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Abstract. For systems with zero Lyapunov exponents we introduce

and study the notion of scaled Lyapunov exponents which is used to

characterize the sub-exponential separation of nearby trajectories. We

briefly discuss the abstract theory of such exponents and discuss some

examples.

Dedicated to Michael Rabinovich on the occasion of his 75th birthday.

1. Introduction.

Lyapunov exponents are classical characteristics of instability of trajec-

tories and in the presence of nonzero Lyapunov exponents the system is

expected to exhibit a certain level of chaotic behavior. This is indeed the

case if the system preserves a smooth measure or more generally a Sinai-

Ruelle-Bowen (SRB) measure. This is one of the manifestations of the clas-

sical non-uniform hyperbolicity theory (see [2]). For system preserving SRB

measures the Kolmogorov-Sinai (metric) entropy of the system can be com-

puted using Pesin’s entropy formula: the entropy is the mean over the phase

space of the system of the sum of positive Lyapunov exponents. In particu-

lar, the entropy of the system is positive.

On the other hand, if a measure invariant under the system has all its

Lyapunov exponent zero, then by the Margulis-Ruelle inequality, the en-

tropy of the measure is zero. When entropy of the measure is positive it

characterizes the complexity of the system (with respect to this measure)

but in the case when entropy is zero little if any meaningful information

about the complexity can be recovered.

This observation is crucial, since there are many examples of physical

systems which exhibit sub-exponential instability of trajectories and hence,

have zero Lyapunov exponents with respect to some “natural” invariant mea-

sures. Such systems include some models with sequential dynamics studied

by M. Rabinovich [9] in connection to his work on dynamics of neural and
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cognitive systems, see [10, 11]. It also includes a model of weak transient

chaos considered by V. Afraimovich and A. Neiman (see their paper in this

volume).

To study models with sub-exponential instability of trajectories, one may

introduce a more appropriate sub-exponential scale in which Lyapunov ex-

ponents should be computed. This is a “better adapted” or “internal” scale

of the system. The classical notion of Lyapunov exponent is based on the

exponential scale and if it happens to be the “internal” scale of the system

which has positive entropy, one obtains positive Lyapunov exponents. Oth-

erwise, one should switch to a different scale (e.g., the polynomial scale)

with respect to which the Lyapunov exponents and entropy may become

positive. This would allow one to evaluate the level of complexity of the

system.

Finding an internal scale for a given system or proving that it exists may

be difficult if at all possible. However, if such a scale is found one hopes to use

the corresponding scaled Lyapunov exponents to recover at least some part

of non-uniform hyperbolicity theory. In particular, one hopes to establish

a version of the Margulis-Ruelle inequality (or in some cases even Pesin’s

entropy formula) to connect an appropriately rescaled metric entropy with

scaled Lyapunov exponents.

In [8] using the general Carathéodory construction as described in [7],

the concept of scaled entropy was introduced in both topological and metric

settings. While the standard approach to topological entropy defines it as

the exponential growth rate of the number of periodic points, the definition

of the scaled topological entropy allows asymptotic rates of the general form

eαa(n), where α > 0 is a parameter and a(n) is a scaling sequence. Similar

idea was used in [8] in defining scaled metric entropy.

Measures with zero Lyapunov exponents often appear as infinite invari-

ant measures for dynamical systems on compact phase spaces. A classical

example is the Manneville-Pomeau map x→ x+ x1+α( (mod 1)), where α

controls the degree of intermittency at the neutral fixed point. If α ∈ (0, 1)

then the systems preserves a finite measure which is absolutely continuous

with respect to the Lebesgue measure. However, for α > 1 this measure

becomes infinite and the corresponding Lyapunov exponents are zero. After

the rescaling t → tα the scaled Lyapunov exponent becomes positive and

one recovers the “rescaled” version of Pesin’s entropy formula as well, see

[3, 4].

