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Abstract. The paper is a non-technical survey and is aimed to il-
lustrate Sarig’s profound contributions to statistical physics and in
particular, thermodynamic formalism for countable Markov shifts.
I will discuss some of Sarig’s work on characterization of existence
of Gibbs measures, existence and uniqueness of equilibrium states
as well as phase transitions for Markov shifts on a countable set of
states.

1. Introduction

Omri Sarig, the winner of the fourth Brin Prize in Dynamical System,
has made many fundamental contributions to the theory of dynamical
systems in general and specifically to thermodynamics of countable
Markov chains. In this paper I will describe some of Sarig’s results
on characterization of existence of Gibbs measures, on existence and
uniqueness of equilibrium states as well as on presence of phase transi-
tions for countable Markov chains. It should be stressed that the results
on Gibbs measures for Markov chains on finite or countable set of states
serve as a ground to study existence, uniqueness and ergodic properties
of equilibrium measures for smooth hyperbolic dynamical systems and
that uniformly hyperbolic systems are modeled by subshifts of finite
type while nonuniformly hyperbolic systems are modeled by count-
able Markov chains. Symbolic representation of hyperbolic dynamical
systems can be obtained using Markov partitions with a finite or re-
spectively countable collection of partition elements. Constructions of
such partitions for uniformly hyperbolic systems is due to Sinai [29]
and Bowen [3]. Recently Sarig has constructed countable Markov par-
titions for nonuniformly hyperbolic surface diffeomorphisms (see [27]
and also the paper by Ledrappier [15] in this volume).
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2. Gibbs Distributions

Thermodynamic formalism, i.e., the formalism of equilibrium sta-
tistical physics, originated in the work of Boltzman and Gibbs and
was later adapted to the theory of dynamical systems in the classical
works of Sinai [28], Ruelle [19, 20] and Bowen [3]. In this paper we shall
only discuss thermodynamic formalism for symbolic dynamical systems
starting with subshifts of finite type and moving then to countable state
Markov chains. It is the latter where Sarig has obtained many principle
results that essentially shaped up the area.

2.1. The Gibbs distribution. In statistical mechanics the study of
thermodynamics deals with systems which appear to human percep-
tion as being ”static” despite the motion of the particles which the
systems are built of. These systems can be described simply by a set of
macroscopically observable variables and are thought of as statistical
ensembles that depend on a few observable parameters, and which are
in statistical equilibrium. We consider systems (canonical ensembles)
with a finite (but sufficiently large) number of particles for which the
energy is not known exactly and in place of energy, the temperature
is specified. We begin with a simple example that will help us reveal
some principle components of thermodynamic formalism.

Consider a physical system A of finite particles. Each particle is
characterized by its position and velocity and we call a given collection
of such positions and velocities over all particles a state. There are
physical systems for which the set of all states is a finite set X =
{1, . . . , N}. We denote by Ei the energy of the state i. We further
assume that this mechanical system is in thermal equilibrium with a
reservoir, i.e., the particles interact with a heat bath B so that

(1) A and B can exchange energy, but not particles;
(2) B is at equilibrium and has temperature T ;
(3) B is much larger than A, so that its contact with A does not

affect its equilibrium state.

Since the energy of the system is not fixed every state can be realized
with a probability pi given by the Gibbs distribution

pi =
1

Z(β)
e−βEi , where Z(β) =

N∑
i=1

e−βEi ,

β = 1
κT

is called the inverse temperature and κ the Boltzman’s constant.
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It is not difficult to show (see [13]) that the Gibbs distribution max-
imizes the quantity H − βE = H − 1

κT
E, where

H = −
N∑
i=1

pi log pi

is the entropy of the Gibbs distribution,

E =
N∑
i=1

(βEi)pi =

∫
X

ϕd(p1, . . . , pn)

is the average energy, and ϕ(i) = βEi is the potential, which in our case
is the function that depends on a given coordinate i only.

In other words, the Gibbs distribution minimizes the quantity E −
κTH known as the free energy of the system. The importance of this
statement can not be underestimated: it means that one of the main
principles of thermodynamics that nature maximizes entropy is appli-
cable when energy is fixed and should otherwise be replaced with the
principle that nature minimizes the free energy.

Consider now a one-dimensional lattice and assume that to each
integer one associate a physical system with a finite set X = {1, . . . ,m}
of states. A configuration of our infinite systems is a point

ω = (ωn) ∈ ΣN = XZ.

