the measure supported on a collection of uniformly large

unstable disks and μ′′
n is the “bad” part on which we have little control. The strengthened

version of condition (6.3), with a lim inf instead of a lim sup, implies that almost every point
has a positive density of hyperbolic times and thus the good part of the measure μ′

n forms a
proportion of the overall measure μn that is uniformly bounded below in n and it is therefore
possible to essentially recover a version of the original argument of Sinai, Ruelle, Bowen
and show that there exists a limit measure μ′ which has absolutely continuous conditional
measures and is therefore an SRB measure (see more details in the outline of the proof of
Theorem 7.2).

Replacing the lim inf by a lim sup as stated in condition (6.3) still implies an infinite
number of hyperbolic times and this still allows us to split the measures into ν′

n and ν′′
n , but

does not imply a positive density of hyperbolic times and thus makes it impossible to obtain
a uniform lower bound for the mass of the measures ν′

n and to complete the proof using
the natural “push-forward” argument. The full proof of Theorem 6.3 is thus obtained in [5]
using the inducing or Young tower approach mentioned above. In certain respects there are
of course still some similarities with the classical approach in the sense that the Young tower
structure also relies on constructing some region where large unstable disks accumulate,
and defining an induced map on this region. The problem of the low asymptotic frequency
of hyperbolic times does not disappear in this approach but is rather “translated” into the
problem of integrability of the return times, which can be resolved by using a different kind
of argument.

7 SRB Measures for Non-uniformly Hyperbolic Attractors

If μ is an SRB measure, then every point in the positive Lebesgue measure set Bμ has non-
zero Lyapunov exponents. A natural and interesting question is whether the converse holds
true, in essence formulated in the following conjecture by Viana [55]:

Conjecture 7.1 If a smooth map has only non-zero Lyapunov exponents at Lebesgue almost
every point, then it admits an SRB measure.

The results of the previous section can be viewed as partial progress in the direction of
Viana’s conjecture by proving the existence of SRB measures under the assumptions of
non-zero Lyapunov exponents and additional conditions that the system has a dominated
splitting and either stable or unstable direction is uniformly hyperbolic.4 The presence of the
dominated splittingmeans that one does not need toworry toomuch about the geometry of the
stable and unstable manifolds, and only needs to take care of the expansion and contraction
properties.

In general, however, the geometric properties of the system are not uniform. In a “fully”
non-uniformly hyperbolic system the splitting Es ⊕ Eu is only measurable, and the angle
between the stable and unstable subbundles is arbitrarily small. In this section we describe
two general results that apply in this setting.

The first significant results on SRB measures for non-uniformly hyperbolic systems were
those for the attractors for certain special parameters of the Hénon family of maps obtained in
[10]. These attractors have a fully nonuniformly hyperbolic structure which can be described
relatively explicitly and, taking advantage of several specific characteristics of this structure,

4 Although note that the ‘mostly expanding’ condition of Theorem 6.3 is slightly more restrictive than saying
that all Lyapunov exponents in Ecu are positive.
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an SRB measure for the attractors was constructed first in [11] using the push-forward argu-
ment in what is essentially a further variation of argument using the splitting νn = ν′

n + ν′′
n

described above in the case of dominated splittings, and later in [12] using the induced map
argument in a construction which effectively became the model case study for Young’s full
development of this general approach in [57].

We describe here two recent results which develop a general framework for the construc-
tion of SRB measures for fully general nonuniformly hyperbolic attractors. The first one
applies in arbitrary dimension and gives the existence of SRB measures under some slight
strengthening of usual nonuniform hyperbolicity. The construction in this case is, once again,
a further and even more sophisticated refinement of the “push-forward” argument described
above. The second result applies only in dimension two but proves the existence of SRB
measure under no more than standard non-uniform hyperbolicity conditions plus a natural
recurrence assumption. The proof of this result is instead based on the Young tower approach
and indeed a corollary of independent interest, is that in dimension two, any SRB measure
can in principle be obtained through a Young tower.

