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Appendix B. An Example of a Smooth Hyperbolic Measure with

Countably Many Ergodic Components

D. Dolgopyat, H. Hu and Ya. Pesin1

B.1. Introduction. We construct an example of a di�eomorphism
with nonzero Lyapunov exponents with respect to a smooth invariant mea-
sure which has countably many ergodic components. More precisely we will
prove the following result.

Theorem B.1. There exists a C1 di�eomorphism f of the three dimen-
sional torus T3 such that

1. f preserves the Riemannian volume � on T3;
2. � is a hyperbolic measure;
3. f has countably many ergodic components which are open (mod 0).

B.2. Construction of the Di�eomorphism f . Let A : T2 ! T
2 be

a linear hyperbolic automorphism. Passing if necessary to a power of A we
may assume that A has at least two �xed points p and p0. Consider the map
F = A� Id of the three dimensional torus T3 = T

2 �S1. We will perturb F
to obtain the desired map f .

Consider a countable collection of intervals fIng
1
n=1 on the circle S1,

where

I2n = [(n+ 2)�1; (n+ 1)�1]; I2n�1 = [1� (n+ 1)�1; 1� (n+ 2)�1]:

Clearly,
S
1

n=1 In = (0; 1) and int In are pairwise disjoint.
By Proposition B.2 below, for each n one can construct a C1 volume

preserving ergodic di�eomorphism fn : T
2�[0; 1] ! T

2�[0; 1] which satis�es:

1. kF � fnkCn � e�n
2

;
2. for all 0 � m <1, DmfnjT

2 � fzg = DmF jT2 � fzg for z = 0 or 1;
3. fn has nonzero Lyapunov exponents �-almost everywhere.

Let Ln : In ! [0; 1] be the aÆne map and �n = (Id; Ln) : T
2 � In !

T
2 � [0; 1]. We de�ne the map f by setting f jT2 � In = ��1n Æ fn Æ �n for all

n and f jT2 � f0g = F jT2 � f0g. Note that for every n > 0 and 0 � m � n

1Key words and phrases. Hyperbolic measure, Lyapunov exponents, stable ergodicity,
accessibility.
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we have

kDmF jT2 � In � ��1n ÆDmfn Æ �nkCn � k��1n Æ (DmF �Dmfn) Æ �nkCn

� e�n
2

� (n+ 1)n ! 0

as n!1. It follows that f is C1 on M and has the required properties.

B.3. Main Proposition. The goal of this section is to prove the fol-
lowing statement. Set I = [0; 1].

Proposition B.2. For any k � 2 and Æ > 0, there exists a map g of
the three dimensional manifold M = T

2 � I such that:

1. g is a C1 volume preserving di�eomorphism of M ;
2. kF � gkCk � Æ;
3. for all 0 � m < 1, DmgjT2 � fzg = DmF jT2 � fzg for z = 0

and 1;
4. g is ergodic with respect to the Riemannian volume and has nonzero

Lyapunov exponents almost everywhere.

Before giving the formal proof let us outline the main idea. The re-
sult will be achieved in two steps. First applying an argument of [SW] we
construct a perturbation map which has nonzero average central exponentR
M
�c(x) d�(x) 6= 0; where �c(x) denotes the Lyapunov exponent of x along

the neutral subspace Ec(x). We then further perturb this di�eomorphism
modifying an approach in [NT] to ensure that it has the accessibility prop-
erty and therefore, is ergodic (see Section B.4 for details).

We believe that this approach works in a more general setting. Namely,
we conjecture that the following statement holds.

Conjecture. Consider a one parameter family g" with g0 = F: Then
for suÆciently small ", g" satis�es the conditions of Proposition B.2 ex-
cept for a positive codimension submanifold in the space of one parameter
families.