We assume that the set X is endowed with the discrete topology and
the the set Σn with the direct product topology.

Consider all possible finite configurations (ω−n, . . . , ω0, . . . , ωn) called
cylinders, (there isN = m2n+1 possible configurations) and assume that
each configuration has energy

En = E(ω−n, . . . , ωn) =
n∑

j=−n

ϕ0(ωj) +
∑

−n≤j<k≤n

ϕ1(k − j, ωk, ωj),

where ϕ0 and ϕ1 are continuous functions of their coordinates and that
the function ϕ1 satisfies

‖ϕ1‖j = sup
k1,k2

|ϕ1(j, k1, k2)| <∞ and
∞∑
j=1

‖ϕ1‖j <∞.

Arguing as above we obtain Gibbs distributions with probabilities µn
that are proportional to e−βEn . Assume now that for every configura-
tion (ω−n, . . . , ωn) there exists the limit

µ(ω−n, . . . , ωn) = lim
k→∞

∑
µk{(ω′−k, . . . , ω′k) : ω′j = ωj for every |j| ≤ n},
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where the sum is taken over all (ω′−k, . . . , ω
′
k) for which ω′j = ωj for

every |j| ≤ n. The measure µ is called the Gibbs distribution on Σn

and is an invariant measure for the (left) shift σ on Σn.

3. Subshifts of finite type

We shall now describe a substantial generalization of the above ex-
ample, which is due to Bowen [3], Parry [17] and Walters [33] (see also
[34]). It is designed to describe systems that are modeled by subshifts
of finite type.

3.1. Gibbs measures for subshifts of finite type. Let (Σ+
A, σ) be

a (one-sided) subshift of finite type. 1 Here A = (aij) is a transition
matrix (aij = 0 or 1, no zero columns or rows),

Σ+
A = {x = (xn) : axnxn+1 = 1 for all n ≥ 0}

and σ is the (left) shift. We view Σ+
A as a metric space with the metric

d(x, y) given by: for any x = (xn) and y = (yn),

d(x, y) =
∞∑
n=0

|xn − yn|
2n

.

We assume that A is irreducible (i.e., AN > 0 for some N > 0 and all
n ≥ N) implying that σ is topologically mixing. Consider a continuous
function ϕ on Σ+

A, which we call a potential.

Theorem 3.1 (see [3]). Assume that the potential ϕ is Hölder contin-
uous. Then there exist a unique σ-invariant Borel probability measure
µ on Σ+

A and constants C1 > 0, C2 > 0 and P such that for every
x = (xi) ∈ Σ+

A and m ≥ 0,

(3.1) C1 ≤
µ({y = (yi) : yi = xi, i = 0, . . . ,m})

exp
(
−Pm+

∑m−1
k=0 ϕ(σk(x))

) ≤ C2.

The measure µ = µϕ is called a Gibbs measure for the potential ϕ
and the constant P = P (ϕ) the topological pressure of ϕ.

3.2. Ruelle’s Perron-Frobenius theorem. The proof of this the-
orem is based on Ruelle’s version of the classical Perron–Frobenius
theorem for matrices. Given a continuous potential ϕ on Σ+

A, define a
linear operator L = Lϕ on the space C(Σ+

A) by

(3.2) (Lϕf)(x) =
∑
σ(y)=x

eϕ(y)f(y).

1In the literature the pair (Σ+
A, σ) is also called atopological Markov chain.
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It is called the Ruelle operator and it provides a great tool in construct-
ing and studying Gibbs measures. Given a continuous potential ϕ on
Σ+
A, let

(3.3) Φn(x) =
m−1∑
k=0

ϕ(σk(x))

be the n-th ergodic sum of ϕ. Note that for all n > 0

(Lnϕf)(x) =
∑

σn(y)=x

eΦn(y)f(y).

Theorem 3.2 (see [3]). Let ϕ be a Hölder continuous potential on Σ+
A.

Then there exist λ > 0, a continuous positive function h and a Borel
measure ν such that

1. Lϕh = λh and
∫

Σ+
A
h dν = 1 (i.e., h is a normalized eigenfunc-

tion for the Ruelle operator);
2. L∗ϕν = λν;

3. for every f ∈ C(Σ+
A)

(3.4) λ−nLnϕ(f)(x)→ h(x)

∫
f dν as n→∞

uniformly in x.
4. the measure µϕ = h dν is a σ-invariant Gibbs measure for ϕ,

which is ergodic (in fact, its natural extension is Bernoulli)2.

