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Abstract. Some principal contributions of Ya. Sinai to hyperbolic
theory of dynamical systems focused mainly constructions of Markov
partitions and of Sinai-Ruelle-Bowen measures are discussed. Some fur-
ther developments in these directions that have stemmed from Sinai’s
work are described.

1. Introduction

In this article I discuss some of the many principal contributions of Ya.
Sinai to the hyperbolic theory of smooth dynamical systems. I focus on
two related topics: 1) Markov partitions and 2) Sinai-Ruelle-Bowen (SRB)
measures. Dynamical systems that admit Markov partitions with finite or
countable number of partition elements allow symbolic representations by
topological Markov shifts with finite or respectively countable alphabet. As
a result these systems exhibit high level of chaotic behavior of trajectories.
SRB-measures serve as natural invariant measures with rich collection of
ergodic properties. Various constructions of Markov partitions as well as of
SRB-measures represent an important and still quite active area of research
in dynamics that utilizes Sinai’s original ideas and develops them further to
cover many other classes of dynamical systems. Therefore, along with de-
scribing results by Ya. Sinai, I briefly survey some of the latest developments
in this area.

I stress that hyperbolic theory of dynamical systems provides a rigorous
mathematical foundation for studying models in science that exhibit chaotic
motions and for reader’s convenience I begin with an informal discussion
of the role that the hyperbolic theory plays in studying various chaotic
phenomena.
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1.1. From scientific determinism to deterministic chaos. In the 19th
century the prevailing view in dynamics was causal or scientific determinism
best expressed by Laplace as follows:

“We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at a certain moment would
know all forces that set nature in motion, and all positions of all items of
which nature is composed, if this intellect were also vast enough to submit
these data to analysis, it would embrace in a single formula the movements
of the greatest bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like the past would
be present before its eyes.”

It took about a century to shake up this view with the discovery by
Poincaré – in his work on the three-body problem – of the existence of ho-
moclinic tangles formed by intersections of stable and unstable separatrices
of a hyperbolic fixed point.

Poincaré wrote: “When we try to represent the figure formed by these two
curves and their infinitely many intersections... one must be struck by the
complexity of this shape, which I do not even attempt to illustrate. Nothing
can give us a better idea of the complication of the three-body problem, and in
general of all problems of dynamics for which there is no uniform integral.”

In 1963 in his talk at the International Conference on Nonlinear Oscil-
lations (Kiev, Ukraine), Smale [64] made a crucial observation that the
homoclinic tangle contains a horseshoe, i.e., a fractal set that is locally the
product of two Cantor sets. One obtains this set by taking the closure of
the set of intersections of stable and unstable separatrices near the fixed
point. The horseshoe provided the first example of a differential map with
infinitely many hyperbolic periodic points.

Smale’s discovery was an important step in shaping up a new area of
research in dynamical systems – the hyperbolicity theory – that studies re-
lations between chaotic motions, instability of trajectories and fractal struc-
ture of invariant sets. The foundation of this new area was built in the
1960-70th in seminal works of Anosov, Sinai, and Smale, see [5, 6, 56, 57,
58, 59, 64, 65]. I would like also to emphasize an important role for the
development of the theory of dynamical systems that was played during this
time by two Moscow seminars, one run by Alekseev and Sinai1 and another
one by Anosov and Katok (see [35, 36, 63]) as well as by Smale’s school in
Berkeley.

The current view on dynamics draws a much richer picture allowing a
variety of motions ranging from regular to intermittently chaotic to all-time
chaotic. Moreover, a dynamical system, which is typical in a sense, should
possess an invariant fractal set of complicated self-similar geometric struc-
ture and the trajectories that start on or in a vicinity of this set are unstable

1After Alekseev’s untimely-death in 1980 the seminar was run by Sinai only.
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(hyperbolic). The combination of fractality of the set and instability of tra-
jectories causes these trajectories to behave unpredictably; such a chaotic
behavior can persist all the time or can be intermittent.

Furthermore, one should typically expect to have infinitely many such
fractal sets, which are mixed together in one invariant multi-fractal set.
These fractal sets can occupy either the whole phase space or a part of it in
which case the dynamics on its complement can be quite regular – the highly
non-trivial phenomenon known as the essential coexistence, see [24, 25, 33]
for a detailed description of the phenomena and recent examples of systems
with discrete and continuous time that exhibit it.

To describe the phenomenon of the appearance of “chaotic” motions in
purely deterministic dynamical systems one uses the controversial but ex-
pressive term deterministic chaos.2 Its crucial feature is that the chaotic
behavior is not caused by an external random force such as white noise but
by the system itself. The source of the deterministic chaotic behavior is in-
stability along typical trajectories of the system, which drives orbits apart.
On the other hand, compactness of the phase space forces them back to-
gether; the consequent unending dispersal and return of nearby trajectories
is one of the hallmarks of chaos.

After Poincaré the fact that instability can cause some complicated chaotic
behavior was further observed and advanced in works of Birkhoff, Hadamard,
Hopf and Morse. Many years later some systems with chaotic behavior were
found and studied numerically by Lorenz, Chirikov, Ford, Zaslavsky, etc. I
refer the reader to Sinai’s articles [60, 61, 62] for a more detailed discussion
of the chaos theory, its earlier development and relations between chaotic
behavior and instability of trajectories as well as for relevant references. In
these papers Sinai also demonstrates how ideas and methods of statistical
physics can be used to explain various chaotic phenomena in dynamics.

1.2. Markov partitions and symbolic representations of chaotic dy-
namics. To explain what it means for deterministic trajectories to exhibit
chaotic behavior consider a map f acting on a phase space M and a point
x ∈ M . Let us divide the phase space into two parts A and B. Given
an orbit {fn(x)}, we write 0 if fn(x) lies in A and 1 otherwise. This way
we obtain a coding of every trajectory by a two-sided infinite sequence of
symbols 0 and 1 that is

x→ ω = {. . . , ω−2, ω−1, ω0, ω1, ω2, . . . }, where ωi = 0 or 1.

The principal question is:
Given a symbolic sequence of 0 and 1, can we find a point x whose tra-

jectory is coded by this sequence?
If so, starting with a random symbolic sequence that is obtained, for

example, by flipping a dime, one gets a random orbit of the system whose
location in either A or B can only be predicted with a certain probability.

2This term was first used in works of Chirikov, Ford and Yorke.
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Another way to look at this is to say that the system under consideration
is modeled by (or equivalent to) the classical Bernoulli process in probability
theory.

Smale’s horseshoe is a classical example which allows the above coding
and hence, a symbolic representation by the full shift on 2 symbols. In many
“practical” situations however, one may need more sophisticated partitions
of the phase space called Markov partitions (the term coined by Sinai). In
general, elements of Markov partitions may have very complicated fractal
structure. These partitions allow one to model the systems by more general
Markov (not necessarily Bernoulli) processes with finite or even countable
set of states. From the probability theory point of view such processes are
chaotic in the strongest possible sense.

The first construction of Markov partitions was obtained by Adler and
Weiss [1] in the particular case of hyperbolic automorphisms of the 2-torus
(see also Berg, [12] whose work is independent of [1]). As a crucial corollary
they observed that the map allowed a symbolic representation by a subshift
of finite type and that this can be used to study its ergodic properties.