7.1 Effective Hyperbolicity

We make the following standing assumption.
(H) There exists a forward-invariant set A ⊂ U of positive volume with two measurable

cone families K s(x), K u(x) ⊂ Tx M such that

(a) D f (K u(x)) ⊂ K u( f (x)) for all x ∈ A;
(b) D f −1(K s( f (x))) ⊂ K s(x) for all x ∈ f (A).
(c) K s(x) = K (x, Es(x), as(x)) and K u(x) = K (x, Eu(x), au(x)) are such that Tx M =

Es(x) ⊕ Eu(x); moreover ds = dim Es(x) and du = dim Eu(x) do not depend on x .

Such cone families automatically exist if f is uniformly hyperbolic on �. We emphasize,
however, that in our setting K s,u are not assumed to be continuous, but only measurable and
the families of subspaces Eu,s(x) are not assumed to be invariant.

Let A ⊂ U be a forward-invariant set satisfying (H). Define

λu(x) = inf{log ‖D f (v)‖ | v ∈ K u(x), ‖v‖ = 1},
λs(x) = sup{log ‖D f (v)‖ | v ∈ K s(x), ‖v‖ = 1}.

Note that if the splitting Es ⊕ Eu is dominated, then we have λs(x) < λu(x) for every x .
Thus we define the defect from domination at x to be

�(x) = 1
α
max(0, λs(x) − λu(x)),

where α ∈ (0, 1] is the Hölder exponent of D f . Roughly speaking, �(x) controls how
much the curvature of unstable manifolds can grow as we go from x to f (x). Indeed, if
λs(x) > λu(x) then the action of D f can push tangent vectors away from Eu and towards
Es , so that the image of an unstable (or admissible) manifold can ‘curl up’ under the action
of f , and �(x) quantifies how much this can happen.

The following quantity is positive whenever f expands vectors in K u(x) and contracts
vectors in K s(x):

λ(x) = min(λu(x) − �(x),−λs(x)).

The upper asymptotic density of � ⊂ N is

δ(�) = lim sup
N→∞

1

N
#
(
� ∩ [0, N )

)
.
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An analogous definition gives the lower asymptotic density δ(�).
Denote the angle between the boundaries of K s(x) and K u(x) by

θ(x) = inf{�(v,w) : v ∈ K u(x), w ∈ K s(x)}.
We say that a point x ∈ A is effectively hyperbolic if

(EH1) lim inf
n→∞

1

n

n−1∑

k=0

λ( f k(x)) > 0,

(EH2) lim
θ̄→0

δ{n | θ( f n(x)) < θ̄} = 0.

Condition (EH1) says that not only are the Lyapunov exponents of x positive for vectors in
K u and negative for vectors in K s , but λu gives enough expansion to overcome the ‘defect
from domination’ given by �.

Condition (EH2) requires that the frequency with which the angle between the stable and
unstable cones drops below a specified threshold θ̄ can be made arbitrarily small by taking
the threshold to be small.

If� is a hyperbolic attractor for f , then every point x ∈ U is effectively hyperbolic, since
there are λ̄, θ̄ > 0 such that λs(x) ≤ −λ̄, λu(x) ≥ λ̄, and θ(x) ≥ θ̄ for every x ∈ U , so that
�(x) = 0 and λ(x) ≥ λ̄.

Let A satisfy (H), and let S ⊂ A be the set of effectively hyperbolic points. Observe that
effective hyperbolicity is determined in terms of a forward asymptotic property of the orbit
of x , and hence S is forward-invariant under f . The following result is proved in [27].

Theorem 7.2 Let f be a C1+α diffeomorphism of a compact manifold M, and � a topolog-
ical attractor for f . Assume that

(1) f admits measurable invariant cone families as in (H);
(2) the set S of effectively hyperbolic points satisfies m(S) > 0.

Then f has an SRB measure supported on �.

A similar result can be formulated given information about the set of effectively hyperbolic
points on a single ‘approximately unstable’ submanifold usually called admissible. The set
of admissible manifolds that we will work with is related toRI from Sect. 4, but the precise
definition is not needed for the statement of the theorem; all we need here is to have Tx W ⊂
K u(x) for ‘enough’ points x . W ⊂ U . Let du , ds , and A be as in (H), (EH1) and (EH2), and
let W ⊂ U be an embedded submanifold of dimension du .

