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Abstract. We consider infinite-dimensional dynamical systems which are lattices of
some weakly-interacting hyperbolic systems. We describe the construction of their
BRS-measures which are mixing with respect to the group of space-time shifts. The
proofs use methods of statistical mechanics.

1. INTRODUCTION

I. M. Gelfand always taught us that there might be different infinities. In this paper
we consider those infinite-dimensional dynamical systems for which all degrees of free-
dom are in some sense equivalent. The direct consequence of this equivalence is the
appearence of a new symmetry group acting on the degrees of freedom by shifts and
commuting with the dynamics. Our main problem will be to study ergodic properties
of the total group generated by the shifts and the dynamics, i.e. the group of space-time
translations. If this group preserves some probability measure and is mixing with respect
to it then we shall say that the space-time dynamics exhibits the space-time chaos.

The first example which motivated our investigations was the diffusion-reaction
equation of the form
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4y %:-=f(u)+eAu.

The group of space translations acts as the group of shifts (Su)(z) = u(zx+ 2),z €
R! and commutes obviously with the equation (1). However this example is still too
difficult for the complete analysis and we shall deal with more simple models. Infinite-
dimensional dynamical systems with space-time translations are oftenly encountered in
statistical mechanics (see [1]). It is also believed that the fully developped turbulence
involves infinitely many degrees of freedom and in principle can be described by systems
of a similar type after some normalization.

Our first step consists in discretizing (1) and consideration the transformations of the
following type

)] U1 (2) = flu(2)) + e(u(z+ D + u(z - 1)),

x € Z¥. We shall deal only with the case of v = 1. The last terms describes the
interaction of different degrees of freedom. We shall see that it can be taken in a much
more general form. For small e the properties of the mapping corresponding to (2)
depend very heavily on the properties of f. In [2] the authors considered the situation
when f was anone-dimensional expanding map but the second term in) (2) was different.
The main result of [2] was the contruction of a natural invariant measure with respect to
the group Z? generated by the shift and the dynamics which was mixing, i. ¢. we had
the space-time chaos.

The goal of this and subsequent papers is to show a much more general result which
states the space-time chaos when is an arbitrary hyperbolic transformation. The cor-
responding technique for analogous finite- dimensional situations is quite well-known
(see [1, 3, 4]). The so-called Markov partitions give a possibility to reduce all aris-
ing problems to problems conceming one-dimensional lattice models of statistical me-
chanics with rapidly decaying interactions. We shall show that the infinite-dimensional
mappings defined by (2) can be reduced in some sense to two-dimensional lattice mod-
els. The theory of such models is less trivial because there migh be phase-tranitions.
The case of small € corresponds to the high-temperature region in statistical mechanics
where there are no phase transitions. However it is possible that the increase of ¢ leads
to some interesting bifurcations similar to phase transitions. From the point of view of
dynamics it can be connected with the widely observed coherent structures in extended
systems.

Now we shall gibe more exact definitions.

Denote by M a C* smooth compact p-dimensional Riemannian manifold. As-
sume that f is a topologically transitive C?-Anosov diffeomorphism. Its stable and
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unstable subspaces at any point z € M are denoted as E(z), Ey(z). Without any
loss of generality we may assume that M is equipped with the Liapunov metrics. For
any xr € M we have

T,M = Ei(z) ® Ey(1),

(3) 8,u 3,4
def’ (z) = Ef’ (f(x))
and fofcvery n>0

lld fPoll < A" [Jofl, v € Ef(2),
ldF "ol <A™ [lof|, v € Ex(2),

C)

where A,0 < A < 1 is a constant not depending on z and n.
Consider now infinitely many copies of M and f ie. M; = M,f, = fie Z.
Put

M= ®M|',f= ®f,

ieZ i€

M is an infinite-dimensional Banch manifold with the norm ||z|| = sup ||z,l|, z =
i€
(z), 2, €TM;, Fe C? and is a topologically transitive Anosov diffeomorphism for
which stable and unstable subspaces at z € M have the form

&Mz = @ E;°(z)

i€
and satisfy (3) and (4). It is natural to call F as a chain of non-interacting Anosov

diffeomorphisms.
Forany m,n& Z,m < n denote

and P, : M — M, isthe natural projection, P, = P

—m,m*

Now we shall introduce the interaction. Let g, be a C%-map of M onto M,.