One can show (see [3]) that the rate of convergence in (3.4) is ex-
ponential. This implies that the measure µϕ has exponential decay of
correlations with respect to the class of Hölder continuous test func-
tions on Σ+

A. Recall that a continuous transformation T has exponen-
tial decay of correlations with respect to an invariant Borel probability
measure µ and a class H of test functions if there exists 0 < θ < 1 such
that, for any h1, h2 ∈ H,∣∣∣ ∫ h1(T n(x))h2(x) dµ−

∫
h1(x) dµ

∫
h2(x) dµ

∣∣∣ ≤ Kθn,

for some K = K(h1, h2) > 0.
One can further show (see [3] and [8]) that the measure µϕ in Theo-

rem 3.2 satisfies the Central Limit Theorem (CLT). Recall that a con-
tinuous transformation T satisfies the Central Limit Theorem (CLT)

2A Bernoulli automorphism (T, ν) is an invertible (mod 0) measure preserving
transformation, which is metrically isomorphic to the Bernoulli shift associated to
some Lebesgue space (X,µ)
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for test functions from a class H if for any h ∈ H, which is not a
coboundary (i.e., h 6= g ◦ T − g for any g), there exists γ > 0 such that

µ
{ 1√

n

n−1∑
i=0

(h(T i(x))−
∫
h dµ) < t

}
→ 1

γ
√

2π

∫ t

−∞
e−τ

2/2γ2 dτ.

3.3. Conformal measures. The measure ν in Theorem 3.2 has the
important property of being conformal. Recall that given a potential ϕ
on Σ+

A, a Borel probability measure µ on Σ+
A (which is not necessarily

invariant under the shift) is called conformal (with respect to ϕ) if for
some constant λ and almost every x ∈ Σ+

A

Jac(µ)(x) :=
dµ

dµ ◦ σ
(x) = λ−1 expϕ(x).

One can show that in our case the relation L∗ϕν = λν is equivalent to
the fact that ν is a conformal measure for ϕ.

3.4. The topological pressure and the variational principle. We
defined above the topological pressure of the potential ϕ as a constant
in (3.1). Its existence is guaranteed by Theorem 3.1. We shall now give
another equivalent definition of the topological pressure.

Denote by

Zm(ϕ) =
∑

[x0x1...xm−1]

exp
(

sup
x∈[x0x1...xm−1]

Φm(x)
)
,

where [x0x1 . . . xm−1] is a cylinder and Phim(x) is given by (3.3).

Theorem 3.3. The following limit exists

(3.5) P (ϕ) = lim
m→∞

1

m
logZm(ϕ).

If potential ϕ is Hölder continuous, then P (ϕ) coincides with the con-
stant P given by (3.1).

The formula (3.5) extends the notion of the topological pressure to
continuous potentials.

One of the fundamental results in thermodynamics is the variational
principle for the topological pressure:

Theorem 3.4. For every continuous potential ϕ

(3.6) P (ϕ) = sup
{
hµ(f) +

∫
Σ+

A

ϕdµ
}
,

where the supremum is taken over the set M(Σ+
A, f) of all σ-invariant

Borel probability measures on Σ+
A.
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Note that one can restrict the supremum in (3.6) to all σ-invariant
ergodic Borel probability measures on Σ+

A. For proofs of Theorems 3.3
and 3.4 we refer the reader to [3] (see also [34]).

Remark. The definition of the topological pressure based on Theo-
rem 3.3 has an advantage over the definition based on formula (3.1):
one can replace the whole space Σ+

A with a compact subset K ⊂ Σ+
A

which is σ-invariant (i.e., σ−1(K) = K) and one can replace the require-
ment that the potential ϕ is Hölder continuous with a weaker condition
that it is just continuous. Furthermore, it is exactly Theorem 3.3 that
lays down a way to extend the notion of topological pressure to count-
able state Markov chains (see Section 4.5), which is the main subject
of Sarig’s work.

3.5. Equilibrium measures. Given a continuous potential ϕ, a σ-
invariant measure µ = µϕ on Σ+

A is called an equilibrium measure if

P (ϕ) = hµϕ +

∫
Σ+

A

ϕdµϕ.

