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Abstract. We describe some recent results on thermodynami-
cal formalism for dynamical systems admitting inducing schemes.
This includes constructing equilibrium measures for certain classes
of potential functions. These measure minimize the free energy of
the system within the class of invariant measures that can be lifted
to the tower associated with the inducing scheme. We shall dis-
cuss the liftability problem and present some examples illustrating
various phenomena associated with liftability.

1. Introduction

Thermodynamical formalism is a collection of methods aimed at pro-
ducing special invariant measures for dynamical systems. More pre-
cisely, let f be a continuous map of a compact topological space I
and M(f, I) the class of all invariant Borel probability measures on
I. Given a continuous real valued potential function ϕ on I, one con-
siders the equilibrium measures for ϕ, i.e. invariant Borel probability
measures µ on I for which the supremum

(1) sup
µ∈M(f,I)

{
hµ(f) +

∫
I

ϕdµ
}

is attained, where hµ(f) denotes the metric entropy of the map f . In
the classical case, when f is a topologically transitive (one- or two-
sided) subshift of finite type and ϕ is a Hölder continuous function, the
equilibrium measure exists and is unique. Many dynamical systems
with uniform hyperbolic structure (e.g., Anosov maps, axiom A diffeo-
morphisms) can be modelled by subshifts of finite type and for them
thermodynamical formalism can be effected.
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However, there are classes of dynamical systems, which admit no rep-
resentation by subshifts of finite type, most notoriously one- or multi-
dimensional systems with nonzero Lyapunov exponents. Surprisingly,
many of these systems allow representations by towers – symbolic mod-
els, which are more complicated than subshifts of finite type. They
can be analyzed using some recently developed and quite sophisticated
techniques in statistical physics.

For a map f , a tower is determined by a subset W ⊂ I, the base
of the tower, a positive integer-valued function τ on W , the inducing
time, the map F : W → W , the induced map, and a countable partition
R of W . The function τ is constant on each partition element J and
is a return time of J to W but it is not necessarily the first return
time to the base. The relation between the original map f and the
induced map F is given by F (x) = f τ(J)(x) for each x ∈ J . A crucial
feature of the tower is that R is a generating Bernoulli partition for the
induced map F so that it is equivalent to the full (one- or two-sided)
shift on a countable set of states. See the next section for more precise
description of towers.

For a positive Lebesgue measure set of parameters in a ”typical” fam-
ily of one-dimensional unimodal maps various constructions of towers
can be found in works of Jakobson [14], Benedicks and Carleson [3], and
Yoccoz and Senti [24, 23]. In particular, every unimodal map satisfying
the Collet-Eckmann condition admits a tower as described above. For
some multimodal maps towers were constructed by Bruin, Luzzatto
and van Strien [8].

Alves, Luzzatto, and Pinheiro showed that towers can be constructed
for multidimensional nonuniformly expanding maps [2].

For systems with nonzero Lyapunov exponents tower constructions
were introduced by Young [25] and their existence was established for
some important particular systems including Hénon maps (see for ex-
ample, [4, 5]) and Sinai’s billiards (see [10]).

Abstract towers in measurable spaces were studied by Zweimüller
[27].

The first attempt to effect thermodynamical formalism for systems
admitting towers was obtained by Bruin and Keller [7]: they established
existence and uniqueness of equilibrium measures for one-dimensional
unimodal maps satisfying the Collet-Eckmann condition and for the
potential function ϕt(x) = −t log |df(x)| with t sufficiently closed to 1.
We stress that they use a tower construction known as the Hofbauer-
Keller tower that is different from the one described above.

In [19, 18], Pesin and Senti developed thermodynamical formalisms
for general systems admitting tower constructions. In particular, they
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described a class of potential functions for which equilibrium measures
exist and are unique; see Section 3 for detailed definitions and results.
The crucial elements in constructing equilibrium measures are the fol-
lowing:

1) Starting with a continuous potential function ϕ on I, one obtains
the induced potential function ϕ̄ on the base W by the formula ϕ̄(x) =∑τ(x)−1

k=0 ϕ(fk(x)).
2) One finds equilibrium measures for the induced map F with re-

spect to the induced potential function ϕ̄. Since F is conjugate to the
full shift on a countable set of states, one can apply results of Mauldin
and Urbański [16] and of Sarig [22, 21] (see also Aaronson, Denker and
Urbanski [1], Yuri [26], and Buzzi and Sarig [9]) to establish existence
and uniqueness of equilibrium measures for F . This leads to certain
requirements on potential functions and thus determines the desired
class of potentials.

3) One then lifts equilibrium measures to the tower. This produces
an f -invariant Borel probability measure µϕ, which is a unique equi-
librium measure in a somewhat restricted sense: it minimizes the free
energy E = −(hµ(f) +

∫
I
ϕdµ) among not all but only liftable mea-

sures, i.e. the measures that can be obtained by lifting to the tower
F -invariant measures on the base.

Establishing liftability of a given invariant measure could be a chal-
lenging task and one of the goals of this article is to address the lifta-
bility problem:

Given a map f admitting an inducing scheme {S, τ}, describe the
class of all liftable measures.