DEFINITION 1. g, is short-ranged if forsome C;, 0 < Cy < 0o and 14,0 < 745 < 1
there exists a sequence of €2 -maps g((,”) of M_,,onto M,,n=0,1,2,... suchthat
8s% = Id, dist (g™, 8™ ") < Cp b, dista(go, 88" o P,) < Cy 3.

In the last inequalities gi™, g$" ™" are considered as maps of M n
dist c is the distance in the C?-topology.

onto M,,

n
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If g, = g(()") for some n then we shall say that g, is an interaction of the finite
range. The smallest n is called the radius of interaction. In what follows we shall
consider only short-ranged interaction not mentioning this again. Let S be the shift to
the right, i.e. (Sz); = z,,; where z = (z,). Put g, = S, 5", = §-ig{” &%,
they map M (or M_,,;,.;) onto M, and is also short-ranged. Now we define the
interaction map g which acts by the formula

8(x) = 8( . Xy T, Ty, T,y Tyyen) =
=(..8 4(2),...,8.1(2),8(2),...,8,(2),..).

The form g resembles in many respects maps which are encountered in the theory of
cellular automata.

We shall study in this paper maps @ = g o F which can be called chains of interact-
ing Anosov maps. For such maps we shall construct natural measures invariant under
the action of the group Z? generated by @ and S provided that C,,z, arc suffi-
ciently small. These measures are analogous of BRS-measures in the theory of finite-
dimensional hyperbolic systems (see [1]).

2. PROPERTIES OF STABLE AND UNSTABLE MANIFOLDS OF @

The map @ has natural finite-dimensional approximations. Namely, put ®,, =
8mn © Fmy forany m,n,m <nand n—m is even, where

= (0 (1 Lo 0
Bom Ty s Ty) = (gfn)zm, i1 Tmals e B Ten,.. o8 ):cn) :

PROPOSITION 1. For sufficiently small Cy,x, the maps ®,®,, = are transitive C?-
Anosov diffeomorphisms. n

REMARK. One can show that @ ,®,_ are topologically conjugate with F,F,, , re-
spectively with the help of homeomorphisms which are close to identity, in the last casc

mn

uniformly over m, n.

Denote by E3"(y), &y (y) the stable and unstable subspaces for the mappings @
and @, .. Also p* is me";;lctn'cs in the tangent space induced by the metrics p on M
where p(z,y) = sup p;(z;,y,) and p; is the Riemannian distance on M,.

1

PROPOSITION 2. Forany y € M

P’ (534“(1/),5;"(1/)) < const - z,;
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forany y € M, ,

o (83;:.‘(1/), S;Z'n(y)> < const - zy. "

Our first essential result concems the structure of stable and unstable manifolds of ®
and @, . The formal theory gives the following. Denote by By“(y), B, s(y) the

m,n,d
balls of radius § centered at the origin in the subspaces Ex*(y), 2" (y) respectively.

PROPOSITION 3. Forsome § = 6(Cy,z¢) > 0,3, A <X <1

1) forany y € M there exists the one-to-one mappings ¢**(y) : B*(y) - M
such that Vi (y) = ¢*(y) Bi(y), V5'(y) = ¢"(y) By(y) are local stable and unstable
manifolds of the point y;

2) foreach m,n, m < n andany y € M,, . there exist the one-to-one mappings

ppi ) 1 By s(v) — M, suchthat 'V, s(y) = o5, () By, 5(9), Vo 15 () =
Conn(¥) Brns( y) are local stable und unstable manifolds of the point y;

3 (0 =y, (1(0) = 5
4)

p(@Fy,@% 2) < \ply,2) for k>0, z€ V(w);
p(@*y, ®*2) <A\p(y,2) for k>0, z€ V(w);

p(Pf 0, ®f2) < Moy, ) for £20, 2€ Vg, 50

o @7k, @752) < Moly, ) for k20, 2 €V, (0)m

The next lemma describes the first important property of V;*(y) which apparently
is valid only for small G, z,.