Theorem 3.5 (see [3]). If the potential ϕ is Hölder continuous, then
the Gibbs measure µϕ in the Ruelle’s Perron–Frobenius theorem is the
unique equilibrium measure for ϕ. Moreover, log λ = P (ϕ).

3.6. Two-sided subshifts. Many results in thermodynamical formal-
ism of one-sided shubshifts can be extended to two-sided subshifts
(ΣA, σ) where

ΣA = {x = (xn) : axnxn+1 = 1 for all n ∈ Z}
and σ is the left shift. One can view (ΣA, σ) as at the natural extension
of (Σ+

A, σ). This is based on results by Sinai [28] and Bowen [3].

Theorem 3.6. Given a Hölder continuous potential ϕ on ΣA there are
Hölder continuous functions h on ΣA and ψ on Σ+

A such that for every
x = (xn) ∈ ΣA,

ϕ(x) + h(x)− h(σ(x)) = ψ(x0x1 . . . ).

This equation means that the potentials ϕ and ψ are cohomologous.
Due to the variational principle, one can show that two cohomologous
potentials have the same set of Gibss measures.

4. Countable Markov chains

We now move from subshifts of finite type or Markov chains with
finitely many states to Markov chains with countably many states or
countable Markov chains (X = Σ+

A, σ) where A is a transition matrix on
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a countable set S of states and σ is the left shift. The Borel σ-algebra
B is generated by all cylinders. The main obstacle in constructing
equilibrium measures in this case is that the space X is not compact
and hence, the space of probability measures on X is not compact
either and new methods are needed to overcome this difficulty.

4.1. A bit of a history. I will mention few major developments that
preceded Sarig’s work. The list below is far from being complete and
is only meant to set up the ground for the results described below.

(1) In 1967-68 Dobrushin, [6], Landford [14] and Ruelle [20] intro-
duced what is now known as DLR measures ; they characterize
Gibbs measures (also called Gibbsian distributions) in terms of
families of conditional probabilities (see below).

(2) Gurevic [9, 10] studied the topological entropy (corresponding
to the case ϕ = 0) and established the variational principle
for the topological entropy; later he introduced the notion of
topological pressure and obtained the variational principle (see
[11] and also [12]). Vere-Jones [30] studied recurrence properties
that are central for constructing Gibbs measures. Both Gurevic
and Vere-Jones assumed that the potential function depend on
finitely many coordinates which allowed them to use some ideas
from renewal theory.

(3) Yuri [35] proved convergence in (3.4) requiring the finite images
property (see below).

(4) Aaronson, Denker and Urbanski [2] studied ergodic properties
of conformal measures (in particular, they proved that these
measures are conservative) and Aaronson and Denker [1] es-
tablished convergence in (3.4) requiring the big images property
(which they called the Gibbs-Markov property; see below).

4.2. Dobrushin-Landford-Ruelle (DLR) measures. We begin by
describing DLR measures. We think of X as one-dimensional lattice
whose points are called sites, so that each site n can be in one of count-
ably many states xn. Given a probability measure µ on X, consider
the conditional measures on cylinders [a0, . . . , an−1] generated by µ,
i.e., the conditional distribution of the configuration of the first n sites
(a0, . . . , an−1) given that site n is in state xn, site (n + 1) is in state
xn+1, etc. More precisely, for almost all x ∈ X,

µ(a0, . . . , an−1|xn, xn+1, . . . )(x) = Eµ(1[a0,...,an−1]|σ−nB)(x).

Given β > 0 and a measurable function U : X → R, we call a proba-
bility measure µ on X a Dobrushin-Lanford-Ruelle (DLR) measure for
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the potential ϕ = −βU if for all N ≥ 1 and almost every x ∈ X the
conditional measures of µ satisfies the DLR equation:

µ(x0, . . . , xn−1|xn, xn+1, . . . )(x) =
exp Φn(x)∑

σn(y)=σn(x) exp Φn(y)
.

The problem now is to recover µ from its conditional probabilities.

4.3. Conformal measures. In the particular case ϕ(x) = f(x0, x1)
recovering the measure µ from its conditional probabilities is the well
known Kolmogorov’s theorem in the theory of classical Markov chains
where the stochastic matrix P = (pij) is given by pij = exp(f(i, j)) if
aij = 1 and pij = 0 otherwise.

For general potentials ϕ DLR measures can be recovered using con-
formal measures. More precisely, the following statement holds.