Sinai’s groundbreaking contribution was to realize that existence of Markov
partitions is a rather general phenomenon and in [58] he designed a method
of successive approximations to construct Markov partitions for general
Anosov diffeomorphisms (see Section 3 below for more details). Further-
more, in [59] Sinai showed how Markov partitions can be used to study
ergodic properties of hyperbolic dynamical systems and he was also the first
to observe the analogy between the symbolic models of Anosov diffeomor-
phisms and lattice gas models in physics – the starting point in developing
the thermodynamic formalism.

Using a different approach, Bowen constructed Markov partitions with
finitely many elements for Axiom A diffeomorphisms, see [17]. The con-
struction for hyperbolic flows was carried out independently by Bowen [16]
and Ratner [51] (see also [17, 18]). Recently, Sarig [54] constructed Markov
partitions with countable number of elements for surface diffeomorphisms
with positive topological entropy. Symbolic dynamics associated with hy-
perbolic systems was also studied by Alekseev [2].

Aside from smooth dynamical systems Markov partitions with countable
number of partition elements were constructed for a particular class of hy-
perbolic billiards by Bunimovich and Sinai [19] and by Bunimovich, Sinai,
and Chernov [20] (see also the article by Szasz in this volume).

1.3. Entropy. Introduced by Kolmogorov and Sinai the metric entropy is
one of the most important invariants of dynamics, and this manifests itself
in the famous isomorphism problem. Given a transformation T : X → X
preserving a measure µ, we say that (T, µ) is a Bernoulli automorphism if
it is metrically isomorphic to the Bernoulli shift (σ, κ) associated to some
Lebesgue space (Y, ν), so that ν is metrically isomorphic to Lebesgue mea-
sure on an interval together with at most countably many atoms and κ is
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given as the direct product of Z copies of ν on Y Z. Bernoulli systems exhibit
the highest level of chaotic behavior and entropy is a complete invariant that
distinguishes one Bernoulli map from another. This statement is known as
the isomorphism problem for Bernoulli systems. I refer the reader to the
article by Gurevich in this volume for a more detailed discussion of this
problem, its history, and relevant references, but I would like to emphasize
the important role of Sinai’s work on weak isomorphism [55] that laid the
ground for the famous Ornstein solution of the isomorphism problem for
Bernoulli systems, [44, 43].

Since in this paper we are mostly interested in smooth hyperbolic dynam-
ical systems, we will present a formula for the entropy of these systems with
respect to smooth or SRB measures. This formula connects the entropy
with the Lyapunov exponents (see Theorem 4.3); the latter are asymptotic
characteristics of instability of trajectories of the system. We will also dis-
cuss the Bernoulli property; establishing it for smooth hyperbolic systems
is based on verifying Ornstein’s criterium for Bernoullicity.

1.4. Hyperbolicity. Intuitively, hyperbolicity means that the behavior of
orbits that start in a small neighborhood of a given one resembles that of
the orbits in a small neighborhood of a hyperbolic fixed point. In other
words, the tangent space along the orbit {fn(x)} should admit an invariant
splitting

(1.1) Tfn(x)M = Es(fn(x))⊕ Eu(fn(x))

into the stable subspace Es along which the differential of the system con-
tracts and the unstable subspace Eu along which the differential of the system
expands.

One should distinguish between two types of hyperbolicity: uniform and
nonuniform. In the former case every trajectory is hyperbolic and the
contraction and expansion rates are uniform in x. More generally, one
can consider a compact invariant subset Λ ⊂ M and require that f acts
uniformly hyperbolic on Λ. Such a set Λ is called uniformly hyperbolic. In
the case of nonuniform hyperbolicity the set of hyperbolic trajectories has
positive (in particular, full) measure with respect to an invariant measure
and the contraction and expansion rates depend on x. Thus, nonuniform
hyperbolicity is a property of the system as well as of its invariant measure
(called hyperbolic).

One can extend the notion of hyperbolicity by replacing the splitting (1.1)
along the orbit {fn(x)} with the splitting

(1.2) Tfn(x)M = Es(fn(x))⊕ Ec(fn(x))⊕ Eu(fn(x))

into the stable Es, unstable Eu and central Ec subspaces with the rates of
contraction and/or expansion along the central subspace being slower than
the corresponding rates along the stable and unstable subspaces. This is the
case of partial hyperbolicity.
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2. An Overview of Hyperbolicity Theory

In this section I formally introduce three major types of hyperbolicity and
briefly discuss some of their basic properties.

2.1. Uniform hyperbolicity. It originated in the work of Anosov and
Sinai [5, 6]; see also the book [37] for the state of the art exposition of
the uniform hyperbolicity theory.

A diffeomorphism f of a compact Riemannian manifold M is called uni-
formly hyperbolic or Anosov if for each x ∈ M there is a continuous df -
invariant decomposition of the tangent space TxM = Es(x) ⊕ Eu(x) and
constants c > 0, λ ∈ (0, 1) such that for each x ∈M :

(1) ‖dxfnv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
(2) ‖dxf−nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

The distributions Es and Eu are called stable and unstable respectively.
One can show that they depend Hölder continuously in x. Clearly, the
angle between stable and unstable subspaces is bounded away from zero in
x.

Using the classical Hadamard–Perron theorem, for each x ∈ M one can
construct a local stable manifold V s(x) and a local unstable manifold V u(x)
such that

(L1) x ∈ V s,u(x) and TxV
s,u(x) = Es,u(x);

(L2) f(V s(x)) ⊂ V s(f(x)) and f−1(V u(x)) ⊂ V u(f−1(x)).

Furthermore, define the global stable manifold W s(x) and the global unstable
manifold W u(x) by

W s(x) =
⋃
n≥0

f−n(V s(fn(x))), W u(x) =
⋃
n≥0

fn(V u(f−n(x))).

These sets have the following properties:

(G1) they are smooth submanifolds;
(G2) they are invariant under f that is f(W s,u(x)) = W s,u(f(x));
(G3) they are characterized as follows:

W s(x) = {y ∈M : d(fn(y), fn(x))→ 0, n→∞},
W u(x) = {y ∈M : d(fn(y), fn(x))→ 0, n→ −∞};

(G4) they integrate the stable and unstable distributions that is Eu,s(x) =
TxW

u,s(x).

It follows that W s(x) and W u(x) form two uniformly transverse f -invariant
continuous stable and unstable foliations W s and W u with smooth leaves.
In general, the leaves of these foliations depend only continuously on x.3

Any sufficiently small perturbation in the C1 topology of an Anosov dif-
feomorphism is again an Anosov diffeomorphism. Hence, Anosov diffeomor-
phisms form an open set in the space of C1 diffeomorphisms of M .

3In fact, the dependence in x is Hölder continuous.
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There are very few particular examples of Anosov diffeomorphisms, namely

(1) A linear hyperbolic automorphism of the n-torus given by an n×n-
matrix A = (aij) whose entries aij are integers, detA = 1 or −1 and
all eigenvalues |λ| 6= 1;

(2) The Smale automorphism of a compact factor of some nilpotent Lie
group (see [65] and also [37]).

A topologically transitive C2 Anosov diffeomorphism f preserving a smooth
measure µ is ergodic and if f is topologically mixing, then it is a Bernoulli
diffeomorphisms with respect to µ. The Bernoulli property was established
by Bowen [17] and a much more general result is given by Statement 4 of
Theorem 4.2.