Proof of Proposition B.2. Consider the linear hyperbolic map A
of the torus T2. We may assume that its eigenvalues are � and ��1, where
� > 1. Let p and p0 be �xed points of A. Choose a number "0 > 0 such
that d(p; p0) � 3"0. Consider the local stable and unstable one-dimensional
manifolds for A at points p and p0 of \size" "0 and denote them respectively
by V s(p), V u(p), V s(p0), and V u(p0).

Let us choose the smallest positive number n1 such that the intersection
A�n1(V s(p0)) \ V u(p) \ B(p; "0) consists of a single point which we denote
by q1 (here B(p; "0) is the ball in T

2 of radius "0 centered at p). Simi-
larly, we choose the smallest positive number n2 such that the intersection
An2(V u(p0)) \ V s(p) \ B(p; "0) consists of a single point which we denote
by q2.

Given a suÆciently small number " 2 (0; "0),

" �
1

2
minfd(p; q1); d(p; q2)g;
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Figure B.1

there is ` � 2 such that (see Figure B.1)

A�`(q1) 62 B(p; "); A�`�1(q1) 2 B(p; "): (B.1)

We now choose "0 2 (0; ") such that A�`�1(q1) 2 B(p; "
0).

Finally, we assume " to be so small that for some q 2 T2 we have

B(p; ") \ (A�n1(V s(p0)) [An2(V u(p0))) = ?;

Ai(B(q; ")) \B(q; ") = ?; Ai(B(q; ")) \B(p; ") = ?

for i = 1, : : :, N , where N > 0 will be determined later, and " = "(N).
Set 
1 = B(p; "0)�I and 
2 = Buc(�q; "0)�B

s(�q; "0), where �q = (q; 1=2)
and Buc(�q; "0) � V u(q) � I and Bs(�q; "0) � V s(q) are balls of radius "0
about �q.

After this preliminary consideration we describe the construction of the
map g.

Consider the coordinate system in 
1 originated at (p; 0) 2 M with x,
y, and z-axes to be unstable, stable, and neutral directions respectively for
the map F . If a point w = (x; y; z) 2 
1 and F (w) 2 
1 then F (w) =
(�x; ��1y; z).

Choose a C1 function � : I ! R
+ satisfying:

1. �(z) > 0 on (0; 1);

2. �(i)(0) = �(i)(1) = 0 for i = 0, 1, : : :,k;
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3. k�kCk � Æ.

We also choose two C1 functions ' = '(x) and  =  (y) which are de�ned
on the interval (�"0; "0) and satisfy

4. '(x) = '0 if x 2 (�"0; "0) and  (y) =  0 if y 2 (�"0; "0), where '0
and  0 are positive constants;

5. '(x) = 0 if jxj � ";  (y) � 0 for any y and  (y) = 0 if jyj � ";
6. k'kCk � Æ, k kCk � Æ;

7.
R
�"

0 '(s) ds = 0.

We now de�ne the vector �eld X on 
1 by

X(x; y; z) =

�
� (y)�0(z)

Z x

0
'(s)ds; 0;  (y)�(z)'(x)

�
:

It is easy to check that X is a divergence free vector �eld supported on
(�"; ")� (�"; ") � I.

We de�ne the map ht on 
1 to be the time t map of the 
ow generated
by X and we set ht = Id on the complement of 
1. It is easy to see that
ht is a C

1 volume preserving di�eomorphism of M which preserves the y
coordinate (the stable direction for the map F ).

Consider now the coordinate system in 
2 originated at (q; 1=2) with x,
y, and z-axes to be unstable, stable, and neutral directions respectively. We
then switch to the cylindrical coordinate system (r; �; y), where x = r cos �,
y = y, and z = r sin �.

Consider a C1 function � : (�"0; "0)! R
+ satisfying:

8. �(r) > 0 if 0:2"0 � r � 0:9" and �(r) = 0 if r � 0:1"0 or r � ";
9. k�kCk � Æ.