LEMMA 1. For small enough C,,x, there cxists a constant C, such that
1) fix i,k € Z and take y € M and arbitrary v',u" € B;"(y) for which
uj=uj forall j#k then
P (™ (W), (P ()(u");) < Ozl pyuy, u;
dist(d p™*(y) (v, dp™*(»)(u")) < Cyzh Mo, (u}, u;

2) take m,n,m < n,fixi,k,m <1,k <nandtake ye M

m,n?’ UI, ul E B:,::lma(y)
for which u; = uj forall j # k; then

p((@5 (D (W), (95 (u"))) < Crab™ pyul, ud);
dist(d 3% () (u);,  dpst(v)(u"),) < Cyzh Mo, (u, u). .
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This lemma and the previous propositions show that each local manifold V{#(y),
Vs'(y) has a natural structure of the direct product. The mappings ¢*“(y) introduce
this structure. Lemma 1 shows that if we consider the i-th coordinate (¢**(y)(u));
as a mapping of By“(y) into M, then it is short-ranged in the same meaning as the
short-range of the interaction. On should also remark that the interaction might have a
finite radius of interaction but ¢**(y) will not have this property. The same is true for
P ).

Further we shall deal with functions, mappings etc. which depend very weakly on
variables whose number is far from some fixed number k € Z . In order to treat such
objects we need a new metrics. Namely, fixz,,0 < z; <1 andtake y',¢" € M .

—li—k
pu(o/ 9" = max p(uf

LEMMA 2. For sufficiently small z, there exists a constant C, such that forany y €
M__ and >0

mn
or (074 0,054 2) <Cpn, ), 2 €V (0

Pr (q)rln,n Y, P 2) <CMply,2), 2z €VE (). =

3. CONSTRUCTION OF NATURAL MEASURES ON LOCAL MANIFOLDS

In the finite-dimensional situtations the first step which gives BRS-measures is the
constructions of the measures on local stable and unstable manifolds which are limits
of the images of the Lebesgue measures. In our case these local manifolds are infinite-
dimensional. However the natural measures also exist but they are decribed as a non-
homogeneous Gibbs states.

Fix m,n,m < n,y € M, ,. Forany z € Vo :(y) and [ > O consider the
expression

!
Tl 2,0, 1) = [[T(® 5 2) (T4 @ 5]
i=0
where Z*(®,,}2) is the Jacobian of the mapping
O @ Vs () = @V ().
It is easy to show that there exists the limit

Tma(2,9) = Hm (2, y, b.
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The limiting function is uniformly continuous in y € M,

mn and z € Vo (y) and
satisfies the homologous equation

T (2,0) T o (w,2) = 1, (w,9).

Introduce the probability measure ., (- y) on By _;(y) by putting

d YY) = —— d -dz_.

B a2 ) Zo (D) T (2, V) T o (2)d 2, 2,
Here z,,,...,2, are natural coordinates on By, (y); 7, ,(2) is the Jaconian which
comes from the mapping ¢y, . (v) : By, .5(v) — Vo 5(y) insuchaway that 7, .(2)
dz, -...-dz, is the differential of the Riemannian volume on V3 . ;(y); Z,, .(y) is

the normalizanon factor. It is an analogy of the partition function in statlsncal physics.
Our next problem is to study the limit of measures g, ,(+; y) as m — —o0,n — co.
The point y is now fixed and we shall not denote the dependence on y explicitly.

Put P, (z,,...,2,) = (2, (1)) ', (2,0) 7, ,(2) and

Pm,"(zm,...,zk)=/Pm,,(zm,...,z”)dzk+l Y P

~ P (2’ zk)
P, (zlze_q,-o0r2) =
’ el Pm’ﬂ(zm,.. 2 1)

LEMMA 3. For sufficiently small Cy,x, there exist 4,0 < 7, < 1,C; > 0 not
depending on m,n and such that

P (Z|2p 1y sZiyennyZm)
exp{—Cy7; '} < min 7~ — 2 P <
2,2 Pm,n(zk|zk_1,...,z-,...,zm)
P (zlz_4,...,25,...,2.)
< max e ’/]/’ 2om <CXP{03"11 }
Z2) Poo(Zlze q,-002],0002,)

The proof of this lemma is based upon the estimation given in the lemmas 1, 2. It also
shows that one cantake v; — 0, C; — 0 as z; — 0, C; — 0. We are encountered
now with functions depending on many variables but the dependence on variables which
have numbers far from some fixed number decays quickly with the distance from this
number. We shall need a special definition for this.

DEFINITION 2. Let be given k,m < k < n, v € (0,1). Then D,(«y) is the space of
continuous functions h(z), z € By, , s(y) such that

max |h(z") — h(2")| < C(h)yV*.
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Maximum is taken over all 2z’ = (2)),z" = (2]) forwhich z[ =2/ i1=m,...,n for
all i j. Infimum of all C(h) is denoted by [|A]|,.