A compact invariant subset Λ ⊂M is called hyperbolic if for every x ∈ Λ
the tangent space at x admits an invariant splitting as described above.
For each x ∈ Λ one can construct local stable V s(x) and unstable V u(x)
manifolds which have Properties (L1) and (L2).

A hyperbolic set Λ is called locally maximal if there exists a neighborhood
U of Λ with the property that given a compact invariant set Λ′ ⊂ U we have
that Λ′ ⊂ Λ. In this case

Λ =
⋂
n∈Z

fn(U).

Locally maximal hyperbolic sets can be characterized as having local direct
product structure that is given two points x, y ∈ Λ, which are sufficiently
close to each other, the intersection [x, y] = V s(x)∩V u(y) lies in Λ. If g is a
small perturbation in the C1 topology of a diffeomorphism f with a locally
maximal hyperbolic set Λf , then g possesses a locally maximal hyperbolic
set Λg that lies in a small neighborhood of Λf .

A diffeomorphism f is called an Axiom A diffeomorphism if its non-
wandering set Ω(f) is a locally maximal hyperbolic set.

The Spectral Decomposition Theorem claims (see [37]) that the set Ω(f)
of an Axiom A diffeomorphism f can be decomposed into finitely many
disjoint closed f -invariant locally maximal hyperbolic sets, Ω(f) = Λ1 ∪
· · · ∪ Λm such that f |Λi is topologically transitive. Moreover, for each i
there exist a number ni and a set Ai ⊂ Λi such that the sets fk(Ai) are
disjoint for 0 ≤ k < ni, their union is the set Λi, f

ni(Ai) = Ai, and the map
fni |Ai is topologically mixing.

2.2. Nonuniform hyperbolicity. It originated in the the work of Pesin
[46, 47, 48]; see also the books [7, 8] for a sufficiently complete description
of the modern state of the theory.

A diffeomorphism f of a compact Riemannian manifoldM is non-uniformly
hyperbolic if there are a measurable df -invariant decomposition of the tan-
gent space TxM = Es(x) ⊕ Eu(x) and measurable positive functions ε(x),
c(x), k(x) and λ(x) < 1 such that for almost every x ∈M :

(1) ‖dfnv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Es(x), n ≥ 0;
(2) ‖df−nv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Eu(x), n ≥ 0;
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(3) ∠(Es(x), Eu(x)) ≥ k(x);

(4) c(fm(x)) ≤ eε(x)|m|c(x), k(fm(x)) ≥ e−ε(x)|m|k(x), λ(fm(x)) =
λ(x), m ∈ Z.

The last property means that the rates of contraction and expansion (given
by λ(x)) are constant along the trajectory and the estimates in (1) and (2)
can deteriorate with a rate which, while exponential, has a sufficiently small
exponent.

Non-uniform hyperbolicity can also be expressed in more “practical” terms
using the Lyapunov exponent of µ:

χ(x, v) = lim sup
n→∞

1

n
log ‖dfnx v‖, x ∈M, v ∈ TxM.

This means that for all sufficiently large n and a sufficiently small ε,

‖dfnx v‖ ∼ exp(χ(x, v)± ε)n.

If χ(x, v) > 0, the differential asymptotically expands v with some exponen-
tial rate and if χ(x, v) < 0, the differential asymptotically contracts v with
some exponential rate.

Therefore, f is non-uniformly hyperbolic if for almost every trajectory
with respect to µ the Lyapunov exponent χ(x, v) is not equal to zero for
every vector v; in this case the measure µ is called hyperbolic. In other
words,

Es(x) = Esf (x) = {v ∈ TxM : χ(x, v) < 0}, Eu(x) = Euf (x) = Esf−1(x).

Nonuniform hyperbolicity is equivalent to the fact that Lyapunov exponents
of f are nonzero almost everywhere in M (i.e., the smooth invariant measure
for f is hyperbolic) – the phenomenon known as the Anosov rigidity. One
can show that f is an Anosov diffeomorphism if:

(1) the Lyapunov exponents for f are nonzero at every point x ∈ M ,
see [42, 31];

(2) the Lyapunov exponents for f are nonzero on a set of total measure
one, i.e., on a set that has full measure with respect to any invariant
measure, see [22, 23].

If µ is a hyperbolic measure then for almost every x ∈ M one can con-
struct local stable and unstable manifolds V s(x) and V u(x). They depend
measurably on x, in particular, their sizes can be arbitrarily small.

An example of a diffeomorphism with nonzero Lyapunov exponents was
constructed by Katok [34]. Starting with a hyperbolic automorphism of the
2-torus, he used the slow-down procedure in a neighborhood of a hyperbolic
fixed point p to turn p into an indifferent fixed point. In particular, the
Lyapunov exponents at p are all zero. Katok used this example as a start-
ing point in his construction of area preserving C∞ diffeomorphisms with
nonzero Lyapunov exponents on compact surfaces. This result was extended
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by Dolgopyat and Pesin [30] who showed that any compact manifold of di-
mension ≥ 2 admits a volume preserving C∞ diffeomorphism with nonzero
Lyapunov exponents.

2.3. Partial hyperbolicity. It originated in the work of Brin and Pesin
[13] and of Pugh and Shub [32]; see also the book [49] for a sufficiently
complete exposition of the core of the theory.

A diffeomorphism f of a compact Riemannian manifold M is called par-
tially hyperbolic if for each x ∈M there is a continuous df -invariant decom-
position of the tangent space TxM = Es(x)⊕Ec(x)⊕Eu(x) and constants
c1, c2, c3, c4 > 0, λ1 < µ1 ≤ µ2 < λ2, µ1 ≤ 1 such that for each x ∈ M and
n ≥ 0:

(1) ‖dxfnv‖ ≤ c1λ
n
1‖v‖ for v ∈ Es(x);

(2) ‖dxfnv‖ ≥ c2λ
n
2‖v‖ for v ∈ Eu(x);

(3) c4µ
n
1‖v‖ ≤ ‖dxfnv‖ ≤ c3µ

n
2‖v‖ for v ∈ Ec(x).

The distributions Es, Eu and Ec are called stable, unstable and central
respectively. They depend continuously in x.4 Clearly, the angle between
any two subspaces Es(x), Eu(x) and Ec(x) is bounded away from zero
uniformly in x.

Any sufficiently small perturbation in the C1 topology of a partially hyper-
bolic diffeomorphism is again a partially hyperbolic diffeomorphism. Hence,
partially hyperbolic diffeomorphisms form an open set in the space of C1

diffeomorphisms of M .
The stable and unstable distributions Es and Eu can be integrated to

continuous foliations W s and W u respectively with smooth leaves. The
central distribution may or may not be integrable.

Some well-known examples of partially hyperbolic diffeomorphisms are
1) a direct product of an Anosov diffeomorphism with the identity map of
a manifold; 2) a group extension over an Anosov diffeomorphism; 3) the
time-1 map of an Anosov flow.

A compact invariant subset Λ ⊂ M is called partially hyperbolic if the
restriction f |Λ is partially hyperbolic in the above sense. For each x ∈ Λ
one can construct local stable V s(x) and unstable V u(x) manifolds.

3. Markov Partitions

3.1. Definition of Markov partitions. Let Λ be a locally maximal hyper-
bolic set for a diffeomorphism f of a compact smooth Riemannian manifold
M . From now on we assume that f |Λ is topologically mixing. The general
case can be easily reduced to this one by using the Spectral Decomposition
Theorem.