Theorem 4.1 (see [1]). Let ϕ be a Borel function and µ a non-singular
conformal probability measure for ϕ on a countable Markov chain X.
Then µ is a DLR measure for ϕ.

Note that this result is quite general as it imposes essentially no
restrictions on the potential ϕ. Indeed, one can obtain much stronger
statements assuming certain level of regularity of the potential.

4.4. Regularity requirements: summable variations and local
Hölder continuity. Let ϕ : X → R be a potential. We denote by

(4.1) varn(ϕ) = sup{|ϕ(x)− ϕ(y)| : xi = yi, 0 ≤ i ≤ n− 1}
the n-th variation of ϕ. We say that ϕ has summable variations if

(4.2)
∞∑
n=2

varn(ϕ) <∞

and ϕ is locally Hölder continuous if the exist C > 0 and 0 < θ < 1
such that for all n ≥ 2

(4.3) varn(ϕ) ≤ Cθn.

It is easy to see that if the potential is locally Hölder continuous then
it has summable variations.

4.5. The Gurevic-Sarig pressure. In what follows we shall always
assume that the shift σ is topologically mixing that is given i, j ∈ S
there is N = N(i, j) such that, for any n ≥ N there is an admissible
word of length n connecting i and j. For i ∈ S let

(4.4) Zn(ϕ, i) =
∑

σn(x)=x,x0=i

exp(Φn(x)).



10 YAKOV PESIN

The Gurevic-Sarig pressure of ϕ is the number3

(4.5) P(ϕ) = lim
n→∞

1

n
logZn(ϕ, i).

This notion is a generalization of the notion of topological entropy
hG(σ) for countable Markov chains introduced by Gurevic in [9, 10],
so that P(0) = hG(σ). Existence of the limit in (4.5) and some basic
properties of the pressure are described by the following theorem.

Theorem 4.2 (Sarig, [21, 26]). Assume that the potential ϕ has sum-
mable variations, i.e., it satisfies (4.2). Then

1. The limit in (4.5) exists for all i ∈ S and is independent of i.
2. −∞ < P(ϕ) ≤ ∞.
3. P(ϕ) = sup{P (ϕ|K) : K ⊂ X compact and σ−1(K) = K},

where P (ϕ|K) is the topological pressure of ϕ on the set K,
see Remark 3.4.

4.6. The variational principle for the Gurevic-Sarig pressure.
We now present one of the main results in thermodynamics of countable
Markov shifts – the variational principle for the Gurevic-Sarig pressure.
This result is a substantial generalization to countable Markov chains
of the variational principle for subshifts of finite type (see Theorem
3.4).

Theorem 4.3 (Sarig, [21]). Assume that ϕ has summable variations
and supϕ <∞. Then

P(ϕ) = sup
{
hµ(σ) +

∫
ϕdµ

}
<∞,

where the supremum is taken over all σ-invariant Borel probability mea-
sures on Σ+

A such that −
∫
ϕdµ <∞.

Our goal now is to construct an equilibrium measure µϕ for ϕ, find
conditions under which it is unique and study its ergodic properties.
We will achieve this by first constructing a Gibbs measure for ϕ and
then showing that it is an equilibrium measure for ϕ providing it has
finite entropy.

3The notion of the pressure for countable Markov shifts that we discuss in this
section was introduced by Gurevic [11] (see also [12]) for potentials of a special
kind that only depend on the first coordinate. It was Sarig who extended Gure-
vic’s approach to potentials that may depend on all coordinates (see [21, 26]) and
described all the main properties of the pressure (see Theorem 4.2). This is why
we propose to call this pressure after both Gurevic and Sarig.
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4.7. Gibbs measures for countable Markov chains. The con-
struction of Gibbs measures is based on the study of the Ruelle operator
Lϕ and on establishing a generalized version of the Ruelle’s Perron-
Frobenius theorem. The role of the Ruelle operator in the study of
Gibbs measures can be seen from the following result that connects
this operator with the Gurevic-Sarig pressure.

We say that a non-zero function f is a test function if it is bounded
continuous non-negative and is supported inside a finite union of cylin-
ders.

Theorem 4.4 (Sarig, [21]). Assume that ϕ has summable variations.
Then for every test function f and all x ∈ X

lim
n→∞

1

n
log(Lnϕf)(x) = P(ϕ),

where Lϕ is the Ruelle operator given by (3.2).