Theorem 7.3 Let f be a C1+α diffeomorphism of a compact manifold M, and � a topolog-
ical attractor for f . Assume that

(1) f admits measurable invariant cone families as in (H);
(2) there is a du-dimensional embedded submanifold W ⊂ U such that mW ({x ∈ S ∩ W |

Tx W ⊂ K u(x)}) > 0.

Then f has an SRB measure supported on �.

We outline the proof of this statement to illustrate the geometric approach in the settings
of non-uniformly hyperbolic attractors. We follow the same ideas as in Sect. 4, but there are
two major obstacles to overcome.

(1) The action of f along admissible manifolds is not necessarily uniformly expanding.

123



486 V. Climenhaga et al.

(2) Given n ∈ N it is no longer necessarily the case that f n(W ) contains any admissible
manifolds in RI, let alone that it can be covered by them. When f n(W ) contains some
admissible manifolds, we will need to control how much of it can be covered.

To address the first of these obstacles, we need to consider admissible manifolds for whichwe
control not only the geometry but also the dynamics; thus we will replace the collectionR′

K
from before with a more carefully defined set (in particular, K will include more parameters).
Since we do not have uniformly transverse invariant subspaces Eu,s , our definition of an
admissible manifold also needs to specify which subspaces are used, and the geometric
control requires an assumption about the angle between them.

Given θ, γ, κ, r > 0, write I = (θ, γ, κ, r) and consider the following set of “(γ, κ)-
admissible manifolds of size r with transversals controlled by θ”:

PI = {expx (graphψ) | x ∈ f (U ), Tx M = G ⊕ F, G ⊂ K u(x),


 (G, F) ≥ θ, ψ ∈ C1+α(BG(r), F) satisfies (4.1)}. (7.1)

Elements of PI are admissible manifolds with controlled geometry. We also impose a con-
dition on the dynamics of these manifolds. Fixing C, λ > 0, write J = (C, λ) and consider
for each N ∈ N the collection of sets

QJ,N = { f N (V0) | V0 ⊂ U, and for every y, z ∈ V0, we have

d( f j (y), f j (z)) ≤ Ce−λ(N− j)d( f N (y), f N (z)) for all 0 ≤ j ≤ N }. (7.2)
Elements of PI ∩QJ,N are admissible manifolds with controlled geometry and dynamics in
the unstable direction. We also need a parameter β > 0 that controls the dynamics in the
stable direction, and another parameter L > 0 that controls densities in standard pairs. Then
writing K = I ∪ J ∪ {β, L}, we obtain a set RK,N ⊂ PI ∩ QJ,N for which we have the
added restriction that we control the dynamics in the stable direction; the corresponding set
of standard pairs is written R′

K,N .
The set R′

K,N carries a natural product topology in which R′
K,N is compact and the map

� defined in (4.2) is continuous.
As before, let M≤1(R′

K,N ) denote the space of measures on R′
K,N with total weight at

most 1. The resulting space of measures on U plays a central role:

MK,N = �(M≤1(R′
K,N )). (7.3)

Measures in MK,N have uniformly controlled geometry, dynamics, and densities via the
parameters in K, and MK,N is compact. However, at this point we encounter the second
obstacle mentioned above: because f (W ) may not be covered by admissible manifolds in
RK,N , the set MK,N is not f∗-invariant.

To address this, one must establish good recurrence properties toMK,N under the action
of f∗ on M(U ); this can be done via effective hyperbolicity.