A non-empty closed set R ⊂ Λ is called a rectangle if

• diamR ≤ δ (where δ > 0 is sufficiently small);
• R = intR where intR is defined in the relative topology in R;

4One can show that the dependence in x is Hölder continuous.
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• [x, y] ∈ R whenever x, y ∈ R.5

A rectangle R has direct product structure that is given x ∈ R, there exists
a homeomorphism

θ : R→ R ∩ V (s)(x)×R ∩ V (u)(x).6

One can show that both θ and θ−1 are Hölder continuous. A finite cover
R = {R1, . . . , Rp} of Λ by rectangles Ri, i = 1, . . . , p is called a Markov
partition for f if

(1) intRi ∩ intRj = ∅ unless i = j;
(2) for each x ∈ intRi ∩ f−1(intRj) we have

f(V s(x) ∩Ri) ⊂ V s(f(x)) ∩Rj , f(V u(x) ∩Ri) ⊃ V u(f(x)) ∩Rj .
These relations are called the Markov property of the Markov partition. We
stress that despite the name a Markov partition R is a cover of Λ which is
almost a partition: any two elements of the cover can intersect only along
their boundaries.

3.2. Symbolic models. A Markov partition R = {R1, . . . , Rp} generates
a symbolic model of f |Λ by a finite Markov shift or a subshift of finite
type (ΣA, σ), where ΣA is the set of two-sided infinite sequences of numbers
{1, . . . , p}, which are admissible with respect to the transfer matrix of the
Markov partition A = (aij) (i.e., aij = 1 if intRi ∩ f−1(intRj) 6= ∅ and
aij = 0 otherwise). Namely, define

R
(u)
i0...in

=
n⋂
j=0

f−j(Rij ), R
(s)
i−n...i−1

=
−n⋂
j=−1

f−j(Rij ),

Ri−n...in = R
(s)
i−n...i−1

∩R(u)
i0...in

.

Now we define the coding map χ : ΣA → Λ by

χ(. . . i−n . . . i0 . . . in . . . ) =
⋂
n≥0

Ri−n...in .

Note that the maps f and σ are conjugate via the coding map χ, i.e.,
f ◦ χ = χ ◦ σ. The map χ is Hölder continuous and injective on the set
of points whose trajectories never hit the boundary of any element of the
Markov partition.

For any points ω = (. . . i−1i0i1 . . . ) ∈ ΣA and ω′ = (. . . i′−1i
′
0i
′
1 . . . ) ∈ ΣA

with the same past (i.e., i′j = ij for any j ≤ 0) we have that χ(ω′) ∈
V (u)(x) ∩ R(x), where x = χ(ω) and R(x) is the element of a Markov par-
tition containing x. Similarly, for any point ω′′ = (. . . i′′−1i

′′
0i
′′
1 . . . ) ∈ ΣA

with the same future as ω (i.e., i′′j = ij for any j ≥ 0) we have that

χ(ω′′) ∈ V (s)(x) ∩ R(x). Thus, the set V (u)(x) ∩ R(x) can be identified
via the coding map χ with the cylinder C+

i0
in the space Σ+

A of “positive”

5We use here the fact that the set Λ is locally maximal.
6In other words θ identifies the rectangle R with the product R∩V (s)(x)×R∩V (u)(x).
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one-sided infinite sequences of numbers {1, . . . , p} and the set V (s)(x)∩R(x)
can be identified via the coding map χ with the cylinder C−i0 in the space

Σ−A of “negative” one-sided infinite sequences of numbers {1, . . . , p}.

3.3. Sinai’s construction of Markov partitions. I outline here a con-
struction of Markov partition from [58] (see also [26]). For simplicity I only
consider Anosov diffeomorphisms of the two dimensional torus in which case
the geometry of the construction is rather simple and it produces a par-
tition whose elements are connected subsets with non-empty interior. In
the multi-dimensional case the requirement that partition elements are con-
nected cannot be ensured unless one allows partitions with countable number
of elements. For the construction of Markov partitions for general Axiom A
maps I refer the reader to the works of Bowen [15, 17].7

Let f be an Anosov diffeomorphism of the two dimensional torus T2. Fix
ε > 0. We shall construct a Markov partition with diameter of elements
≤ ε. It suffices to do so for some power n of f . Indeed, if R is a Markov
partition for fn, then

⋂n
k=−n f

kR is a Markov partition for f .
For points in the torus local stable and unstable manifolds are smooth

curves which are called stable and unstable curves. In the course of our
construction every rectangle R is a closed connected subset of the torus.
Its boundary ∂R is the union of four curves two of which are stable and
the other two are unstable. The union of stable curves forms the stable
boundary ∂sR of R while the union of unstable curves forms the unstable
boundary ∂uR of R. For every x ∈ R we denote by γsR(x) (respectively,
γuR(x)) the full-length stable (respectively, unstable) curve through x, i.e.,
the segment of stable (unstable) curve whose endpoints lie on the unstable
(stable) boundary of R.

Let us now fix δ > 0, n > 0, and let λ ∈ (0, 1) be the constant in

the definition of Anosov diffeomorphisms. A collection of rectangles R̃ =
{R̃1, . . . , R̃p} is called a sufficient (n, δ)-collection if

(1)
⋃p
j=1 R̃j = T2;

(2) diam R̃j ≤ δ, j = 1, . . . , p;

(3) given a rectangle R̃j , one can find two subcollections of rectangles

{R̃i1 , . . . , R̃ik} and {R̃s1 , . . . , R̃st} such that

(a) fn(R̃j) ⊂
⋃k
`=1 R̃i` and f−n(R̃j) ⊂

⋃t
`=1 R̃s` ;

(b) for every x ∈ R̃j if fn(x) lies in some rectangle R̃i` from the
first subcollection, then fn(γs

R̃j
(x)) ⊂ γs

R̃i`

(fn(x));

(c) for every x ∈ R̃j if f−n(x) lies in some rectangle R̃s` from the
second subcollection, then f−n(γu

R̃j
(x)) ⊂ γu

R̃s`

(f−n(x)).

7In [15], Bowen used a method similar to the original Sinai’s method known as the
method of successive approximations and in [17] he used a different approach based on
pseudo-orbits.
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It is not difficult to show that given δ > 0 and a large enough n > 0, there
is a sufficient (n, δ)-collection R̃.

Our goal is to slightly “extend” each rectangle of a given sufficient (n, δ)-

collection R̃ in both the stable and unstable directions to ensure the Markov
property in these directions. This will produce a cover of the torus by
rectangles, which is a Markov cover.

To this end fix a rectangle R̃j ∈ R̃ and consider two subcollections

{R̃i1 , . . . , R̃ik} and {R̃s1 , . . . , R̃st}, which have the properties with respect

to R̃j mentioned above. We refer to the union of the (un)stable bound-
aries of all rectangles in the subcollection as the (un)stable boundary of the
subcollection.

Consider the set fn(∂uR̃j). It consists of two unstable curves γu1 = fn(γ̃u1 )
and γu2 = fn(γ̃u2 ) where the curves γ̃u1 and γ̃u2 form the unstable boundary of

R̃j . Denote by A1, B1 and A2, B2 the endpoints of these curves. We refer
to A1 and A2 as the left endpoints of γu1 and γu2 respectively, and to B1 and

B2 as the right endpoints of γu1 and γu2 respectively. If R̃m is a rectangle
from the subcollection that contains A1, then it also contains A2.