The goal of this article is to examine the dependence of Lyapunov expo-

nents on the scale in which they are computed and to outline the abstract
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theory of scaled Lyapunov exponents. We will do this in the general setting

of cocycles over dynamical systems.
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search in Mathematics (ICERM). We would like to thank the institute for
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2. Scaled Lyapunov exponents for cocycles

In this section, we describe the general theory of scaled Lyapunov expo-

nents for cocycles over dynamical systems. Consider an invertible measur-

able transformation f of a measure space X.

2.1. Linear multiplicative cocycles. Let f : X → X be an invertible

measurable transformation of a measure space X. We call the function

A : X × Z → GL(d,R) a linear multiplicative cocycle over f or simply a

cocycle if it has the following properties:

(1) A(x, 0) = Id for every x ∈ X and A(x,m+n) = A(fn(x),m)A(x, n)

for all m,n ∈ Z;

(2) the function A(·, n) : X → GL(d,R) is measurable for each n ∈ Z.

Every cocycle is generated by a measurable function A : X → GL(d,R),

which is called the generator. In fact, every such function determines a

cocycle by the formula

A(x, n) =


A(fn−1(x)) · · ·A(f(x))A(x) if n > 0,

Id if m = 0,

A(fn(x))−1 · · ·A(f−2(x))−1A(f−1x)−1 if n < 0.

On the other hand, a cocycle A is generated by the matrix function A =

A(·, 1).

A simpler way to describe a cocycle A over f is by considering a linear

extension F : X × Rd → X × Rd of f that is induced by the cocycle (for

simplicity of presentation we only consider the trivial bundle in this paper).

It is given by

F (x, v) = (f(x), A(x)v).

If π : X × Rd → X is the projection defined by π(x, v) = x, then it is easy

to see that π ◦ F = f ◦ π.

If f is a differentiable map of a compact phase space M , then f generates

a differential cocycle A(x, n) over f whose generator is A(x) = dfx and it
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acts on the tangent bundle TM of M . Therefore, the results in this and

next sections are applicable to smooth maps.

2.2. Definition of scaled Lyapunov exponents. Let A be a cocycle over

an invertible measurable transformation f of a measure space X. Using the

notion of the standard Lyapunov exponent (see [2] for details), we introduce

the notion of the scaled Lyapunov exponent for the cocycle.

Given x ∈ X, we call a sequence of positive numbers a = {a(x, n)}n≥1 a

scaled sequence if

(1) it is monotonically increasing to infinity, e.g., a(n) = nα, log n, etc.;

(2) for each n the function a(x, n) is Borel;

(3) a(f(x), n) = a(x, n+ 1), in other words the function a(x, n) depends

on the entire trajectory of the point x.

Given a point x ∈ X, a scaled sequence a = {a(x, n)} and a vector v ∈ Rd,
we call the following quantity

χ(x, v,a) = lim sup
n→+∞

1

a(x, n)
log ‖A(x, n)(v)‖

the scaled Lyapunov exponent of (x, v) (with respect to the scaled sequence

a and the cocycle A). With the convention that log 0 = −∞ this extends the

definition of the standard Lyapunov exponent corresponding to the scaled

sequence a(n) = n for each n.

2.3. Choices of scaled sequences. The above definition of the scaled

Lyapunov exponent allows any scaled sequence a = {a(x, n)}n≥1, which

grows slower than n. Depending on the choice of a the value of the scaled

Lyapunov exponent can be positive, negative or zero. It can also be ±∞.

Given a point x ∈ X, consider the sequence of positive numbers

b = {b(x, n) = max
0≤k≤n

| log ‖A(x, k)‖ |}.

This sequence is non-decreasing and if it is bounded, then for any scaled

sequence a the corresponding values of the Lyapunov exponent are all zero.

However, if the sequence b is unbounded, then the corresponding values of

the Lyapunov exponent are all finite (except for v = 0).