Consider for x ∈ A and λ > 0 the set of effective hyperbolic times

�e
λ
(x) =

⎧
⎨

⎩
n |

n−1∑

j=k

(λu − �)( f j (x)) ≥ λ(n − k) for all 0 ≤ k < n

⎫
⎬

⎭
. (7.4)

Results from [26] show that for every x and almost every effective hyperbolic time n ∈ �e
λ
(x),

there is a neighborhood W x
n ⊂ W containing x such that f n(W x

n ) ∈ PI ∩QJ,N . With a little
more work, one can produce a “uniformly large” set of points x and times n such that
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f n(W x
n ) ∈ RK,N , and in fact f n∗ mW x

n
∈ MK,N . Then this can be used to obtain measures

νn ∈ MK,N such that

νn ≤ μn = 1
n

n−1∑

k=0

f k∗ mW and lim
n→∞ ‖νn‖ > 0. (7.5)

Once this is achieved, compactness of MK,N guarantees existence of a non-trivial ν ∈⋂
N MK,N such that ν ≤ μ = limk μnk . In order to apply the absolute continuity properties

of ν to the measure μ, one must define a collection Mac of measures with good absolute
continuity properties along admissiblemanifolds, for which there is a version of the Lebesgue
decomposition theorem that gives μ = μ(1) + μ(2), where μ(1) ∈ Mac is invariant. This
measure is non-trivial since 0 
= ν ≤ μ(1), and the definition of R′

K,N guarantees that the
set of points with non-zero Lyapunov exponents has positive measure with respect to ν, and
hence also with respect to μ(1). Thus some ergodic component of μ(1) is hyperbolic, and
hence is an SRB measure.

7.2 Maps on the Boundary of Axiom A: Neutral Fixed Points

We give a specific example of a map for which the conditions of Theorem 7.3 can be verified.
Let f : U → M be a C1+α Axiom A diffeomorphism onto its image with f (U ) ⊂ U , where
α ∈ (0, 1). Suppose that f has one-dimensional unstable bundle.

Let p be a fixed point for f . We perturb f to obtain a new map g that has an indifferent
fixed point at p. The case when M is two-dimensional and f is volume-preserving was
studied by Katok. We allow manifolds of arbitrary dimensions and (potentially) dissipative
maps. For example, one can choose f to be the Smale–Williams solenoid or its sufficiently
small perturbation.

We describe a specific perturbation of f for which the conditions of the main theorem can
be verified; one can also describe a general set of conditions on the return map through the
region of the perturbation [27, Theorem 2.3]. We suppose that there exists a neighborhood
Z � p with local coordinates in which f is the time-1 map of the flow generated by

ẋ = Ax

for some A ∈ GL(d,R). Assume that the local coordinates identify the splitting Eu ⊕ Es

withR⊕R
d−1, so that A = Au ⊕ As , where Au = γ Idu and As = −βIds for some γ, β > 0.

In the Katok example we have d = 2 and γ = β since the map is area-preserving.
Now we use local coordinates on Z and identify p with 0. Fix 0 < r0 < r1 such that

B(0, r1) ⊂ Z , and let ψ : Z → [0, 1] be a C1+α function such that

(1) ψ(x) = ‖x‖α for ‖x‖ ≤ r0;
(2) ψ(x) = 1 for ‖x‖ ≥ r1;
(3) ψ(x) > 0 for x 
= 0 and ψ ′(x) > 0.

Let X : Z → R
d be the vector field given by X (x) = ψ(x)Ax . Let g : U → M be given by

the time-1 map of this vector field on Z and by f on U \ Z . Note that g is C1+α because X
is C1+α . In [27] it is shown that g satisfies the conditions of Theorem 7.3 (in fact, a slightly
more general version of this theorem), which proves the following.

Theorem 7.4 The map g has an SRB measure.

Note that g does not have a dominated splitting because of the indifferent fixed point. We
also observe that if ψ is taken to be C∞ away from 0, then g is also C∞ away from the point
p.
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7.3 Two-Dimensional Non-uniformly Hyperbolic Attractors

Let f be a C1+α diffeomorphism of a compact surface which is non-uniformly hyperbolic
on an invariant set �.5 Let �	 be a regular set.

Definition 7.5 A subsetR ⊂ � is a rectangle ifR ⊆ �	 for some 	 and for every x, y ∈ R,
[x, y] := V s(x) ∩ V u(y) consists of a single point and [x, y] ∈ R.

In otherwords the setR has hyperbolic product structure. Notice that a single point x ∈ � can
be considered a (trivial) rectangle, but we in general we will always assume that our rectangle
consists of an uncountable set of points, inwhich caseR contains lots of subrectangles. Indeed
for any two distinct points p, q ∈ R, their stable and unstable curves bound an open domain
R̂p,q ⊂ M and the intersection of R with the closure of R̂p,q is also a rectangle, which we
denote by Rp,q .