Let us stress that the class of liftable measures depends on the choice
of the inducing scheme {S, τ} in two ways: changing the inducing time
may reduce the class of liftable measures while changing the base of
the tower corresponding to the scheme will effect the class of measures
which give positive weight to the base. One may therefore be interested
in constructing inducing schemes {S, τ} with respect to which every f -
invariant Borel probability measure is liftable (see [17]).

We present various characterizations of liftability as well as some
criteria for liftability. We also present an example due to Bruin, which
demonstrates that there are nonliftable measures (see also [27] for a
similar construction).

Acknowledgments. We would like to thank Jerome Buzzi and
Stefano Luzzatto for many valuable discussions on the content of the
paper. We also thank Henk Bruin for providing us with an example of
a nonliftable measure. We are grateful to Samuel Senti who carefully
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examined the paper and made numerous comments and suggestions
that helped us improve some results, as well as the exposition, of the
paper. Finally, we would like to thank the referee of the paper for a
number of useful comments and suggestions.

2. Inducing Schemes

We describe the class of systems admitting inducing schemes, which
were introduced in [19, 18]. Let f : I → I be a continuous map of a
compact topological space I, S a countable collection of disjoint Borel
subsets of I, and τ : S → N a positive integer-valued function. Let
also W =

⋃
J∈S J be the inducing domain and τ : I → N,

τ(x) =

{
τ(J), x ∈ J ∈ S,
0, x 6= W

the inducing time.
Let J denote the closure of the set J . We assume that the following

conditions hold:

(H1) for each J ∈ S there exists an open connected set UJ ⊇ J
such that f τ(J)|UJ is a homeomorphism onto its image and
f τ(J)(J) ⊆ W ;

(H2) the partition R of W induced by the sets J ∈ S is “one-sided”
generating: for any countable collection of elements {Jk}k∈N,
the intersection

J1 ∩
(⋂

k≥2

f−Tk(Jk)
)

is nonempty and consists of a single point, where Tk =
∑k−1

m=1 τ(Jm).

Define the induced map F : W → W by F (x) = f τ(x)(x) and set

(2) X =
⋃
J∈S

τ(J)−1⋃
k=0

fk(J).

The set X is forward invariant under f .
In view of (H2), the induced map F : W → W is conjugate to

the one-sided Bernoulli shift σ on a countable set of states S. More
precisely, this means the following (see [19, 18]). Define the coding map
h : SN → W by

(3) h : ω = (a0, a1, · · · ) 7→ xω,

where xω =
⋂

n≥0 F
n(Jan).

Proposition 2.1. The following statements hold:
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(1) the map h is well-defined, continuous, and h(SN) ⊃ W ;
(2) h is one-to-one on h−1(W );
(3) the induced map F : W → W is topologically conjugate to

the one-sided Bernoulli shift σ : SN → SN via h, i.e., h ◦
σ|h−1(W ) = F ◦ h|h−1(W ).

In what follows we assume that the following condition holds:

(H3) the set SN\h−1(W ) supports no shift invariant measures, which
give positive weight to any open subset.

If ν is a Gibbs measure for the shift σ (see the next section), then
Condition (H3) allows one to transfer it via the conjugacy map h to a
measure, which gives full weight to the base W and is invariant under
the induced map F .

Inducing schemes satisfying Conditions (H1)–(H3) can be constructed
for many one-dimensional maps (including some unimodal and multi-
modal maps) and some multidimensional expanding maps. In these
cases one has f τ(J)(J) = W . However, in the case of (nonuniformly)
hyperbolic dynamical systems admitting tower constructions Condi-
tion (H1) holds with f τ(J)(J) strictly inside of W and Condition (H2)
should be replaced with the following one:

(H2’) the partition R of W induced by the sets J ∈ S is “two-sided”
generating: for any countable collection of elements {Jk}k∈Z,
the intersection

J0 ∩
(⋂

k≥1

f−Tk(Jk)
)
∩

( ⋂
k≤−1

fT ′
k(Jk)

)
is nonempty and consists of a single point, where

Tk =
k−1∑
m=0

τ(Jm), T ′k =
0∑

m=k+1

τ(Jm).

In this case the induced map F : W → W is conjugate to the two-sided
Bernoulli shift σ on a countable set of states S.

3. Thermodynamics associated with inducing schemes

Following [19, 18] we describe a class of potential functions ϕ : I →
R, which admit unique equilibrium measures, i.e. for which the supre-
mum (1) is achieved with respect to a certain class of invariant mea-
sures. For simplicity we consider inducing schemes satisfying Condi-
tions (H1)–(H3) and we always assume that the topological entropy
h(f) <∞.
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3.1. Thermodynamics of the induced map. We begin with a con-
struction of equilibrium measures for the induced map F . Given a
continuous function φ : W → R, define its n-variation by

Vn(φ) = sup
[b1,...,bn]

sup
x,x′∈[b1,...,bn]

{|φ(x)− φ(x′)|},

where
[b1, . . . , bn] = Jb1 ∩ f−τ(Jb1

)(Jb2) ∩ · · · ∩ f−T̂ (Jbn),

is the cylinder set and

T̂ =
n−1∑
m=1

τ(Jbm).