Consider the collection of vectors for which χ(x, v,b) = 0. By the prop-

erties of the scaled Lyapunov exponents described in the next section, this

collection is a linear subspace of Rd, which we denote by Rd1 . Consider the

“restricted” cocycle A1(x, n) with values in GL(d1,R). Repeating the above

argument we find the non-decreasing sequence of positive numbers b1 and
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if this sequence is unbounded then we can use it to rescale the Lyapunov

exponents for vectors v ∈ Rd1 . The above procedure produces a filtration

Rd = Rd0 ⊃ Rd1 ⊃ · · · ⊃ Rdk ,

a collection of scaled sequences bi and the corresponding collection of scaled

Lyapunov exponents χ(x, v,bi), i = 1, . . . , k−1 such that χ(x, v,bi) 6= 0 for

every v ∈ Rdi−1 \Rdi and i = 1, . . . , k− 1. If the sequence bk is unbounded,

then Rdk = 0.

3. Basic properties of scaled Lyapunov exponents

The function χ has the following basic properties of a Lyapunov exponent,

see [2, Chapter 2] or [1, Proposition 1] for detailed proofs.

Proposition 3.1. For each x ∈ X, v, w ∈ Rd and c ∈ R \ {0},
(1) χ(x, cv,a) = χ(x, v,a);

(2) χ(x, 0,a) = −∞;

(3) χ(x, v + w,a) ≤ max{χ(x, v,a), χ(x,w,a)}.

It follows from the abstract theory of Lyapunov exponents (see [2, Theo-

rem 2.1]) that:

(1) χ(x, v + w,a) = max{χ(x, v,a), χ(x,w,a)} for any v, w ∈ Rd when-

ever χ(x, v,a) 6= χ(x,w,a);

(2) if for some nonzero vectors v1, . . . , vm ∈ Rd, the numbers χ(x, v1,a),

. . . , χ(x, vm,a) are distinct, then these vectors are linearly indepen-

dent;

(3) the function χ(x, ·,a) attains only finitely many values on Rd \ {0},
which we denote by χ1(x,a) < · · · < χs(x,a)(x,a), where s(x,a) ≤ d;

note that, in general, χ1 may be −∞ and χs(x,a) may be +∞.

Further we denote by Va(x) the filtration of Rd associated to χ(x, ·,a):

{0} = V 0
a (x) & V 1

a (x) & · · · & V
s(x,a)
a (x) = Rd,

where V i
a(x) =

{
v ∈ Rd : χ(x, v,a) ≤ χi(x,a)

}
for i = 1, . . . , s(x,a). It is

easy to see that

χi(x, v,a) = χi(x,a) for all v ∈ V i
a(x) \ V i−1

a (x).

The number ki(x,a) = dimV i
a(x) − dimV i−1

a (x) is the multiplicity of the

value χi(x,a). We have that

s(x,a)∑
i=1

ki(x,a) = d.
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The collection of pairs

Spχa(x) =
{

(χi(x,a), ki(x,a)) : 1 ≤ i ≤ s(x,a)
}

forms the Lyapunov spectrum of the scaled Lyapunov exponent χ at the

point x ∈ X with respect to the scaled sequence a = {a(x, n)}.

Definition 3.1. A basis v = (v1, · · · , vd) of Rd is said to be subordinate to

the filtration Va(x) if for every 1 ≤ i ≤ s(x,a) there exists a basis of V i
a(x)

composed of di vectors from (v1, . . . , vd). A subordinate basis v is ordered

if for every 1 ≤ i ≤ s(x,a) the vectors v1, . . . , vdi form a basis of V i
a(x).

Using the same arguments in [2, Chapter 12], we can find that there

always exists a subordinate basis for a filtration.

Proposition 3.2. Given a filtration Va(x) of Rd, there exists a basis w =

(w1, . . . , wd) of Rd such that

inf
{ d∑
j=1

χ(x, vj ,a) : v = (v1, . . . , vd) is a basis of Rd
}

=
d∑
j=1

χ(x,wj ,a).