We de�ne now the map eh� on 
2 byeh� (r; �; y) = (r; � + � (y)�(r); y): (B.2)

and we set eh� = Id on M n
2. It is easy to see that for every � the map eh�
is a C1 volume preserving di�eomorphism of M .

Let us set g = gt� = ht ÆF Æeh� . For all suÆciently small t > 0 and � , the
map gt� is C

k close to F and hence, is a partially hyperbolic (in the narrow
sense) C1 di�eomorphism of M . It preserves the Riemannian volume inM
and is ergodic by Proposition B.3. It remains to show that gt� has nonzero
Lyapunov exponents almost everywhere.

Denote by Es
t� (w), E

u
t� (w), and E

c
t� (w) the stable, unstable, and neutral

subspaces at a point w 2 M for the map gt� . It suÆces to show that for
almost everywhere point w 2M and every vector v 2 Ec

� (w), the Lyapunov
exponent �(w; v) 6= 0.

Set �t� (w) = Dgt� jE
u
t� (w), w 2 M . By Proposition B.6, for all suÆ-

ciently small � > 0, Z
M

log �0� (w) dw < log �:
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The subspace Eu
t� (w) depends continuously on t and � (for a �xed w; for

details see the paper by Burns, Pugh, Shub, and Wilkinson in this volume)
and hence, so does �t� . It follows that for all suÆciently small � > 0, there
is t > 0 such that Z

M

log �t� (w) dw < log �:

Denote by �st� (w), �
u
t� (w), and �ct� (w) the Lyapunov exponents of gt� at

the point w 2M in the stable, unstable, and neutral directions respectively
(since these directions are one-dimensional the Lyapunov exponents do not
depend on the vector). By the ergodicity of gt� , we have that for almost
every w 2M ,

�ut� (w) = lim
n!1

1

n
log

n�1Y
i=0

�t� (g
i
t� (w)):

By the Birkho� ergodic theorem, we get

�ut� (w) =

Z
M

log �t� (w) dw < log �:

Since Es
t� (w) = Es

00(w) = Es
F (w) for every t and � , we conclude that

�st� (w) = � log � for almost every w 2 M . Since gt� is volume preserv-
ing,

�st� (w) + �ut� (w) + �ct� (w) = 0

for almost every w 2M . It follows that �ct� (w) 6= 0 for almost every w 2M
and hence, gt� has nonzero Lyapunov exponents almost everywhere. This
completes the proof of the proposition. �

B.4. Ergodicity of the Map gt� .

Proposition B.3. For every suÆciently small t > 0 and � � 0 the map
gt� is ergodic.

Proof. Consider a partially hyperbolic (in the narrow sense) di�eomor-
phism f of a compact Riemannian manifold M preserving the Riemannian
volume. Two points x, y 2 M are called accessible (with respect to f) if
they can be joined by a piecewise di�erentiable piecewise nonsingular path
which consists of segments tangent to either Eu or Es. The di�eomorphism
f satis�es the essential accessibility property if almost any two points in M
(with respect to the Riemannian volume) are accessible. We will show that
the map gt� has the essential accessibility property. The ergodicity of the
map will then follow from the result by Pugh and Shub (see [PS]; see also
the paper by Burns, Pugh, Shub, and Wilkinson in this volume).

Given a point w 2M , denote by A(w) the set of points q 2M such that
w and q are accessible. Set Ip = fpg � (0; 1).

Lemma B.4. For every z 2 (0; 1),

A(p; z) � Ip: (B.3)
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Proof of Lemma B.4. We use the coordinate system (x; y; z) in 
1
described above. Since the map ht preserves the center leaf Ip, we have that

ht(0; 0; z) = (h
(1)
t (0; 0; z); h

(2)
t (0; 0; z); h

(3)
t (0; 0; z)) = (0; 0; h

(3)
t (0; 0; z))

for z 2 (0; 1). It suÆces to show that for every z 2 (0; 1),

A(p; z) � f(p; a) : a 2 [(h�`t )(3)(p; z); z]g; (B.4)

where ` is chosen by (B.1). In fact, since accessibility is a transitive relation
and h�nt (p; z) ! (p; 0) for any z 2 (0; 1), (B.4) implies that A(p; z) �
f(p; a) : a 2 (0; z]g. Since this holds true for all z 2 (0; 1) and accessibility
is a re
exive relation, we obtain (B.3).