Consider now the full-length unstable curve γu
R̃m

(A1). It intersects the

stable boundary of R̃m at two points, C1 and D1. One of them, say C1, lies
on the “left” of A1 and does not belong to the curve γu1 (while the other
one does). We now extend the curve γ̃u1 to the left by adding the segment
f−n(A1C1) to its left point f−n(A1). It is easy to see that the length of
this segment does not exceed δλ−n. Similarly, the full-length unstable curve
γu
R̃m

(A2) intersects the stable boundary of R̃m at two points, C2 and D2 of

which C2 lies on the “left” of A2 and does not belong to the curve γu2 . We
again extend the curve γ̃u2 to the left by adding the segment f−n(A2C2) to
its left point f−n(A2). The length of this segment does not exceed δλ−n.

As a result we obtain a new rectangle R̃lj , which is a left extension of the

rectangle R̃j . The left stable boundary of this new rectangle is the stable
curve f−n(C1C2).

In a similar manner we can extend the rectangle R̃j to the right and obtain
a new rectangle which has the Markov property in the unstable direction
with respect to the subcollection associated to R̃j . Continuing in this way we

obtain a new cover R̃(1) = {R̃(1)
1 , . . . , R̃

(1)
p } which has the Markov property in

the unstable direction with respect to the cover R̃. Note that the diameter of
each rectangle in the new cover in the unstable direction does not exceed δ+
δλn, while the diameter in the stable direction does not exceed δ. Proceeding

by induction we obtain a sequence of covers R̃(q) = {R̃(q)
1 , . . . , R̃

(q)
p } such that

(1) rectangles in the cover R̃(q) have the Markov property in the unstable

direction with respect to the rectangles in the cover R̃(q−1);
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(2) the diameter of each rectangle in the cover R̃(q) in the unstable
direction does not exceed

1− λ−(q+1)n

1− λ−n
2δ,

while the diameter in the stable direction does not exceed δ;

(3) for each q > 0 and j = 1, . . . , p we have that R̃
(q)
j ⊂ R̃

(q−1)
j and the

rectangle R̃
(q)
j is a connected subset.

One can show that the sets R+
j =

⋃
q>0 R̃

(q)
j a cover R+, which has the

Markov property in the unstable direction and whose diameter in the un-
stable direction does not exceed 1

1−λ−n 2δ, while the diameter in the stable
direction does not exceed δ. Furthermore each rectangle in this cover is a
connected subset. Replacing fn with f−n and repeating the above argu-
ment, we can slightly extend each element of the cover R+ in the stable
direction to obtain a new cover R = (R+)− which has the Markov property
in both the unstable and stable directions and whose diameter does not ex-
ceed 1

1−λ−n 2δ. Moreover, each rectangle in this cover is a connected subset.
One can now subdivide the rectangles of the cover to obtain the desired
Markov partition.

4. SRB Measures I: Hyperbolic Attractors

4.1. Topological attractors. Let f be a diffeomorphism of a compact
smooth Riemannian manifold M . A compact invariant subset Λ ⊂ M is
called a topological attractor for f if there is an open neighborhood U of Λ
such that f(U) ⊂ U and

Λ =
⋂
n≥0

fn(U).

The set U is said to be a trapping region or a basin of attraction for Λ.
The maximal open set with this property is called the topological basin of
attraction for Λ. It follows immediately from the definition of the attractor
that Λ is locally maximal, i.e., is the largest invariant set in U .

4.2. Natural and physical measures. Starting with the volume m in U
consider its evolution under the dynamics, i.e., the sequence of measures

(4.1) mn =
1

n

n−1∑
k=0

fk∗m.

This sequence is compact in the week∗ topology and hence, has a convergent
subsequence mnk

. Clearly, the limit of mnk
is supported on Λ and by the

Bogolubov-Krylov theorem, it is an f -invariant measure called a natural
measure for f . In general, the measure µ may be quite trivial – just consider
the point mass at an attracting fixed point.
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Given a measure µ on an attractor Λ, define its basin of attraction B(µ) as
the set of µ-generic points x ∈ U , i.e., points such that for every continuous
function ϕ on Λ,

(4.2) lim
n→∞

1

n

n−1∑
k=0

ϕ(fk(x)) =

∫
Λ
ϕdµ.

A natural measure µ on the attractor Λ is a physical measure if its basin of
attraction B(µ) has positive volume. An attractor with a physical measure
is called a Milnor attractor.

4.3. SRB measures. Let µ be a hyperbolic invariant measure supported
on Λ. Using results of nonuniform hyperbolicity theory one can construct for
almost every x ∈ Λ a local stable V s(x) manifold and a local unstable V u(x)
manifold. It is easy to show that for such points x we have V u(x) ⊂ Λ and
consequently, W u(x) ⊂ Λ (recall that W u(x) is the global unstable manifold
through x). On the other hand, the intersection of Λ with stable manifolds
of its points is a Cantor set.

There is a collection {Λ`}`≥1 of nested subsets of Λ that exhaust Λ
(mod 0) such that local stable V s(x) and unstable V u(x) manifolds depend
continuously on x ∈ Λ`. In particular, their “sizes” are bounded uniformly
from below. Given x ∈ Λ`, set

Q`(x) =
⋃

y∈B(x,r`)∩Λ`

V u(y),

where r` > 0 is sufficiently small, and let ξ` be the partition of Q`(x) by local
unstable leaves V u(y), y ∈ B(x, r`) ∩ Λ`. Denote by µu(y) the conditional
measure on V u(y) generated by µ with respect to the partition ξ` and by
mu(y) the leaf-volume on V u(y) generated by the Riemannian metric.8

A hyperbolic invariant measure µ on Λ is called an SRB measure (after
Sinai, Ruelle and Bowen) if for every ` with µ(Λ`) > 0, almost every x ∈
Λ` and almost every y ∈ B(x, r`) ∩ Λ` the measures µu(y) and mu(y) are
equivalent. The idea of describing an invariant measure by its conditional
probabilities on the elements of a continuous partition goes back to the
classical work of Kolmogorov and later work of Dobrushin on random fields,
[29] (see also [59]).

The following result describes the density du(x, y) of the conditional mea-
sure µu(x) with respect to the leaf-volume mu(x).

Theorem 4.1 (Sinai [59], Pesin and Sinai [50], Ledrappier [39]). For almost
every x the density du(x, y) is given by du(x, y) = ρu(x)−1ρu(x, y) where for
y ∈ V u(x)

(4.3) ρu(x, y) =
∞∏
k=0

Jac(df |Eu(f−k(y)))

Jac(df |Eu(f−k(x)))

8Both µu(x) and mu(x) are probability measures.
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and

(4.4) ρu(x) =

∫
V u(x)

ρu(x, y) dmu(x)(y)

is the normalizing factor.

The equation (4.3) can be viewed as an analog of the famous Dobrushin-
Lanford-Ruelle equation in statistical physics, see [38] and [59].

Using results of nonuniform hyperbolicity theory one can obtain a suffi-
ciently complete description of ergodic properties of SRB measures.