Further, we define the Gurevich pressure of φ by

PG(φ) = lim
n→∞

1

n
log

∑
F n(x)=x

expφn(x)1[b](x),

where b ∈ S and

φn(x) =
n−1∑
k=0

φ(F k(x)).

One can show that provided
∑

n≥2 Vn(φ) < ∞, the above limit exists
and is independent of the choice of the element b.

We call a measure ν = νφ a Gibbs measure for φ if there exist con-
stants C1 and C2 such that for any cylinder set [b1, . . . , bn] and any
x ∈ [b1, . . . , bn] we have

(4) C1 ≤
ν([b1, . . . , bn])

exp(−nPG(φ) + φn(x))
≤ C2.

Denote by M(F,W ) the class of all F -invariant Borel probability mea-
sures on W and by

Mφ(F,W ) = {ν ∈M(F,W ) : −
∫

W

φ dν <∞}.

We call an F -invariant measure ν = νφ an equilibrium measure for φ if

(5) sup
ν∈Mφ(F,W )

{hν(F ) +

∫
W

φ dν} = hνφ
(F ) +

∫
W

φ dνφ.

The following result establishes the variational principle, existence, and
uniqueness of equilibrium measures for the induced map. In view of
Proposition 2.1 and Condition (H3), it follows immediately from the
corresponding results for the Bernoulli shift on a countable set of states
(see for example, [21]).

Theorem 3.1 (see [19]). The following statements hold.
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(1) Assume that supx∈W φ < ∞ and that φ has summable varia-
tions, i.e.,

(6)
∑
n≥1

Vn(φ) <∞.

Then the variational principle for φ holds:

PG(φ) = sup
ν∈Mφ(F,W )

{hν(F ) +

∫
W

φ dν}.

(2) Assume that supx∈W φ < ∞, PG(φ) < ∞ and (6) holds. Then
there exists an ergodic F -invariant Gibbs measure νφ for φ. If
in addition, the entropy hνφ

(F ) <∞, then νφ ∈Mφ(F,W ) and
is a unique Gibbs and equilibrium measure for ϕ.

3.2. Lifted and induced measures. Abramov’s and Kac’s for-
mulas. Our next step is to describe some relations between invariant
measures for f and those for F . For a Borel probability measure ν on
W set

Qν =
∑
J∈S

τ(J) ν(J) =

∫
W

τ(x) dν(x).

Define the measure π(ν) on the set X (see (2)) as follows: for any Borel
subset E ⊂ X,

π(ν)(E) =
1

Qν

∑
J∈S

τ(J)−1∑
k=0

ν(f−k(E) ∩ J).

For the following result see, for example [11].

Proposition 3.2. Let ν ∈ M(F,W ) and Qν < ∞. Then π(ν) ∈
M(f, I), π(ν)(X) = 1, and π(ν)|W � ν. If ν is ergodic, so is π(ν).

Consider a Borel function ϕ : I → R that we call a potential function.
Define the induced potential function ϕ̄ : W → R by

(7) ϕ̄(x) =

τ(J)−1∑
k=0

ϕ(fk(x)), x ∈ J.

Although the function ϕ may not be continuous we shall require that
the induced potential function ϕ̄ is continuous in the topology of W .

The induced map F may not be the first return map, however,
Abramov’s formula, connecting the entropies of F and f , and Kac’s
formula, connecting the integrals of ϕ and ϕ, still hold (see [19, 27], for
related results see also Keller [15]).
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Theorem 3.3. Let ν ∈M(F,W ). If Qν <∞ then

hν(F ) = Qνhπ(ν)(f) <∞.

If, in addition,
∫

W
ϕ̄dν is finite then

−∞ <

∫
W

ϕ̄ dν = Qν

∫
X

ϕdπ(ν) <∞.

We call a measure µ ∈M(f, I) liftable if µ(W ) > 0 and there exists
a measure i(µ) ∈ M(F,W ) such that i(µ) � µ and µ = π(i(µ)). We
call i(µ) the induced measure for µ. The following result is proved in
[27].

Proposition 3.4. For any liftable ergodic measure µ ∈ M(f, I) the
measure i(µ) is unique, ergodic, and Qi(µ) <∞.

In Section 4 we describe some conditions on the measure that guar-
antee its liftability.

3.3. Equilibrium measures for the original map. We shall now
proceed with a description of the thermodynamical formalism for the
original map f . Denote by ML(f,X) the class of all liftable measures.
Given a potential function ϕ, we call a measure µϕ an equilibrium
measure (with respect to the class of measures ML(f,X)) if

sϕ = sup
ML(f,X)

{hµ(f) +

∫
X

ϕdµ} = hµϕ(f) +

∫
X

ϕdµϕ.

We stress that the definition of equilibrium measure introduced here
differs from the classical one as only measures inML(f,X) are allowed.

Let ϕ̄ be the induced potential function (see (7)).

Theorem 3.5 (see [19, 18]). Assume that ϕ̄ is continuous, has sum-
mable variations (see (6)) and finite Gurevich pressure. Then

−∞ < sϕ < max{0, PG(ϕ̄)} <∞.