Definition 7.6 A rectangle R is

(1) nice if R = Rp,q for some periodic points p, q;
(2) fat if there exists some x ∈ R with mV u(x)(R ∩ V u(x)) > 0;
(3) recurrent if every x ∈ R returns to R in the future and in the past.

We remark that the existence of rectangles with the nice property is easily satisfied in two
dimensions for any hyperbolic set � as above. The other two conditions are elementary and
natural conditions which are easily seen to be necessary for the existence of an SRBmeasure.
It is proved in [28] that in fact these are also sufficient conditions.

Theorem 7.7 ([28]) The map f has an SRB measure if and only if it admits a nice fat
recurrent rectangle.

As mentioned above, the proof of this result relies on the construction of a Young tower,
which is in itself a result of independent interest. Indeed, the technical core of the proof of
Theorem 7.7 is a result which gives some extremely simple and natural conditions for the
existence of a Young tower in the two dimensional case. To formulate this result we give
here the definition of the topological structure of a Young tower, which is the most difficult
part of the construction and refer the reader to [28] or the original paper of Young [57] for
the full definition which includes some hyperbolicity and distortion conditions.

Definition 7.8 Let � be a rectangle.

(1) �s ⊂ � is an s-subset of � if x ∈ �s implies V s(x) ∩ � ⊂ �s ;
(2) �u ⊂ � is a u-subset of � if x ∈ �u implies V u(x) ∩ � ⊂ �u .

Let τ : � → N be the first return time function of points of � to � (which is defined at
all points of � if � is recurrent) and let Nτ denote the set of times which occur as first return
times of points in �. Let � be a recurrent rectangle.

Definition 7.9 � supports a Topological First Return Young Tower if

�S
i := {x ∈ � : τ(x) = i} and �U

i := f i (�S
i )

are s-subsets and u-subsets respectively of � for every i ∈ Nτ .

5 We stress that non-uniform hyperbolicity on an invariant set does not require presence of any invariant
measure. On the other hand if f preserves a hyperbolic measure then there is an invariant set � on which f
is non-uniformly hyperbolic.

123



The Geometric Approach for Constructing… 489

Theorem 7.10 ([28]) Let �0 be a nice recurrent rectangle. Then there exists a nice recurrent
rectangle � ⊃ �0 which supports a Topological First Return Young Tower.

The property that � ⊃ �0 implies that if �0 is a fat rectangle then the same holds for
� and thus an immediate consequence of Theorem 7.10 is that if �0 is a nice fat recurrent
rectangle then there exists another, also nice fat recurrent, rectangle which supports a First
return Topological Young Tower. It is then possible to prove that the required hyperbolicity
and distortion estimates are satisfied which imply the existence of an SRB measure by [57],
thus obtaining Theorem 7.7.

8 SRB Measures for Hyperbolic Attractors with Singularities

8.1 Topological Attractors with Singularities

Let M be a smooth compact manifold, U ⊂ M an open bounded connected subset, the
trapping region, N ⊂ U a closed subset and f : U \ N → U a C2 diffeomorphism such that

‖d2 fx‖ ≤ C1d(x,S+)−α1 for any x ∈ U \ N ,

‖d2 f −1
x ‖ ≤ C2d(x,S−)−α2 for any x ∈ f (U \ N ),

(8.1)

where S+ = N ∪ ∂U is the singularity set for f and S− = f (S+) that is

S− = {y ∈ U : there is z ∈ S+, zn ∈ U \ S+ such that zn → z, f (zn) → f (z)}
is the singularity set for f −1. We will assume that m(S+) = m(S−) = 0.

Define

U+ = {x ∈ U : f n(x) /∈ S+, n = 1, 2, . . .}
and the topological attractor with singularities

D =
⋂

n≥0

f n(U+), � = D̄.