4. The Lyapunov and Perron regularity coefficients

Consider the dual matrix B(x) = (A(x)∗)−1 at each point x ∈ X. Given

a scaled sequence a = {a(x, n)}n≥1 and a point (x, v∗) ∈ X × Rd, the dual

scaled Lyapunov exponent is given by the formula:

χ̃(x, v∗,a) = lim sup
m→+∞

1

a(x,m)
log ‖B(x,m)v∗‖

where B(x,m) = B(fm−1(x)) · · ·B(f(x))B(x) for m > 0. In fact, choose

dual bases (v1, · · · , vd) and (v∗1, · · · , v∗d), i.e., 〈vi, v∗j 〉 = δij for each i and j

(here δij is the Kronecker symbol), and set vi,m = A(x,m)vi and v∗i,m =

B(x,m)v∗i . For each m ∈ N we have

〈vi,m, v∗i,m〉 = 〈A(x,m)vi, (A(x,m)∗)−1v∗i 〉 = 1.

Hence, 1 ≤ ‖A(x,m)vi‖ · ‖B(x,m)v∗i ‖ and the exponents χ and χ̃ are dual

at the point x, i.e., χ(x, vi,a) + χ̃(x, v∗i ,a) ≥ 0 for each 1 ≤ i ≤ d.

Arguing as above one can show that for each v∗ ∈ Rd, the Lyapunov

exponent χ̃ can only attain finitely many values on Rd \ {0}. We denote

them by χ̃r(x,a)(x,a) < · · · < χ̃1(x,a) for some integer r(x,a) ≤ d. Let

Ṽa(x) = {Ṽ i
a(x) : i = 1, . . . , r(x,a)} be the filtration associated to χ̃. Note

that, in general, χ̃r(x,a) may be −∞ and χ̃1 may be +∞ and therefore, from

now on we assume that the sums χ1+χ̃1 and χs(x,a)+χ̃r(x,a) are well defined,

that is |χ1| and χ̃1 are not both +∞ and similar for χs(x,a) and |χ̃r(x,a)|.
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We call the quantity

γa(x, χ, χ̃) = min max
{
χ(x, vi,a) + χ̃(x, v∗i ,a) : 1 ≤ i ≤ d

}
the regularity coefficient of the pair of scaled Lyapunov exponents χ and χ̃

at the point x (with respect to the scaled sequence a = {a(x, n)}). Here the

minimum is taken over all pairs of dual bases (v1, · · · , vd) and (v∗1, · · · , v∗d)
of Rd. We say that a point x ∈ X is regular (with respect to the pair of

scaled Lyapunov exponents (χ, χ̃)) if γa(x, χ, χ̃) = 0.

Now we let

χ′1(x,a) ≤ · · · ≤ χ′d(x,a) and χ̃′1(x,a) ≥ · · · ≥ χ̃′d(x,a)

be respectively the values of χ and χ̃ at the point x counted with their

multiplicities. Define the Perron coefficient of the pair χ and χ̃ at x ∈ X
(with respect to the scaled sequence a = {a(x, n)}) by

πa(x, χ, χ̃) = max{χ′i(x,a) + χ̃′i(x,a) : 1 ≤ i ≤ d}.

The following theorem can be proven by the same arguments as in the proof

of Theorem 2.8 in [2].

Theorem 4.1. For a point x ∈ X, if χ1 + χ̃1 and χs(x,a) + χ̃r(x,a) are well

defined, then

0 ≤ πa(x, χ, χ̃) ≤ γa(x, χ, χ̃) ≤ dπa(x, χ, χ̃).

It follows that a point x ∈ X is regular if and only if πa(x, χ, χ̃) = 0 and

also if and only if χ′i(x,a) = −χ̃′i(x,a) for i = 1, · · · , d.

Theorem 4.2. If a point x ∈ X is regular, then the filtrations Va(x)

and Ṽa(x) are orthogonal, that is, s(x,a) = r(x,a) := s, dimV i
a(x) +

dim Ṽ s−i
a (x) = d and 〈v, v∗〉 = 0 for every v ∈ V i

a(x) and v∗ ∈ Ṽ s−i
a (x).