Consider the induced potential function for the normalized potential
ϕ− sϕ, i.e., ϕ+ = ϕ− sϕ = ϕ̄− sϕτ .

As an immediate corollary of Theorem 3.1 we obtain the following
result.

Theorem 3.6 (see [19, 18]). Assume that the induced potential func-
tion ϕ̄ is continuous, has summable variations (see (6)) and finite
Gurevich pressure. Assume also that the function ϕ+ has finite Gure-
vich pressure and supx∈W ϕ+ <∞. Then

(1) there exists an F -invariant ergodic Gibbs measure νϕ+ for ϕ+;



THERMODYNAMICS AND LIFTABILITY 9

(2) if Qνϕ+ <∞, then νϕ+ ∈Mϕ+(F,W ) and

sup
ν∈Mϕ+ (F,W )

{hν(F ) +

∫
W

ϕ+dν} = hνϕ+ (F ) +

∫
W

ϕ+dνϕ+ .

(3) if Qνϕ+ <∞, then µϕ = π(νϕ+) ∈ML(f,X).

The measure µϕ is a natural candidate for the equilibrium measure
for ϕ. It is indeed the equilibrium measure for ϕ provided the following
positive recurrence condition holds: there exist ε0 > 0 such that for any
0 ≤ ε < ε0 the function

ϕ+
ε := ϕ− sϕ + ε = ϕ+ + ετ

has finite Gurevich pressure.

Theorem 3.7 (see [19, 18]). Assume that ϕ̄ is continuous, has sum-
mable variations (see (6)), finite Gurevich pressure, and is positively
recurrent. Assume also that supx∈W ϕ+ < ∞ and Qνϕ+ < ∞. Then

µϕ = π(νϕ+) is the unique equilibrium measure for ϕ, i.e.,

(8) sϕ = hµϕ(f) +

∫
X

ϕdµϕ = sup
ML(f,X)

{hµ(f) +

∫
X

ϕdµ}.

Verifying conditions of this theorem may not be an easy task and in
[18] some stronger requirements on the potential function ϕ are given
that ensure existence and uniqueness of equilibrium measures. For the
sake of completeness we shall briefly describe these requirements.

We say that the induced potential function ϕ̄ is locally Hölder con-
tinuous if there exists A > 0 and 0 < γ < 1 such that

Vn(ϕ̄) ≤ Aγn, n ≥ 1.

If ϕ̄ is locally Hölder continuous then it has summable variations.
We say that the potential function ϕ satisfies:

(1) the (FGP )-condition if∑
J∈S

sup
x∈J

exp ϕ̄(x) <∞;

(2) the (INT )-condition if∑
J∈S

τ(J) sup
x∈J

exp(ϕ+(x)) <∞.

Theorem 3.8 (see [19]). Assume that the potential function ϕ satisfies:

(1) the (FGP)-condition, then ϕ̄ has finite Gurevich pressure;
(2) the (INT)-condition, then the function ϕ+ satisfies the (FGP)-

condition, and supx∈W ϕ+ <∞;
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(3) the (INT)-conditions, that ϕ̄ is locally Hölder continuous and
has finite Gurevich pressure, then Qνϕ+ <∞.

As we saw above Theorem 3.7 establishes existence and uniqueness of
equilibrium measures within the class of liftable measuresML(f,X). If
we allow the class of all f -invariant ergodic Borel probability measures
M(f, I), then depending on the potential function ϕ the equilibrium
measure µϕ may be non-liftable or be supported outside of the tower,
i.e, µϕ(X) = 0.

In [20], an example of a one-dimensional map of a compact interval
is given, which admits an inducing scheme {S, τ}, satisfying Condi-
tions (H1) and (H2), and a potential function ϕ such that there exists
a unique equilibrium measure µϕ for ϕ (with respect to the class of
measures M(f, I)) with µϕ(X) = 0 (see also Section 5).

4. The liftability property

In this section we shall discuss various aspects of and present some
general results on the liftability property of invariant measures.

The class of liftable measures ML(f,X) depends on the choice of
the inducing scheme {S, τ}. In this regards the following problem is of
interest:

Given a map f , construct an “optimal” inducing scheme with respect
to which: (1) every f -invariant Borel probability measure is liftable; (2)
if ϕ is a potential function satisfying the conditions of Theorem 3.7,
then the unique equilibrium measure µϕ for ϕ is also the unique equi-
librium measure with respect to the class M(f, I) of all invariant Borel
probability measures on I.

For one-dimensional maps Hofbauer and Keller constructed a dif-
ferent type of inducing schemes (see [13, 12, 15]). In the case of one-
dimensional S-unimodal maps satisfying the Collet-Eckmann condition
the liftability problem has an affirmative solution obtained by Keller
[15], i.e. every invariant ergodic Borel measure with positive entropy
is liftable. Furthermore, building on a recent result by Bruin [6], Pesin
and Senti [19] have shown that for any unimodal map satisfying the
Collet-Eckmann condition every measure µ ∈ M(f, I) with positive
metric entropy is liftable. A similar result is obtained for some multi-
modal maps (see [19, 17]). In this paper we do not consider the lifta-
bility property for particular classes of dynamical systems but rather
discuss liftability in a general setting. We shall also present an example
showing that nonliftable equilibrium measures do exist.