This results implies that if P(ϕ) is finite, then for every x ∈ X the
asymptotic growth of Lnϕf(x) is λn where λ = expP(ϕ).

4.8. Recurrence properties of the potential. We now wish to ob-
tain a more refined information on the asymptotic behavior of λ−nLnϕ.
To this end given a state i ∈ S, let Zn(ϕ, i) be given by (4.4) and

Z∗n(ϕ, i) =
∑

σn(x)=x,x0=i

exp(Φn(x))1[ϕi=n](x),

where ϕi is the first return time to the cylinder [i].
We say that the potential ϕ is

(1) recurrent if
∑
λ−nZn(ϕ, i) =∞;

(2) positive recurrent if it is recurrent and
∑
nλ−nZ∗n(ϕ, i) <∞;

(3) null recurrent if it is recurrent and
∑
nλ−nZ∗n(ϕ, i) = +∞;

(4) transient if
∑
λ−nZn(ϕ, i) <∞.

4.9. Generalized Ruelle’s Perron–Frobenius (GRPF) theorem.
Our standing assumption now is that the potential ϕ has summable
variations and finite Gurevic-Sarig pressure, i.e., P(ϕ) < ∞. The
following result provides a complete characterization of each of the
above types of potentials, i.e., the necessary and sufficient conditions
for the potential ϕ to belong to one of the above classes.

Theorem 4.5 (Sarig, [21, 22, 25]). We have that

1. ϕ is recurrent if and only if there are λ > 0, a positive contin-
uous function h and a conservative measure ν (i.e., a measure
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that allows no nontrivial wandering sets) which is finite and
positive on cylinders such that

Lϕh = λh, L∗ϕν = λν.

In this case λ = expP(ϕ).

2. ϕ is positive recurrent if and only if
∫
h dν = 1; in this case

for every cylinder [a],

λ−nLnϕ(1[a])(x)→ h(x)
ν([a])∫
h dν

as n→∞

uniformly in x on compact sets. Furthermore, ν is a conformal
measure for ϕ (and hence, a DLR measure) and µϕ = hν is the
unique σ-invariant Gibbs measure for ϕ.

3. ϕ is null recurrent if and only if
∫
h dν = ∞; in this case for

every cylinder [a],

λ−nLnϕ(1[a])(x)→ 0 as n→∞

uniformly in x on compact sets.
4. ϕ is transient if and only if there are no conservative measures
ν which are finite on cylinders and such that L∗ϕν = λν for
some λ > 0.

This theorem is a far reaching generalization of Theorem 3.2 and it
covers earlier results by Vere-Jones [30, 31], by Aaronson and Denker
[1] and by Yuri [35, 36]. In particular, the result by Yuri requires

- finite images property (FIP): the set {σ([i]) : i ∈ S} is finite;

and the result by Aaronson and Denker requires the big image property;
the latter was extended by Sarig to

- big images and pre-images property (BIP): there exist i1, . . . im ∈
S such that for all j ∈ S there are 1 ≤ k, ` ≤ m for which
aikjaji` = 1.

In fact, the BIP property can be used to characterize existence of
σ-invariant Gibbs measures.

Theorem 4.6 (Sarig, [25]). Assume that the potential ϕ has summable
variations. Then ϕ admits a unique σ-invariant Gibbs measure µϕ if
and only if

1. X satisfies the BIP property;
2. P(ϕ) <∞ and var1ϕ <∞ (i.e.,

∑
n≥1 varn(ϕ) <∞).

In this case ϕ is positive recurrent and µϕ = hν, where ν is the con-
formal measure for ϕ in the GRPF Theorem 4.5.
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4.10. Existence and uniqueness of equilibrium measures. Let ϕ
be a potential on Σ+

A. The following result by Sarig, [25] provides some
sufficient conditions on ϕ that guarantee existence of an equilibrium
measure for ϕ.

Theorem 4.7. Assume that the potential ϕ has summable variations
and P(ϕ) < ∞. Assume also that ϕ is positive recurrent and supϕ <
∞. If the measure ν in the GRPF theorem is such that the measure
µϕ = hν has finite entropy then µϕ is an equilibrium measure for ϕ.

We shall now state a result by Buzzi and Sarig, [4] that guarantees
uniqueness of the equilibrium measure for the potential ϕ. It also shows
that the requirement that ϕ is positive recurrent is necessary for the
existence of the equilibrium measure provided the potential is bounded
from above.