Theorem 4.2. Let f be a C1+ε diffeomorphism of a compact smooth man-
ifold M with an attractor Λ and let µ be an SRB measure on Λ. Then

(1) Λ =
⋃
i≥0 Λi, Λi ∩ Λj = ∅;

(2) µ(Λ0) = 0 and µ(Λi) > 0 for i > 0;
(3) f |Λi is ergodic for i > 0;
(4) for each i > 0 there is ni > 0 such that Λi =

⋃ni
j=1 Λij where f(Λij) =

Λi j+1, f(Λni1) = Λi1 and fni |Λi1 is Bernoulli.

For smooth measures this theorem was proved by Pesin in [46] and its
extension to SRB measures was obtained by Ledrappier in [39] (see also
[7, 8]). We note that the proof of the Bernoulli property in Statement 4 of
the theorem is based on the work of Ornstein and Weiss who established
the Bernoulli property for geodesic flows on compact manifolds of negative
curvature, [45].

SRB measures admit the following characterization.

Theorem 4.3. Let µ be a measure on Λ of positive entropy. Then µ is an
SRB measure if and only if its entropy is given by the entropy formula:

hµ(f) =

∫
Λ

∑
χi(x)>0

χi(x) dµ(x).

For smooth measures (which are a particular case of SRB measures) the
entropy formula was proved by Pesin [46] (see also [7]) and its extension to
SRB measures was obtained by Ledrappier and Strelcyn [40]. The fact that
a hyperbolic measure satisfying the entropy formula is an SRB measure was
shown by Ledrappier [39]. 9

It follows from Theorem 4.3 that any ergodic SRB measure is a physical
measure (any ergodic component of an SRB measure is an ergodic SRB
measure). In particular, if an attractor supports an ergodic SRB measure
then it is a Milnor attractor.

9In this paper we use the definition of SRB measure that requires that it is hyperbolic.
One can weaken the hyperbolicity requirement by assuming that some (but not necessarily
all) Lyapunov exponents are non-zero (with at least one positive). It was proved by
Ledrappier and Young [41] that within the class of such measures SRB measures are the
only ones that satisfy the entropy formula.
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The limit measures for the sequence of measures (4.1) are natural candi-
dates for SRB measures. The classical eight figure map10 is an example of
a diffeomorphism f with an attractor Λ such that the sequence of measures
(4.1) converges to a hyperbolic measure µ whose basin of attraction has full
volume, however µ is not an SRB measure for f .

4.4. Uniformly hyperbolic attractors. An attractor Λ is hyperbolic if it
is a uniformly hyperbolic set for f .11 The unstable subspace Eu is integrable:
given x ∈ Λ, the global unstable manifold W u(x) lies in Λ and hence, the
attractor is the union of the global unstable manifolds of its points, which
form a lamination of Λ. On the other hand the intersection of Λ with stable
manifolds of its points may be a Cantor set.

Theorem 4.4. Assume that the map f |Λ is topologically transitive. Then
the sequence of measures (4.1) converges to a unique SRB measure on Λ and
so does the sequence of measures (4.5) (independently of the starting point
x).

This theorem was proved by Sinai, [57] for the case of Anosov diffeomor-
phisms, Bowen, [17] and Ruelle [53] extended this result to hyperbolic at-
tractors, and Bowen and Ruelle, [18] constructed SRB measures for Anosov
flows.

Well-known examples of hyperbolic attractors are the DA (derived from
Anosov) attractor and the Smale-Williams solenoid (see [37]).

In the following two subsections I will outline two different approaches
to prove Theorem 4.4. The first approach was developed by Sinai in [57]
and uses Markov partitions, while the second one deals with the sequence
of measures (4.1) in a straightforward way and hence, is more general. In
particular, it can be used to construct some special measures for partially
hyperbolic attractors which do not allow Markov partitions; these are so
called u-measures which are natural analog of SRB measures in this case,
see [50] and Section 6. For simplicity of the exposition I only consider the
case of Anosov diffeomorphisms, extension to hyperbolic attractors is not
difficult.

4.5. First Proof of Theorem 4.4 (Sinai [57]). Let R be a Markov parti-
tion of sufficiently small diameter and let R− =

∨∞
n=0 f

−nR. One can show
that the partition R− has the following properties:

(1) fR− ≥ R−;
(2)

∨∞
k=0 f

kR− is the trivial partition;
(3) there is r > 0 such that every element of the partition R− is con-

tained in a local stable manifold and contains a ball in this manifold
of radius r.

10This is a two dimensional smooth map with a hyperbolic fixed point whose stable
and unstable separatrices form the eight figure. Inside each of the two loops there is a
repelling fixed point.

11Clearly, the set Λ is locally maximal.
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Given x ∈ Λ, denote by CR−(x) the element of the partition R− containing
x. For every n > 0 we have that fn(CR−(x)) = Cfn(R−)(f

n(x)) and that fn

is a bijection between CR−(x) and Cfn(R−)(f
n(x)). Therefore, f−n trans-

fers the normalized leaf-volume on Cfn(R−)(f
n(x)) to a measure on CR−(x)

which we denote by µn. This measure is equivalent to the leaf-volume on
CR−(x) and we denote by ρn(y) the corresponding density function, which
is continuous. One can show that the sequence of functions ρn converge
uniformly to a continuous function ρ̃(y) = ρ̃CR− (x)(y), which can be viewed

as the density function for a normalized measure µ̃CR− (x) on CR−(x). These
measures have the following properties:

(1) µ̃CR− (x) is equivalent to the leaf-volume on CR−(x);

(2) for every measurable setA ⊂ C ′R− ⊂ Cf−1(R−) the following Chapman-
Kolmogorov relation holds:

µ̃(A|Cf−1(R−)) = µ̃(A|C ′R−)µ̃(C ′R− |Cf−1(R−));

(3) the measures µ̃ are determined by Properties 1 and 2 uniquely.

One can now show that for any x ∈ M and any measurable subset A ⊂ M
there is a limit

µ(A) = lim
n→∞

µ̃(A|Cf−n(R−)(x),

which does not depend on x. The number µ(A) determines an invariant
measure for f which is the desired SRB measure.

4.6. Second Proof of Theorem 4.4 (Pesin and Sinai, [50]). The way
of constructing SRB measures on Λ based on the sequence of measures (4.1)
can be viewed as being “from outside of the attractor”. There is another
way to construct SRB measures “from within the attractor”. Fix x ∈ Λ and
consider a local unstable leaf V = V u(x) at x. One can view the leaf-volume
mu(x) on V u(x) as a measure on the whole of Λ. Consider the sequence of
measures on Λ

(4.5) νn(x) =
1

n

n−1∑
k=0

fk∗m
u(x).

We shall show that every limit measure for the sequence of measures (4.5) is
an SRB-measure. In fact, every SRB-measure µ can be constructed in this
way, i.e., it can be obtained as the limit measure for a subsequence of mea-
sures νn. Furthermore, if f |Λ is topologically transitive, then the sequence
of measures (4.5) converges to µ and so does the sequence of measures (4.1).

We stress that in the definition of the sequence of measures (4.5) one can
replace the local unstable manifold V u(x) with any admissible manifold, i.e.,
a local manifold passing through x and sufficiently close to V u(x) in the C1

topology.
Let µ be a limit measure of the sequence of measures (4.5) and let z be

such that µ(B(z, r)) > 0 for every r > 0. Consider a rectangle R of size
r > 0 containing z and its partition ξ into unstable local manifolds V u(y),
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y ∈ R. We identify the factor space R/ξ with W = V s(z)∩Λ and we denote
by Un = fn(V ). Set

An = {y ∈W : V u(y) ∩ Un 6= ∅},
Bn = {y ∈W : V u(y) ∩ ∂Un 6= ∅},
Cn = An \Bn.