We shall deal also with positive functions h(z) for which In h(2) € D, (7). The
space of such functions is denoted by D (7). For A € DY(7)

h(2")
h(z") <

Il = ing {02 exp (-0} < min

h(2)
h(z")

< max < exp{—cw'k"“}}

where min and max are taken over such pairs 2/, 2" that 2}, 2/ forall ¢ ¥ j. Lemma
3 implies that P, (z;lz;_1,...,2,) € Dy(v).
Now take a function h(z_,,...,z,) € D;() and introduce the stochastic operator

Q) (2241 = /h(zm,...,zk_l,z) Pm’n(z]zk_l,...,zm)dz.

LEMMA 4. Under the conditions of lemma 3 there exist y, € (7,,1) and >, € (0,1)
such that for any

h(2py -1 2) = h €D(,)
Qih € Dy_1(72), 1Qkhll,, < XsliAll,,

Proof. We have
(Qkh)(zm,...,z},...,zk_l) —(Qkh)(zm,...,z;',...,zkwl) =
= /[h(zm,...,z;-,...,zk_l,z) — b2y 2), 250, 2) )

Ppa(2lze 1,2 2 )d 2

+/h(zm,..‘,z}',...,zk_l,z)Pmm(z|zk_1,...,z},...,z )

) Poa(2lzp y,h2),,2,)
Pon(zlzy 1,320 02)

Hence
QP 2y, 2y 2k1) = (Quh)(Zgy -y 2] 552 )| <
<Oy + C(W Gy =
= C(hyyy 7 (m + Cimy)-
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Putting M5 = ny, + Cy7y; we get the statement of lemma. n

Now we can complete the construction of measures on the local unstable manifolds.
Take any y € M,y = {..., ¥, -+ ¥ns-+-}rUmn = Pp,y and construct the balls
By 259, B§(yp ). We may assume that B, .(y) C B§(y,,,). Take any semi-
infinite sequence (...z,,...,2.).

LEMMA 5. There exists the limit

P(zlzg_q,--2) ml_i.n_loo P, .(zlz_1,...,2,).

n—oQ

The limiting function is a probability density and belongs to the space D°(~y,).

For proving the lemma we follow for changes of densities P,, ,, when we pass from
m to m—1 and from n to n+ 1. Inthe first case the change is less then const -y ~™. It
follows directly from Lemma 3. The passage n — n+1 isslightly more difficult. Firstly
we integrate over the variable n+ 1 and geta function g(z,,,...,2,) € D,(v,). Then
we apply Lemma 4 which shows that after n— k integrationsof g over dz,,...,d 2z,
we get a function which is exponentially close to a constant. But this constant is equal to
one because the integral of the function ¢ is equal to one. Now we formulate the final
result.

THEOREM 1. Take any B¥(y) = & Bi(y),y={....¥pm -+ Yn,...}- The proba-
i€

bility measures p,,,, converge weakly as m — —00,n — oo [0 a probability measure

BBe)- defined the Borel §-algebra of the space of the space B(y). L)

The one-sided conditional probabilitics of this measure are equal to the limiting den-
sities given in Lemma 5.

In the next section we discuss the problem how to construct the measure on M com-
patible with the measures 4 Bi(y)-

4. THE CONSTRUCTION OF THE BRS-MEASURE

As in the finite-dimensional situation the natural way to construct the BRS- measure
is to take the shifts (®")*u Bi(y) aT€ consider their weak limit. However it is not so sim-
ple due to the infinite dimension of the phase space. Firstly we remark that the measures
K y(y) 2rC compatible in the following sense. Take y; € V#(y) and consider the inter-
section. ©*(y) (B (v)) Ne*(y;)(Bg(y,)). Then the restrictions of B Be(y) BB2(y,)
to this intersection coincide up to a constant factor. Thus we have on each total unstable
manifold a family of compatible measures.
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Construct a partition ¢ which is Markov with respect to the map @ and invariant
under S. As in the case of finite-dimensional dynamical systems one can construct first
some Marcov cover (cf. [1, 3, 4]). The Markov partition ¢ determines the symbolic rep-
resentation of our Z 2 -dynamical system. As in {2] the methods of statistical mechanics
give a posibility to show that there exist only one invariant measure which produces con-
ditional measures on local layers constructed above. Detailed proofs of all formulated
results will be published elsewhere.
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