Now we proceed with the proof of (B.4).
Let q1 2 V

u
t� (p) and q2 2 V

s
t� (p) be two points constructed in Section B.3.

The intersection V s
t� (q1)\V

u
t� (q2) is not empty and consists of a single point

q3. We will prove that for any z0 2 (0; 1), there exist zi 2 (0; 1), i = 1; 2; 3; 4
such that

(q1; z1) 2 V
u
t� ((p; z0)); (q3; z3) 2 V

s
t� ((q1; z1));

(q2; z2) 2 V
u
t� ((q3; z3)); (p; z4) 2 V

s
t� ((q2; z2))

and
z4 � (h�`t )(3)(p; z0): (B.5)

See Figure B.2. This means that (p; z4) 2 A(p; z0). By continuity, we
conclude that

f(p; a) : a 2 [z4; z0]g � A(p; z0)

and (B.4) follows.
Since gt� preserves the xz-plane, we have that V

uc
t� ((p; z0)) = V uc

F ((p; z0)).
Hence, there is a unique z1 2 (0; 1) such that (q1; z1) 2 V u

t� ((p; z0)). Notice
that

g�nt� (p; z0) = (p; h�nt ((p; z0)); g�nt� (q1; z1) = (A�nq1; z1)

for n � `. This is true because the points A�nq1, n = 0, 1, : : :, ` lie outside
the "-neighborhood of Ip, where the perturbation map ht = Id. Similarly,
since the points A�nq1, n > ` lie inside the "0-neighborhood of Ip, and the
third component of ht depends only on the z-coordinate, we have

g�nt� (q1; z1) = (A�nq1; h
�n+`
t z1):

Since d(g�nt� ((p; z0)); g
�n
t� ((q1; z1)))! 0 as n!1, we have

d(h�nt ((p; z0)); h
�n+`
t ((p; z1)))! 0

as n!1. It follows that z1 = (h�`t )(3)((p; z0)).
By the construction of the map ht (that is ht = Id outside 
1) the sets

A�n1V s
t� (p

0) and An2V u
t� (p

0) are pieces of horizontal lines. This means that
z2 = z3 = z1.

Since the third component of ht is nondecreasing from (q2; z2) to (p; z4)

along V s
t� (p), we conclude that z4 � z3 = z1 = (h�`t )3(p; z0) and thus (B.5)

holds. �
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Ip

(p; z0)

(q1; z1)

(q3; z3)

(q2; z2)(p; z4)

(p; 0)

Figure B.2. Bold lines are stable manifolds, dotted | un-
stable ones

The essential accessibility property follows from Lemma B.4 and the
following statement.

Lemma B.5 (see [NT]). Assume that any two points in Ip are accessible.
Then the map gt� satis�es the essential accessibility property.
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Proof of Lemma B.5. It is easy to see that for any two points x; y 2
M which do not lie on the boundary of M one can �nd points x0; y0 2 Ip
such that the pairs (x; x0) and (y; y0) are accessible. By Lemma B.4 the
points x0; y0 are accessible. Since accessibility is a transitive relation the
result follows. �

This completes the proof of the proposition. �

B.5. Hyperbolicity of the Map g0� . In this section we show that for
all suÆciently small � , the map g0� has nonzero average Lyapunov exponent
in the central direction. Since this map is ergodic this implies that g0� has
nonzero Lyapunov exponents almost everywhere.