If the inducing time τ is the first return time to the base by Kac’s
theorem every f -invariant measure µ has integrable inducing time and
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hence, it is liftable. However, for many inducing schemes to satisfy
Condition (H2) the inducing time may to be chosen bigger than the
first return time and the liftability problem becomes nontrivial. Fur-
thermore, by artificially increasing the inducing time, one may produce
inducing schemes with nonliftable measures (see Example 5.2).

4.1. Characterizations of liftability. We describe the liftability prop-
erty in terms of the abstract representation of f via the tower construc-
tion. We shall exploit the techniques from [15] and [27]. Set

Ĩ = {(x, k) : x ∈ J, k = 0, · · · , τ(J)− 1, J ∈ S},

and define the map f̃ : Ĩ → Ĩ by

f̃(x, k) =

{
(x, k + 1), x ∈ J, 0 ≤ k < τ(J)− 1

(f τ(J)(x), 0), x ∈ J, k = τ(J)− 1
.

In what follows we shall denote by B the Borel σ-algebra in the corre-
sponding measure space. We define the projection map p̃ : Ĩ → X by
p̃(x, k) = fk(x) whenever x ∈ J . It is easy to see that f ◦ p̃ = p̃ ◦ f̃ .
We also use the notations: x̃ = (x, k), J(x̃) = J ∈ S if x ∈ J and
τ(x̃) = τ(J(x̃)).

Liftability of an f -invariant measure µ is equivalent to its liftability
to the abstract tower Ĩ. More precisely, the following statement holds.
Define the set W̃ ⊂ Ĩ by W̃ = {(x, 0) : x ∈ W}.

Proposition 4.1 (see [27]). For an f -invariant Borel probability mea-
sure µ on X there exists an induced measure ν on W such that π(ν) = µ

if and only if there exists a f̃ -invariant finite Borel probability measure
µ̃ on Ĩ for which µ = µ̃ ◦ p̃−1. In this case, ν = µ̃|W̃ ◦ p̃−1.

Let µ0 = µ|W . Define a measure µ̃0 on Ĩ by setting µ̃0(E, k) = µ0(E).
Note that µ = µ̃ ◦ p̃−1 implies that µ̃ � µ̃0 and hence, one can try to
construct the lift of µ using its density with respect to µ̃0.

Define the operator L̃ : L1(Ĩ ,B, µ̃0) → L1(Ĩ ,B, µ̃0) by the following
relation ∫

(L̃g1)g2dµ̃0 =

∫
g1(g2 ◦ f)dµ̃0

for all g1 ∈ L1(Ĩ ,B, µ̃0) and g2 ∈ L∞(Ĩ ,B, µ̃0).
We say that a subset Ẽ ⊂ Ĩ is bounded if the inducing time of any

point in Ẽ is bounded, i.e. there exists N ∈ N such that τ(x) ≤ N for
all (x, k) ∈ Ẽ.
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Consider the sequence of functions

Ãn =
1

n

n−1∑
k=0

L̃k1W̃ .

There exists an increasing sequence of numbers {nk} and a function

h̃ : Ĩ → [0, 1] such that for any bounded set Ẽ, we have

Ãnk
|Ẽ

w→ h̃|Ẽ.

Proposition 4.2 (see [27]). There exist a lift µ̃ for µ if and only if h̃

is not identically 0 for µ̃0-almost every point. In this case, µ̃ = h̃dµ̃0

is the lift of µ to the tower.

4.2. Criteria for liftability. Using the above result we shall obtain
the following criterion for liftability. Given a Borel set A ⊂ X and
J ∈ S, define

ε(J,A) =
1

τ(J)
Card{0 ≤ k ≤ τ(J)− 1; fk(J) ∩ A 6= ∅},

where Card E denotes the cardinality of the set E.

Theorem 4.3. For any f -invariant Borel ergodic probability measure
µ such that µ(W ) > 0, if there exists a number N ≥ 0 and a subset
A ⊂ I such that

(9) µ(A) > sup
τ(J)>N

ε(J,A),

then there exists a lift µ̃ for µ.

Proof. Assume that h̃ = 0 for µ̃0-almost every point. Consider the sets
ẼN ⊂ Ĩ given as

ẼN = {x̃ ∈ Ĩ : τ(x̃) ≤ N}.
Clearly, ẼN are bounded sets and we have

0 =

∫
ẼN

h̃ dµ̃0(x̃) = lim
k→∞

∫
ẼN

Ãnk
dµ̃0(x̃)

= lim
k→∞

∫
Ĩ

1

nk

nk−1∑
j=0

L̃j1W̃ 1ẼN
dµ̃0(x̃)

= lim
k→∞

∫
Ĩ

1

nk

nk−1∑
j=0

1W̃ 1f−j(ẼN )dµ̃0(x̃)

= lim
k→∞

∫
W̃

δN
k (x̃)dµ̃0(x̃),(10)
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where for x̃ ∈ W̃ ,

δN
k (x̃) =

1

nk

Card{0 ≤ j ≤ nk − 1 : f̃ j(x̃) ∈ ẼN}.