Reversing the time, we can introduce the scaled Lyapunov exponents

for negative time. The above result provides a basis to study Lyapunov-

Perron regularity for scaled Lyapunov exponents. The ultimate goal is to

find out whether various regularity criteria that hold in the case of standard

scaling can be extended to general scaled sequences and to what extent the

Multiplicative Ergodic theorem may hold for scaled Lyapunov exponents.

5. Examples

In this section we present two examples that illustrate that there are

systems for which the Lyapunov exponents can be rescaled to achieve non-

zero values but that in general this should not be expected.
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5.1. Existence of scaled Lyapunov exponents. Consider the elliptic

matrix A =

[
1 1

0 1

]
whose only eigenvalue is 1. Hence, the two Lyapunov

exponents for the constant cocycle generated by A are zero. In addition, the

vector v =

[
1

0

]
is the eigenvector for A, so that ‖Anv‖ = 1 for all integers

n where ‖ · ‖ is the Euclidean norm. Consequently, the scaled Lyapunov

exponent, χ(v,a) is zero for any scaling sequence a. On the other hand,

taking the vector w =

[
0

1

]
we observe that Anw =

[
n

1

]
so that the norm

||Anw|| grows linearly with |n|. Choosing a(n) = logn we obtain that

χ(w,a) = lim
n→+∞

1

a(n)
log ‖A(n)(w)‖ = 1,

and the limit exists. Similar observation can be made for any non-diagonalizable

elliptic matrix. In fact, the following is true:

Proposition 5.1 ([6]). Suppose all eigenvalues of a linear map A : Rn →
Rn have absolute value one. Then there exists an invariant subspace C =

C(A) ⊂ Rn and a norm in Rn such that A acts in C as an isometry and for

every vector v ∈ Rn \ C the norm ‖Anv‖ grows polynomially as |n| → ∞.

To see how nonzero scaled Lyapunov exponents can be obtained consider

a diffeomorphism f : S2 → S2 of the unit sphere in R3 which fixes the South

and North poles and moves every other point along the meridian from the

North pole toward the South pole. In the spherical coordinates we may

write f(θ, ϕ, r) = (f1(θ, ϕ), ϕ, r), where for every fixed angle ϕ ∈ [−π, π),

the function gϕ(θ) := f1(θ, ϕ) satisfies: (1) gϕ(π2 ) = π
2 and gϕ(−π

2 ) = −π
2 ;

(2) gϕ(θ) < θ for all −π
2 < θ < π

2 .

We have that fn(θ, ϕ, r) = (fn(θ, ϕ), ϕ, r), where fn(θ, ϕ) = gnϕ(θ). Con-

sequently,

(5.1) dfn =


dgnϕ
dθ

dfn
dϕ 0

0 1 0

0 0 1

 .
Observe that:

• the direction spanned by the vector vs =

1

0

0

 is df -invariant,
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• the subspace spanned by ws =

0

1

0

 is not df -invariant,

• the vector v0 =

0

0

1

 is df -invariant, that is dfnv0 = v0 for all n.

Consider the special case, when gϕ(θ) has the following form on the interval

[−π
2 ,−

π
2 + δ] for some small δ > 0:

gϕ(θ) =


(

1 + (θ + π
2 )−

1
α

)−α
− π

2 for θ 6= −π
2

gϕ(−π
2 ) = −π

2 for θ = −π
2 ,

where α = α(ϕ) > 0 is a smooth function such that α′(ϕ) > 0.

One can see that g′ϕ(−π
2 ) = 1 and hence all Lyapunov exponents (in the

standard scale) for all points (except maybe for the North pole) are zero.

On the other hand, for −π
2 < θ < −π

2 + δ we can see that,

gnϕ(θ) =

(
n+

(
θ +

π

2

)− 1
α

)−α
− π

2
.