Proposition B.6. For any suÆciently small � > 0,Z
M

log �0� (w)dw < log �:

Proof. Our approach is an elaboration of an argument in [SW].
For any w 2M , we introduce the coordinate system in TwM associated

with the splitting Eu
F (w)�E

s
F (w)�E

c
F (w). Given � � 0 and w 2M , there

exists a unique number �� (w) such that the vector v� (w) = (1; 0; �� (w))
t

lies in Eu
0� (w) (where t denotes the transpose). Since the map eh� preserves

the y coordinate, by the de�nition of the function �� (w), one can write the
vector Dg0� (w)v� (w) in the form

Dg0� (w)v� (w) = (��� (w); 0; ��� (w)�� (gt0(w)))
t (B.6)

for some ��� (w) > 1. Since the expanding rate of Dg0� (w) along its unstable
direction is �0� (w) we obtain that

�0� (w) = ��� (w)

p
1 + �� (g0� (w))2p
1 + �� (w)2

:

Since Eu
0� (w) is close to E

u
00(w) the function �� (w) is uniformly bounded.

Using the fact that the map g0� preserves the Riemannian volume we �nd
that

L� =

Z
M

log �0� (w) dw =

Z
M

log ��� (w) dw: (B.7)

Consider the map eh� . Since it preserves the y-coordinate using (B.2), we
can write that eh� (x; y; z) = (r cos �; y; r sin�);

where � = �(�; r; �; y) = � + � (y)�(r). Therefore, the di�erential

Deh� : Eu
F (w)�Ec

F (w)! Eu
F (g0� (w))�Ec

F (g0� (w))
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can be written in the matrix form

Deh� (w) = �A(�; w) B(�; w)
C(�; w) D(�; w)

�
=

�
rx cos � � r�x sin� ry cos � � r�y sin�
rx sin� + r�x cos � ry sin� + r�y cos �

�
;

where

rx =
@r

@x
=
x

r
= cos �; rz =

@r

@z
=
y

r
= sin �;

�x =
@�

@x
=
�z

r2
+
z

r
�e�r(y; r) = sin �

r
+ � e�r(y; r) cos �;

�z =
@�

@z
=

x

r2
+
x

r
� e�r(y; r) = cos �

r
+ � e�r(y; r) sin �;

and e�(y; r) =  (y)�(r). It is easy to check that

A = A(�; w) = 1� �re�r sin � cos � � �2e�2
2

� �2re�e�r cos2 � +O(�3);

B = B(�; w) = �� e�� �re�r sin2 � � �2re�e�r sin � cos � +O(�3);

C = C(�; w) = � e�+ �re�r cos2 � � �2re�e�r sin � cos � +O(�3);

D = D(�; w) = 1 + �re�r sin � cos � � �2e�2
2

� �2re�e�r sin2 � +O(�3):

(B.8)

By Lemma B.7 below, we have

L� = log � �

Z
M

log(D(�; w) � �B(�; w)�� (g0� (w)))dw:

By Lemma B.8, we have

dL�
d�

���
�=0

= 0;
d2L�
d�2

���
�=0

< 0:

So we can choose � so small that L� 6= log �. �

Lemma B.7.

L� = log � �

Z
M

log(D(�; w) � �B(�; w)�� (g0� (w)))dw:

Proof of Lemma B.7. Since g0� = h0 ÆF Æeh� = F Æeh� , we have that
D� (w) = Dg0� (w)jE

u
0� (w)�Ec

0� (w) =

�
�A(�; w) �B(�; w)
C(�; w) D(�; w)

�
:

By (B.6),

D� (w)

�
1

�� (w)

�
=

�
�A(�; w) + �B(�; w)�� (w)
C(�; w) +D(�; w)�� (w)

�
=

�
�� (w)

�� (w)�� (g0� (w))

�
:

(B.9)
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Since eh� is volume preserving, AD �BC = 1 and therefore,

A+B� =
1

D
+
B

D
(C +D�):

Comparing the components in (B.9), we obtain

�� (w) =�(A(�; w) +B(�; w)�� (w))