It follows that the sequence δN
k converges to zero in measure (with

respect to µ̃0) as k →∞ and hence, by passing to a proper subsequence
if necessary, we may assume that it converges µ̃0-almost everywhere.
Define:

AN
n (x) = {0 ≤ i ≤ n− 1 : f̃ i((x, 0)) /∈ ẼN}

= {0 ≤ i ≤ n− 1 : τ(f̃ i((x, 0))) > N}.

It follows from (10) that for µ-almost every x,

(11) lim
k→∞

CardAN
nk

(x)

nk

= 1.

By Birkhoff’s Ergodic Theorem, the following limit

(12) r(x) := lim
n→∞

1

n
Card{0 ≤ i ≤ n− 1, f i(x) ∈ A}

exists almost everywhere and is equal to µ(A).
Fix some x such that both (11) and (12) hold. Let x0 = x, τ0 = τ(x)

and define xn = f τn−1(xn−1), τn = τ(xn) for n ≥ 0. Note that we can
rewrite the trajectory of x in the following form

x0, . . . , f
τ0−1(x0), x1, . . . , f

τ1(x1), . . .

We also set m0 = 0 and mj =
∑j−1

i=0 τi. For any k, there exists l(k)
such that

ml(k)−1 < nk ≤ ml(k).

Lemma 4.4. We have that

lim
k→∞

ml(k) − CardAN
ml(k)

(x)

ml(k)

= 0.

Proof. Note that the inducing time of the point fml(k)−1(x) is τl(k)−1 =
ml(k) −ml(k)−1.

If τl(k)−1 > N the point f̃ j(x, 0) for j ∈ {ml(k)−1, . . . ,ml(k) − 1} has
inducing time larger than N and therefore {ml(k)−1, . . . ,ml(k) − 1} ⊂
AN

ml(k)
and {ml(k)−1, . . . , nk − 1} ⊂ AN

nk
. It follows that

{0, . . . ,ml(k) − 1} \ AN
ml(k)

= {0, . . . , nk − 1} \ AN
nk
,
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and hence,

ml(k) − CardAN
ml(k)

ml(k)

=
nk − CardAN

nk

ml(k)

≤
nk − CardAN

nk

nk

.

If τl(k)−1 ≤ N , we have

ml(k) − CardAN
ml(k)

ml(k)

≤
ml(k) − CardAN

ml(k)

nk

≤
nk − CardAN

nk

nk

+
N

nk

.

In either case we obtain

0 ≤ lim
k→∞

ml(k) − CardAN
ml(k)

ml(k)

≤ lim
k→∞

(
nk − CardAN

nk

nk

+
N

nk

)
= 0,

where the last equality follows from (11). �

By Lemma 4.4, we have

r(x) = lim
k→∞

1

ml(k)

Card{0 ≤ i ≤ ml(k) − 1, f i(x) ∈ A}

= lim
k→∞

1

CardAN
ml(k)

Card{i ∈ AN
ml(k)

, f i(x) ∈ A}.

Finally, we claim that

1

CardAN
ml(k)

Card{i ∈ AN
ml(k)

, f i(x) ∈ A} ≤ sup
τ(J)>N

ε(J,A).

Observe that AN
ml(k)

is the set of those 0 ≤ i ≤ ml(k) − 1 for which

τ(f̃ i(x, 0)) > N . It follows that

AN
ml(k)

=

l(k)−1⋃
j=0, τj>N

{mj, · · · ,mj+1 − 1}.
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This implies that

1

CardAN
ml(k)

Card{i ∈ AN
ml(k)

, f i(x) ∈ A}

=

∑l(k)−1
j=0, τj>N Card{mj ≤ i ≤ mj+1 − 1, f ix ∈ A}∑l(k)−1

j=0, τj>N τj

=

∑l(k)−1
j=0, τj>N Card{0 ≤ i ≤ τj − 1, f i(xj) ∈ A}∑l(k)−1

j=0, τj>N τj

≤
∑l(k)−1

j=0, τj>N Card{0 ≤ i ≤ τj − 1, f i(J(xj)) ∩ A 6= ∅}∑l(k)−1
j=0, τj>N τj

=
1∑l(k)−1

j=0, τj>N τj

l(k)−1∑
j=0, τj>N

τjε(J(xj), A)

≤ sup
0≤j≤l(k)−1, τj>N

ε(J(xj), N) ≤ sup
τ(J)>N

ε(J,A).

It follows that
µ(A) = r(x) ≤ sup

τ(J)>N

ε(J,A)

and it contradicts to our assumption. �

As immediate corollaries of the above result we obtain the following
statements.

Corollary 4.5. Assume that

sup
τ(J)>N

ε(J,W ) → 0

as N →∞. Then every measure µ with µ(W ) > 0 is liftable.