Given ε > 0 and 	 > 1, set

D+
ε,	 = {z ∈ � : d( f n(z),S+) ≥ 	−1e−εn, n = 0, 1, 2, . . .},

D−
ε,	 = {z ∈ � : d( f n(z), N−) ≥ 	−1e−εn, n = 0, 1, 2, . . .},

D0
ε,	 = D+

ε,	

⋂
D−

ε,	,

D0
ε =

⋃

	≥1

D0
ε,	.

The set D0
ε is the core of the attractor and it may be an empty set as it may be the set D.

Theorem 8.1 ([45]) Assume that there are C > 0 and q > 0 such that for any ε > 0 and
n > 0

m( f −n(U(ε,S+) ∩ f n(U+))) ≤ Cεq , (8.2)

where U(ε,S+) is a neighborhood of the (closed) set S+. Then there is an invariant measure
μ on � such that, μ(D0

ε ) > 0, in particular, the core is not empty.

123



490 V. Climenhaga et al.

8.2 Hyperbolic Attractors with Singularities

Wesay that a topological attractorwith singularities� is hyperbolic, if there exist two families
of stable and unstable cones

K s(x) = K (x, E1(x), θ(x)), K u(x) = K (x, E2(x), θ(x)), x ∈ U \ S+

such that

(1) the angle 
 (E1(x), E2(x)) ≥ const. ;
(2) d f (K s(x)) ⊂ K s( f (x)) for any x ∈ U \ S+ and d f −1(K u(x)) ⊂ K u( f (x)) for any

x ∈ f (U \ S+);
(3) for some λ > 1

(a) ‖d fxv‖ ≥ λ‖v‖ for x ∈ U \ S+ and v ∈ K u(x);
(b) ‖d f −1

x v‖ ≥ λ‖v‖ for x ∈ f (U \ S+) and v ∈ K s(x).

Theorem 8.2 ([45]) Let � be a hyperbolic attractor with singularities for a C1+α map and
assume that Condition (8.2) holds. Then f admits an SRB measure on �.

8.3 Examples

We describe the following three examples of hyperbolic attractors with singularities which
satisfy requirements (8.1) and (8.2) and thus possess SRB measures.

8.3.1 The Geometric Lorenz Attractor

Let I = (−1, 1), U = I × I , N = I × 0 ⊂ U and f : U \ N → U is given by

f (x, y) = ((−B|y|ν0 + Bsign(y)|y|ν + 1)sign(y), ((1 + A)|y|ν0 − A)sign(y)),

where

0 < A < 1, 0 < B <
1

2
, ν > 1,

1

1 + A
< ν0 < 1.

This attractor models the behavior of the Poicaré map on an appropriately chosen cross-
section for the flow generated by the Lorenz system of ODE:

ẋ = −σ x + σ y, ẏ = r x − y − xz, ż = xy − bz

for the values of the parameters σ = 10, b = 8
3 and r ∼ 24.05. See [1,2,14,22,24,33,59]

where various properties of the geometric Lorenz attractor are established and discussed. For
the existence of the Lorenz attractor in the Lorenz system of ODE for appropriate values of
the parameters see [53].

8.3.2 The Lozi Attractor

Let I = (−c, c) for some 0 < c < 1 and letU = I × I , N = 0× I ⊂ U and f : U \ N → U
is given by

f (x, y) = (1 + by − a|x |, x),

where 0 < a < a0 and 0 < b < b0 for some small a0 > 0 and b0 > 0.
Up to a change of coordinates this map was introduced by Lozi as a simple version of the

famous Hénon map in population dynamics, see [40,42,49,56].
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8.3.3 The Belykh Attractor

Let I = (−1, 1), U = I × I , N = {(x, y) : y = kx} ⊂ U and f : U \ N → U is given by

f (x, y) =
{

(λ1(x − 1) + 1, λ2(y − 1) + 1) for y > kx,

(μ1(x + 1) − 1, μ2(y + 1) − 1) for y < kx,

where

0 < λ1, μ1 <
1

2
, 1 < λ2, μ2 <

2

1 − |k| , |k| < 1.

In the case λ1 = μ1 and λ2 = μ2 this map was introduced by Belykh [9] as one of the
simplest models in the phase synchronization theory in radiophysics.
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