Having an explicit formula for gnϕ(θ) allows us to compute
dgnϕ
dθ and dfn

dϕ in

(5.1) and conclude that:

• The norm ||dfnvs|| decays polynomially with exponent −(1 + α(ϕ))

as n grows to infinity.

• The norm ||dfnws|| decays polynomially with exponent −α(ϕ) as n

grows to infinity.

• The angle ∠(dfn(ws), ws) goes to zero as n grows to infinity.

Consequently taking the scale sequence a = log n, we obtain the following

values of the corresponding scaled Lyapunov exponents:

• χ(x, vs,a) = −(1 + α(ϕ(x)))

• χ(x,ws,a) = −α(ϕ(x)))

• χ(x, v0,a) = 0.

We therefore obtained two distinct non-zero values of the scaled Lyapunov

exponents that vary with x.
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5.2. Non-existence of the scaled limit. In general, one cannot expect

the existence of the limit in the definition of scaled Lyapunov exponents.

To see this consider a diffeomorphism f for which there exists an invariant

family of one dimensional subspaces E(x). Denoting by vx a unit vector in

E(x) we have that

log ||dfn(x)(vx)|| =
n−1∑
k=0

log ||df(fk(x))(vfk(x))||.

Considering a function ϕ(x) := log ||df(x)(vx)|| we can rewrite the above

sum as
∑n−1

k=0 ϕ ◦ fk(x). Assume that the standard Lyapunov exponent,

χ(x, vx) is zero almost everywhere with respect to some ergodic measure µ.

It means that

(5.2) lim
n→+∞

1

n

n−1∑
k=0

ϕ ◦ fk = 0 µ− a.e.

In that case one cannot obtain a nonzero finite limit by rescaling as the

following result shows.

Theorem 5.2 ([5],[12]). Let (X,B, µ) be a probability space, f : X → X a

measure preserving ergodic transformation, and let ϕ ∈ L1(X,B, µ) be such

that (5.2) holds. If g ∈ L∞(X,B, µ) is such that for some scaled sequence

{a(x, n)}n≥1
1

a(x, n)

n−1∑
m=0

(ϕ ◦ fm) (x)→g(x) a.e.

as n→∞, then g = 0 a.e.

This result is an immediate corollary of the following stronger and more

general statement.

Theorem 5.3 ([5],[12]). Let (X,B, µ) be a probability space, f : X → X

a measure preserving ergodic transformation, and let ϕ ∈ L1(X,B, µ) be

such that (5.2) holds. Then for any scaled sequence {a(x, n)}n≥1 and almost

every x ∈ X,

lim inf
n→∞

1

a(x, n)

n−1∑
k=0

(
ϕ ◦ fk

)
(x) ≤ 0

while

lim sup
n→∞

1

a(x, n)

n−1∑
k=0

(
ϕ ◦ fk

)
(x) ≥ 0.
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We finish this section with a positive result on shift spaces which can be

easily extended to hyperbolic diffeomorphisms using their symbolic repre-

sentations. Under some additional assumptions on the shift space and the

function ϕ one can construct a set of positive Hausdorff dimension dimH on

which the scaled sum converges to an arbitrary real number a.

Theorem 5.4 ([12]). Let (X,σ) be the full shift on the space of double sided

infinite sequences on a finite alphabet. Let also ϕ be a Hölder continuous

potential not cohomologus to a constant and such that (5.2) holds for f =

σ. Finally, let µ be the unique equilibrium state for ϕ, then the Hausdorff

dimension

dimH

{
x ∈ X| lim

n→∞

1

b(n)

n−1∑
m=1

ϕ(σm(x)) = a

}
≥ dimH µ

for any a ∈ R and for any invertible, strictly increasing, continuous, positive

function b(R) satisfying:

(1) limR→∞ b(R) =∞;

(2) limR→∞
b(R)
R = 0;

(3) αn/βn → 1 implies that b(αn)/b(βn) → 1 for any two sequences

{αn}, {βn} ⊂ N.
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