Corollary 4.6. Assume that the inducing time τ is the nth return time
to the base, i.e. for x ∈ J ,

τ(x) =
n∑

j=1

ρ(f j(x))

(where ρ is the first return time to the base). Then any invariant
measure µ with µ(W ) > 0 is liftable.

Proof. It is easy to see that

sup
τ(J)>N

ε(J,W ) =
n

N + 1
→ 0 as N →∞

and Corollary 4.5 applies. �
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A substantial generalization of the last result is the criterion for
liftability due to Zweimüller, see [27].

Proposition 4.7. An f -invariant Borel probability measure µ is liftable
provided that

∫
X
τdµ <∞.

5. Examples

Example 5.1.

We shall construct an example of a one-dimensional map of a com-
pact interval possessing inducing schemes, which illustrate various phe-
nomena associated with the liftability property. Namely,

1) for some potential function ϕ there exists a unique equilibrium
measure µϕ (with respect to the class of measures M(f,X)), which
has integrable inducing time;

2) for some potential function ϕ there exists a unique equilibrium
measure µϕ (with respect to the class of measures M(f,X)), which is
liftable but has non-integrable inducing time; in fact, all the invariant
ergodic measures for the map in the example are liftable;

3) for some potential function ϕ there exists a unique equilibrium
measure µϕ (with respect to the class of measures M(f, I)), which is
supported outside the tower.

Our example is built upon a construction by Zweimüller [27] for
abstract towers.

The map f is defined on the unit interval I. Set I(1) = [0, 1
2
], I(2) =

(1
2
, 1]. We choose f such that:

· it is continuous on I;
· it maps I(1) diffeomorphically onto [0, 1] and it maps I(2) dif-

feomorphically onto (0, 1];
· |f ′(x)| > a > 1 for x ∈ (0, 1

2
) ∪ (1

2
, 1);

· f(0) = 0, f(1
2
) = 1.

Let S be the set of intervals In such that I0 = I(2) and In = f−1(In−1)∩
I(1) for n ≥ 1. Let also τ(In) = n+1, n ≥ 0. Then {S, τ} is an inducing
scheme for f . As a result we have the map f : X → X (see (2)) and
the induced map F = f τ : W → W . Note that both X and W differ
from I by a countable set.

For α > 1, define

p0(α) =
1

1 +
∑

k≥1 k
−(1+α)



THERMODYNAMICS AND LIFTABILITY 17

and

pn(α) =
n−(1+α)

1 +
∑

k≥1 k
−(1+α)

, n ≥ 1,

and the potential function ϕα : I → R given as follows:

ϕα(x) =

{
log p0(α), x ∈ I0
log pn(α)

pn−1(α)
, x ∈ In, n ≥ 1.

Although the function ϕα(x) is not continuous on I the induced poten-
tial function ϕ̄α(x) is continuous on W . We claim that the following
statements hold:

(1) For the above inducing scheme {S, τ} every measure in M(f, I)
with µ(W ) > 0 is liftable, and there exists a unique equilibrium
measure µα for ϕα with respect to M(f,X).

(2) For the potential ϕα with α > 2, the equilibrium measure µα

has integrable inducing time.
(3) For 1 < α ≤ 2 the inducing time is not integrable with respect

to the equilibrium measure µα.
(4) Suppose f is C1+ε on [0, 1

2
) ∪ (1

2
, 1], and set

ψ(x) =


− log |f ′(x)|, x 6= 0, 1

2

a0, x = 0

a1, x = 1/2

.

Then for a0 large enough, the Dirac measure at 0 is the equilib-
rium measure for ψ (note that this measure is supported outside
the tower as 0 ∈ I \X).

To prove the first statement observe that for any interval In,

ε(In, I0) =
1

n+ 1
.

Hence,

sup
τ(In)≥N

{ε(In, I0)} =
1

N
→ 0

as N → ∞. It is easy to see that any invariant Borel probability
measure µ on X must have µ(I0) > 0 and hence, by Theorem 4.3,
every measure µ with µ(W ) > 0 is liftable.

To establish existence and uniqueness of equilibrium measures ob-
serve that the partition {In} is a countable Markov partition for the
map f on the tower, so that f is topologically conjugate to a subshift of
countable type via the coding map hr : ΣA → X. Here the transition
matrix A is such that a0,n = 1, n ≥ 0 and an,n−1 = 1, n ≥ 1 while
aij = 0 in all other cases. The subshift of countable type σr given by
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this matrix, is called the renewal shift. We also have that the induced
map F is topologically conjugate to the full countable Bernoulli shift
σ via the coding map hi : SN → W .

We start by considering the Bernoulli measure κ on SN given by
κα([n]) = pn(α). Note that

∑
n≥0 pn(α) = 1 and that κ is invariant

under the shift map σ. The measure να = (hi)∗κα is invariant under
the induced map F . Since

Qνα = 1 +
∑
k≥1

kpk(α) <∞,

we can consider µα = π(να), which is a Markov measure on the shift
space ΣA.

We claim that
∫

X
τdµα < ∞ when α > 2 and

∫
X
τdµα = ∞ when

1 < α ≤ 2. In fact,

µα(Ii) =
1

Qνα

∑
k≥i

pk(α) =

∑
k≥i pk(α)

1 +
∑

k≥1 kpk(α)
.