Note that Cn is a finite set and we denote by δn the measure on W , which
is the uniformly distributed point mass on Cn. If h is a continuous function
on Λ with support in R, then∫

Λ
h dνn =

∫
R
h dνn

=
∑
y∈An

∫
V u(z)∩Un

h dνn

=
∑
y∈Cn

∫
V u(z)∩Un

h dνn +
∑
y∈Bn

∫
V u(z)∩Un

h dνn

= I(1)
n + I(2)

n .

One can show that I
(2)
n ≤ C

n where C > 0 is a constant. One can further
show that

I(1)
n = cn

∑
y∈Cn

ρu(fn(x), y)

∫
V u(y)

h(w)ρu(y, w) dµu(w)

=

∫
W
cnρ

u(fn(x), y)ρu(y) dδn(y)

∫
V u(y)

h(w)
ρu(y, w)

ρu(y)
dµu(w),

where

cn =
[n−1∏
k=0

Jac(df |Eu(fk(x)))
]−1

and ρu(y) is given by (4.4).
It follows that for any subsequence n` → ∞ for which the sequence of

measures νn`
(x) converges to a measure µ on Λ one has that µ is an SRB

measure.
The above argument implies that µ(intR) > 0 and hence, the set

E =
⋃
n∈Z

fn(intR)

is open and is an ergodic component of µ of positive measure (i.e., f |E is
ergodic). In fact, every ergodic component of µ can be obtained in this way
and hence, is open (mod 0). One can derive from here that there are at
most finitely many SRB measures and if f |Λ is topological transitive, then
there is only one SRB measure.
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5. SRB Measures II: Chaotic Attractors

5.1. Chaotic attractors: the concept. An attractor Λ for a diffeomor-
phism f is chaotic if there is a natural measure that is hyperbolic, i.e., a
measure with nonzero Lyapunov exponents (with some being positive and
some being negative). In this case using results of nonuniform hyperbolicity
theory one can show that for almost every x ∈ Λ there are a local stable
V s(x) and unstable V u(x) manifolds. It is easy to see that for such points x
we have V u(x) ⊂ Λ, so that the attractor contains all the unstable manifolds
of its points.

5.2. Chaotic attractors: some open problems.

(1) Construct an example of a diffeomorphism f with an attractor Λ
such that the volume m is a non-invariant hyperbolic measure for
f (i.e., for almost every x ∈ U with respect to m and for every
nonzero vector v ∈ TxM the Lyapunov exponent χ(x, v) 6= 0) but
the sequence of measures (4.1) converges to a measure µ on Λ for
which the Lyapunov exponent χ(x, v) = 0 for almost every x ∈ U
with respect to µ and for every nonzero vector v ∈ TxM ;

(2) Construct an example of a diffeomorphism f with an attractor Λ
such that for almost every x ∈ U with respect to volume m and for
every nonzero vector v ∈ TxM the Lyapunov exponent χ(x, v) = 0
but the sequence of measures (4.1) converges to a hyperbolic measure
µ on Λ.

5.3. The Hénon attractor. Consider the Hénon family of maps given by

(5.1) Ha,b(x, y) = (1− ax2 + by, x).

For a ∈ (0, 2) and sufficiently small b there is a rectangle in the plane, which
is mapped by Ha,b into itself. It follows that Ha,b has an attractor – the
Hénon attractor.

Benedicks and Carleson [9] developed a highly sophisticated techniques
to describe the dynamics near the attractor. Building on this analysis,
Benedicks and Young [10] established existence of SRB measures for the
Hénon attractors.

Theorem 5.1. There exist ε > 0 and b0 > 0 such that for every 0 < b ≤ b0
one can find a set Ab ∈ (2 − ε, 2) of positive Lebesgue measure with the
property that for each a ∈ Ab the map Ha,b admits a unique SRB measure
µa,b.

Wang and Young [68] introduced and studied some more general 2-parameter
families of maps with one unstable direction to which the above result ex-
tends.

The underlying mechanism of constructing SRB measures in these systems
is the work of Young [69] where she introduced a class of non-unformly hy-
perbolic diffeomorphisms f admitting a symbolic representation via a tower
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whose base A is a hyperbolic set with direct product structure and the in-
duced map on the base admits a Markov extension. Assuming that the
return time R to the base is integrable, one can show that there is an SRB
measure.

As in the case of uniformly hyperbolic systems, the real power of a sym-
bolic representation is not just to help prove existence of SRB-measures but
to show the exponential decay of correlations, the Central Limit Theorem,
etc. For the Hénon attractor Benedicks and Young [11] showed that if for
all T > 0 we have

∫
Rdm ≤ CλT where C > 0, 0 < λ < 1 and the integral

is taken over the set of points x ∈ A with R(x) > T , then f has the expo-
nential decay of correlations for the class of Hölder continuous test class of
functions.

5.4. Chaotic attractors: an example. Let f be a diffeomorphism with
an attractor Λ to be the Smale-Williams solenoid. f has an SRB measure
on Λ. In a small ball B(p, r) around a fixed point p, the map f is the time-1
map of the linear system of ODE ẋ = Ax.12 We wish to perturb f locally
by slowing down trajectories near p. Define a map g to be the time-1 map
for the following nonlinear system of ODE inside B(p, r)

ẋ = ψ(x)Ax

and set g = f outside of B(p, r).

Theorem 5.2 (Climenhaga, Dolgopyat, Pesin, [27]). The map g has an
SRB-measure.

5.5. Chaotic attractors: constructing SRB-measures. Consider the
set S ⊂ U (U is a neighborhood of the attractor Λ) of points such that

• f(S) ⊂ S, i.e., S is forward invariant;
• there are two measurable cone families Ks(x) = Ks(x,E1(x), θ(x))

and Ku(x) = Ku(x,E2(x), θ(x)),13 which are invariant,14 i.e.,

Df(Ku(x)) ⊂ Ku(f(x)), Df−1(Ks(f(x))) ⊂ Ks(x)

and transverse, i.e., TxX = E1(x)⊕ E2(x).

Define

• λs(x) = sup{log ‖Df(v)‖ : v ∈ Ks(x), ‖v‖ = 1} – coefficient of con-
traction;
• λu(x) = inf{log ‖Df(v)‖ : v ∈ Ku(x), ‖v‖ = 1} – coefficient of ex-

pansion;
• d(x) = max (0, (λs(x)− λu(x)) – defect of hyperbolicity ;
• λ(x) = λu(x)− d(x) – coefficient of effective hyperbolicity ;

12The matrix A is assumed to be hyperbolic having one positive and two negative
eigenvalues.

13Recall that given x ∈M , a subspace E(x) ⊂ TxM , and θ(x) > 0, the cone at x around
E(x) with angle θ(x) is defined by K(x,E(x), θ(x)) = {v ∈ TxM : ∠(v,E(x)) < θ(x)}.

14We stress that the subspaces E1(x) and E2(x) do note have to be invariant under df
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• α(x) = ∠(Ks(x),Ku(x)) > 0 – angle between the cones;
• ρα̂(x) = limn→∞

1
n#{0 ≤ k < n : α(fk(x)) < α̂} – average time the

angle between the cones is below a given threshold α̂ > 0.