=�

�
1

D(�; w)
+
B(�; w)

D(�; w)
(C(�; w) +D(�; w)�� (w))

�
=�

�
1

D(�; w)
+
B(�; w)

D(�; w)
(�� (w)�� (g0� (w)))

�
:

Solving for �� (w), we get

�� (w) =
�

D(�; w) � �B(�; w)�� (g0� (w))
:

The desired result follows from (B.7). �

Lemma B.8.
dL�
d�

���
�=0

= 0;
d2L�
d�2

���
�=0

< 0: (B.10)

Proof of Lemma B.8. In order to simplify notations we set D0� =
@D
@�

,

B0� =
@B
@�
, C 0� =

@C
@�
, D00�� =

@2D
@�2

, and B00�� =
@2B
@�2

. Since the function �� (w)
is di�erentiable over � (see the paper by Burns, Pugh, Shub, and Wilkinson
in this volume) by Lemma B.7, we �nd

dL�
d�

= �

Z
M

D0� � �B0��(g0� (w)) � �B @�� (w)
@�

(g0� (w))

D(�; w)� �B(�; w)�� (w)(g0� (w))
dw

and therefore,

d2L�
d�2

=

Z
M

 
D0� � �B0��(g0� (w)) � �B(�; w)@�� (w)

@�
(g0� (w))

D(�; w)� �B(�; w)�s(g0� (w))

!2
dw

�

Z
M

E(�; w)

D(�; w)� �B(�; w)�� (g0� (w))
dw;

where

E(�; w) =D00�� � �B00���(g0� (w))

� �B(�; w)
@2�� (w)

@�2
(g0� (w)) � 2�B0�

@�� (w)

@�
(g0� (w)):

Note that for all w 62 
2,

A(�; w) = D(�; w) = 1; C(�; w) = B(�; w) = 0

and for all w 2M ,

A(0; w) = D(0; w) = 1; C(0; w) = B(0; w) = 0; �0(w) = 0:
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It follows that
dL�
d�

���
�=0

=

Z

2

D0� dw; (B.11)

and also that

d2L�
d�2

���
�=0

=

Z

2

�
(D0� )

2 �D00�� + 2�B0�
@�� (w)

@�
(g0� (w))

�
�=0

dw: (B.12)

By (B.8), we obtain that

D0� (0; w) = re�r(r) sin � cos �
and hence, Z


2

D0�dw = 0:

Therefore, (B.11) implies the equality in (B.10).
We now proceed with the inequality in (B.10). Applying Lemma B.9

below we obtain that

@�

@�
(g0� (w))

���
�=0

=
C 0� (0; w)

�
+

1X
n=1

C 0� (0; g
�n
00 (w))

�n+1
:

It follows that

2�B0� (0; w)
@�

@�
(g0� (w))

���
�=0

=2B0� (0; w)C
0

� (0; w)

+ 2B0� (0; w)
1X
n=1

C 0� (0; g
�n
00 (w))

�n
:

First, we evaluate the term

F(w) = D0� (0; w)
2 �D00�� (0; w) + 2B0� (0; w)C

0

� (0; w):

Using (B.8), we �nd that

F(w) =(re�r sin � cos �)2 + (e�2 + 2re�e�r sin2 �)
� 2(e�+ re�r sin2 �)(e�+ re�r cos2 �)

=� e�2 � (re�r sin � cos �)2 � 2re�e�r cos2 �: (B.13)

Recall that 
2 = Buc(�q; "0)�Bs(�q; "0) and e�(r) = 0 if r � ". We haveZ

2

2re�e�r cos2 � dw =

Z "0

�"0

dy

Z 2�

0
2 cos2 � d�

Z "

0
r2e�e�r dr: (B.14)

Since 0 = e�(0) = e�(") (by the de�nition of the function �), we �nd thatZ "

0
r2e�e�r dr = 1

2
r2e�2���"