Theorem 4.8. Assume that the potential ϕ has summable variations
and P(ϕ) < ∞. Assume also that supϕ < ∞. Then ϕ has at most
one equilibrium measure. In addition, if such a measure exists then ϕ
is positive recurrent and this measure coincides with the measure ν in
the GRPF theorem and has finite entropy.

4.11. Ergodic properties.

Theorem 4.9 (Sarig, [21, 25]). Assume that the potential ϕ has sum-
mable variations and P(ϕ) < ∞. Assume also that supϕ < ∞. If
µ = µϕ is an equilibrium measure for ϕ then µ is strongly mixing and

hµ(σ) =

∫
log

dµ

dµ ◦ σ
dµ (the entropy formula).

The strong mixing property is a corollary of a general result by
Aaronson, Denker and Urbanski that claims that if ν is a non-singular
σ-invariant measure, which is finite on cylinders, conservative and whose
log of the Jacobian has summable variations, then ν is strongly mix-
ing. One can show that the measure µ in the above theorem is indeed
a Bernoulli measure.

4.12. Decay of correlations and CLT.

Theorem 4.10 (Sarig, [25]). Assume that the potential ϕ is locally
Hölder continuous and P(ϕ) <∞. Assume also that supϕ <∞. Then
the equilibrium measure µϕ for ϕ has exponential decay of correlations
(with respect to the class of Hölder continuous functions on X) and
satisfies the Central Limit Theorem.
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The proof of this results is based on the crucial spectral gap property
(SGP) of the Ruelle operator that claims that in an appropriate (suffi-
ciently “large”) Banach space B of continuous functions Lϕ = λP +N
where λ = P(ϕ) and

PN = NP = 0, P2 = P , dim(ImP) = 1.

Furthermore, the spectral radius of N is less than λ. The SGP implies
the exponential rate of convergence in (3.4) leading to the exponential
decay of correlations and the Central Limit Theorem for functions in
B (see [8]).

For subshifts of finite type there is a subspace B on which the Ruelle
operator has the SGP (due to Ruelle and Doeblin-Fortet) but this may
not be true for countable Markov chains due to the presence of phase
transitions. Indeed, the SGP guarantees that the function t → p(t) =
P(ϕ+tψ) (where ϕ and ψ are locally Hölder continuous) is real-analytic
implying uniqueness of equilibrium measures. 4 However, for countable
Markov chains as t varies the function ϕ + tψ can change its mode of
recurrence (e.g., move from being positive recurrent to null recurrent or
to transient) resulting in non-analyticity of the function p(t) and hence,
the appearance of phase transitions. Given a subshift of countable
type, Cyr and Sarig found a necessary and sufficient condition for the
existence of a space B on which the Ruelle operator has the SGP. Using
this condition they showed that absence of phase transitions is open
and dense in the space of locally Hölder continuous potentials (see [5]).

4.13. Analyticity of the pressure function. We complete our pre-
sentation by describing a result of Sarig that guarantee analyticity of
the pressure function (and hence absence of phase transitions). We re-
call that our standing assumption is that the potential ϕ has summable
variations and finite Gurevich-Sarig pressure. We are interested in the
existence of directional derivatives d

dt
|t=0P(ϕ+ tψ) and we restrict our-

self to the set of directions Dir(ϕ) which consists of those ψ for which∑∞
n=2 Vn(ψ) < ∞ (recall that Vn(ψ) is the n-th variation of ψ) and

there exists ε > 0 such that for any |t| < ε we have P(ϕ+ tψ) <∞.

Theorem 4.11 (Sarig,[22]). If ϕ is strongly positive recurrent then for
every ψ ∈ Dir(ϕ) that is Hölder continuous, there exists ε > 0 such
that ϕ+tψ is positive recurrent for all |t| < ε and such that the function
t→ P(ϕ+ tψ) is real analytic in (ε, ε).

4In statistical physics this situation corresponds to absence of phase transitions:
a phase transition occurs if there is more then one equilibrium measure for the
given potential ϕ.
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Of particular interest is the case when ψ = ϕ as it appears in the
study of the one-parameter family of potentials {βϕ}β≥β0 . One can
show that if P(β0ϕ) <∞, then P(βϕ) <∞ for all β > β0 and hence,
ϕ ∈ Dir(βϕ). This however, may not be true for β = β0; see an example
in [24].
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