We further assume that for every x ∈ S,

(S1) limn→∞
1
n

∑n−1
k=0 λ(fk(x)) > 0;

(S2) limᾱ→0 ρᾱ(x) = 0;

(S3) limn→∞
1
n

∑n−1
k=0 λ

s(fk(x)) < 0.

Theorem 5.3 (Climenhaga, Dolgopyat, Pesin, [27]). Assume that the set
S has positive volume. Then f possesses an SRB-measure.

In [67], Viana conjectured that if the set of all Lyapunov-Perron regular
points with non-zero Lyapunov exponents for a C1+α diffeomorphism f has
positive (in particular, full) volume (which is not necessarily invariant), then
f admits an SRB measure. The above theorem provides some stronger con-
ditions under which the conclusion of Viana’a conjecture holds. An affirma-
tive solution of this conjecture for surface diffeomorphisms is obtained in a
recent work by Climenhaga, Luzzatto and Pesin [28] under some general ad-
ditional assumptions. It is conjectured that if Requirement (S1) is replaced
with a stronger requirement that

limn→∞
1

n

n−1∑
k=0

λ(fk(x)) ≥ λ

for some λ > 0, then f possesses at most finitely many SRB-measures. In
[52], F. Rodriguez Hertz, J. Rodriguez Hertz, Tahzibi and Ures showed that
any topologically transitive surface diffeomorphism possesses at most one
SRB measure.

6. SRB-Measures III: Partially Hyperbolic Attractors

6.1. Partially hyperbolic attractors. An attractor Λ is partially hyper-
bolic if f |Λ is uniformly partially hyperbolic, i.e., if the tangent space TΛ
admits an invariant splitting

TΛ = Es ⊕ Ec ⊕ Eu

into respectively, strongly stable, central and strongly unstable subspaces
which satisfy Conditions (1)–(3) in Section 2.3. The subspace Eu is in-
tegrable: given x ∈ Λ, a local unstable leaf V u(x) lies in Λ and hence, so
does the global strongly unstable manifolds W u. It follows that the attractor
is the union of the global strongly unstable manifolds of its points, which
form a lamination of Λ.

One can obtain an example of a partially hyperbolic attractor by consid-
ering the product map F = f1 × f2 where f1 : M →M is a map possessing
a uniformly hyperbolic attractor and f2 : S1 → S1 is an isometry.

If f is a diffeomorphism possessing a uniformly (partially) hyperbolic
attractor Λ = Λf then any sufficiently small perturbation g of f in the
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C1 topology possesses a uniformly (partially) hyperbolic attractor Λg that
lies in a small neighborhood of Λf . This provides an open set of uniformly
(partially) hyperbolic attractors in the spaces of C1 diffeomorphisms.

6.2. SRB-measures on partially hyperbolic attractors. Let Λ be a
partially hyperbolic attractor for a diffeomorphisms f . A measure µ on Λ
is a u-measure if for almost every x ∈ Λ, the conditional measure µu(x)
generated by µ on the global strongly unstable leaf W u(x) is absolutely
continuous with respect to the leaf-volume mu(x). One can show that the
Jacobian of the u-measure in the unstable direction is given by the formula
(4.3). The following result shows that every partially hyperbolic attractor
caries a u-measure. Its proof can be obtained by adjusting the argument in
the second proof of Theorem 4.4 to the partial hyperbolicity setting.

Theorem 6.1 (Pesin, Sinai, [50]). The following statements hold:

(1) Any limit measure µ of the sequence of measures (4.1) is a u-measure
on Λ;

(2) Any limit measure µ of the sequence of measures (4.5) is a u-measure
on Λ.

Unlike the case of hyperbolic attractors the topological transitivity of f |Λ
(or even topological mixing) does not guarantee uniqueness of u-measures.15

Every SRB-measure on a partially hyperbolic attractor Λ is a u-measure
but not every u-measure is an SRB-measure. We say that a u-measure ν has
negative (positive) central exponents if there is an invariant subset A ⊂ Λ
with ν(A) > 0 such that the Lyapunov exponents χ(x, v) < 0 (respectively,
χ(x, v) > 0) for every x ∈ A and every nonzero vector v ∈ Ec(x). A u-
measure with negative (positive) central exponents is an SRB-measure.

Below is a result that guarantees existence and uniqueness of SRB-measures
for partially hyperbolic attractors with negative central exponents. It re-
quires existence of at least one u-measure with negative central exponents
and a strong transitive condition. A detailed discussion of these require-
ments can be found in [21].

Theorem 6.2 (Bonatti, Viana, [14]; Burns, Dolgopyat, Pollicott, Pesin,
[21]). Let f be a C1+ε diffeomorphism of a compact smooth manifold M
with a partially hyperbolic attractor Λ. Assume that:

(1) there exists a u-measure ν with negative central exponents;
(2) for every x ∈ Λ the global strongly unstable manifold W u(x) is dense

in Λ.

15Indeed, consider F = f1×f2, where f1 is a topologically transitive Anosov diffeomor-
phism and f2 a diffeomorphism close to the identity. Then any measure µ = µ1×µ2, where
µ1 is the unique SRB-measure for f1 and µ2 any f2-invariant measure, is a u-measure for
F . Thus, F has a unique u-measure if and only if f2 is uniquely ergodic. On the other
hand, F is topologically mixing if and only if f2 is topologically mixing.
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Then ν is the unique u-measure for f and is the unique hyperbolic SRB-
measure for f whose basin of attraction B(ν) has full volume in the topolog-
ical basin of attraction of Λ.

The case of positive central exponents is more difficult and existence of
SRB-measures can be established under the stronger requirements that (see
[66]):

(1) there is a unique u-measure ν with positive central exponents on a
subset A ⊂ Λ of full measure;

(2) for every x ∈ Λ the global strongly unstable manifold W u(x) is dense
in Λ.

6.3. Dominated splitting and SRB-measures. The key tool in con-
structing SRB-measures in the uniform hyperbolic setting is presence of a
dominated splitting, i.e., a decomposition of the tangent bundle TxM =
E1(x)⊕ E2(x) for every x ∈ Λ such that

(1) E1(x) and E2(x) depend continuously on x;
(2) ](E1(x), E2(x)) is bounded away from 0;
(3) there is 0 < λ < 1 such that

‖Df |E1(x)‖ < λ, ‖Df |E1(x)‖ · ‖Df−1|E2(f(x))‖ < λ.

Construction of SRB measures for systems with dominated splitting was
effected in various situations. Here is an (incomplete) list:

• (Alves, Bonatti, Viana, [3]) there is a subset S ⊂ U of positive
volume and ε > 0 such that for every x ∈ S,

lim sup
n→∞

1

n

n∑
j=1

log ‖df−1|E2(f j(x))‖ < −ε.

In this case in addition, one can have no more than finitely many
distinct SRB measures.
• (Alves, Dias, Luzzatto, Pinheiro, [4]) there is a subset S ⊂ U of

positive volume and ε > 0 such that for every x ∈ S,

lim inf
n→∞

1

n

n∑
j=1

log ‖df−1|E2(f j(x))‖ < −ε.

In this case in addition, one can have no more than finitely many
distinct SRB measures. In fact, if f is topologically transitive and
m(S) = 1, then the SRB measure is unique.

We stress that for non-uniformly hyperbolic f , the splitting of the tangent
space does not have to be dominated.
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