0
�

Z "

0
re�2 dr = �

Z "

0
re�2 dr:

We also have that Z 2�

0
2 cos2 � d� =

Z 2�

0
d�: (B.15)
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It follows from (B.14){(B.15) that

�

Z

2

2re�e�r cos2 � dw =

Z

2

re�2 dw � "

Z

2

e�2 dw: (B.16)

Arguing similarly one can show that

�

Z

2

(re�r sin � cos �)2 dw = �
1

8

Z

2

(re�r)2 dw (B.17)

Thus we conclude using (B.13), (B.16), and (B.17) thatZ

2

F(w) dw � �(1� ")

Z

2

e�2r dw � 1

8

Z

2

(re�r)2 dw < 0: (B.18)

We now evaluate the remaining term

G(w) =
1X
n=1

1

�i

Z

2

2B0� (0; w)C
0

� (0; g
�n
00 (w)) dw:

Since the map g00 = F preserves the Riemannian volume we obtain thatZ

2

2B0� (0; w)C
0

� (0; g
�n
00 (w)) dw �

Z

2

B0� (0; w)
2 dw +

Z

2

C 0� (0; g
�n
00 (w))

2 dw

=

Z

2

B0� (0; w)
2 dw +

Z

2

C 0� (0; w)
2 dw

Applying (B.8), we �nd thatZ

2

B0� (0; w)
2 dw +

Z

2

C 0� (0; w)
2 dw

=

Z

2

(e�+ re�r sin2 �)2 dw +

Z

2

(e�+ re�r cos2 �)2 dw
� 4

�Z

2

e�2 dw +

Z

2

r2e�2r dw� :
It follows that for suÆciently large N > 0 (which does not depend on ")

1X
i=N

1

�i

Z

2

2B0� (0; w)C
0

� (0; g
�i
00 (w)) dw �

1

10

�Z

2

e�2 dw +

Z

2

r2e�2r dw� :
(B.19)

Note that if g�n00 
2 \ 
2 = ?, then B0� (0; w)C
0
� (0; g

�n
00 (w)) = 0 for all w.

Hence, Z

2

2B0� (0; w)C
0

� (0; g
�n
00 (w)) dw = 0:

We may choose the point q and a small " such that g�n00 
2 \
2 = F�n
2 \

2 = ? for all n = 1, 2, : : :, N . It follows from (B.12), (B.18), and (B.19)
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that

d2L�
d�2

���
�=0

=

Z

2

F(w) dw +

Z

2

G(w) dw

� �

�
9

10
� "

�Z

2

e�2 dw � 1

40

Z

2

r2e�2r dw < 0:

The desired result follows. �

Lemma B.9.

@�

@�
(g0� (w))

���
�=0

=

1X
n=0

C 0� (0; g
�n
00 (w))

�n+1
:

Proof of Lemma B.9. De�ne

R(�; w; �) =
C(�; w) +D(�; w)�

�(A(�; w) +B(�; w)�)
:

It follows from (B.6) that

�� (g0� (w)) = R(�; w; �� (w)): (B.20)

By (B.6) and (B.8), we have

@R

@�

���
�=0

=
(C 0� +D0��)(A +B�) + (C +D�)(A0� +B0��)

�(A+B�)2

���
�=0

=
C 0� (0; w)

�
:

Since AD �BC = 1,

@R

@�

���
�=0

=
AD �BC

�(A+B�)2

���
�=0

=
1

�
:

It follows from (B.20) that

@�

@�
(g0� (w))

���
�=0

=
C 0� (0; w)

�
+

1

�
�
@�

@�
(w)
���
�=0

:

Since this inequality holds for any w, replacing w with g�10� (w) we obtain

@�

@�
(w)
���
�=0

=
C 0� (0; g

�1
0� (w))

�
+

1

�
�
@�

@�
(g�10� (w))

���
�=0

:

The result follows by induction. �
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