Furthermore,∫
X

τdµα =
∑
k≥0

(1+k)µα(Ik) = 1+
1

Qνα

∑
k≥1

k(k − 1)

2
pk(α) �

∑
k≥1

k2pk(α)

and the desired claim follows.
We shall now show that the measure µα is the unique equilibrium

measure for ϕα. Observe that the induced potential

ϕα(x) =
n−1∑
k=0

ϕα(fk(x)) = log pn(α), x ∈ In.

Set φα = ϕα ◦ hr and φα = ϕα ◦ hi. It suffices to show that µα ◦ hr is
the unique equilibrium measure for φα. We fix α and in what follows
we simplify our notations by writing φ = φα, ϕ = ϕα, pn = pn(α), etc.

To obtain our result we shall apply some methods in the theory
of countable Markov shifts, see for example, [22, 9]. Observe that
Vn(φ) = 0 for any n. Define

Z0(φ, [0]) = 1, Zn(φ, [0]) =
∑

σnx=x

expφn(x)1[0](x)

and

Z∗n(φ, [0]) =
∑

σnx=x,ρ(x)=n

expφn(x)1[0](x),
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where φn(x) =
∑n−1

k=0 φ(σkx) and ρ(x) is the first return time to [0].
Note that

PG(φ) = PG(φ, [0]) = lim
n→∞

1

n
logZn(φ, [0]).

We first show that PG(φ) = 0. Set

T (z) =
∑
n≥0

znZn(φ, [0]), R(z) =
∑
n≥1

znZ∗n(φ, [0]).

The fact that Vn(φ) = 0 for all n implies that

Zn(φ, [0]) = Z∗1(φ, [0])Zn−1(φ, [0]) + · · ·
+ Z∗n−1(φ, [0])Z1(φ, [0]) + Z∗n(φ, [0]).

This in turn implies the following equation of formal power series known
as the renewal equation:

T (z) =
1

1−R(z)
.

Observe that expPG(φ, [0]) is exactly the radius of convergence for
T (z), and the latter is exactly the solution of the equation R(z) = 1.
Notice that Z∗n(φ, [0]) = pn−1, and the fact that

∑
k≥0 pk = 1 implies

that R(1) = 1. We conclude that PG(φ) = 0.
By the variational principle (see Theorem 3.1), to show that µ ◦ hr

is a equilibrium measure, it suffices to show that

(13) hµ◦hr(σr) +

∫
ΣA

φ d(µ ◦ hr) = 0.

In fact, if ν is the induced measure for µ, by Abramov’s and Kac’s
formulas (see Proposition 3.3),

hµ(f) +

∫
X

ϕdµ =
1

Qν

(
hν(F ) +

∫
W

ϕdν
)
.

Since ν ◦ hi = κ is a Bernoulli measure, we find that

hν(F ) = −
∑
k≥0

pk log pk,

∫
W

ϕdν =
∑
k≥0

pk log pk.

It follows that

hµ(f) +

∫
X

ϕdµ =
1

Qν

(
hν(F ) +

∫
W

ϕdν
)

= 0.

This implies (13). We conclude that µ◦hr is an equilibrium measure for
φ on ΣA. As the potential φ has summable variations, is bounded from
above, and has finite Gurevich pressure, Theorem 1.1 from [9] implies
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that the equilibrium measure is unique. By the topological conjugacy,
µ is the unique equilibrium measure for ϕ on X.

To prove the last statement note that 0 /∈ X. Pick any

a0 > sup
µ∈M(f,X)

{hµ(f) +

∫
X

ψdµ}

(observe that the function ψ is bounded from above and hence, the
supremum is finite). Since M(f,X) only contains measures supported
on X, it is clear that in this case the Dirac measure at 0 is the equilib-
rium measure among all the measures supported on I.

Example 5.2.

We describe an example due to Bruin (oral communication) that
shows that there are inducing schemes which allow nonliftable mea-
sures. Indeed, we show that such a measure can be a unique equi-
librium measures for an appropriately chosen potential function. A
similar construction was used by Zweimüller [27].

Consider the map f = 2x (mod 1) of the unit interval I and the
countable partition of I by intervals In constructed in the previous
example. This partition codes f into the renewal shift. Now subdivide
any interval In into 22n

intervals of equal length and call them Ij
n,

j = 1, . . . , 22n
. Define the inducing time τ(Ij

n) = 2n +n. We claim that
the Lebesgue measure λ, which is invariant under f , is not liftable to
this inducing scheme. Observe that λ is an equilibrium measure for f
(for the potential ϕ = 0). We have that∫

I

τ dλ =
∑
n,j

τ(Ij
n)λ(Ij

n) =
∑

n

(2n + n)λ(In) = ∞.

To show the λ is not liftable let us note that any induced measure i(λ)
of λ must be F -invariant and absolute continuous with respect to λ.
Since in our case W = X and the measure λ is F -invariant and ergodic,
λ itself is the only candidate, i.e., i(λ) = λ. However, this is impossible
as

∫
I
τ dλ = ∞. Hence, λ is not liftable.
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