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Abstract: We develop the multifractal analysis of conformal axiagnflows. This in-
cludes the study of the Hausdorff dimension of basic sets of the flow, the description
of the dimension spectra for pointwise dimension and for Lyapunov exponents and the
multifractal decomposition associated with these spectra. The main tool of study is the
thermodynamic formalism for hyperbolic flows by Bowen and Ruelle. Examples include
suspensions over axiomconformal diffeomorphisms, Anosov flows, and in particular,
geodesic flows on compact smooth surfaces of negative curvature.

1. Introduction

The multifractal analysis of dynamical systems has recently become a popular topic in
the dimension theory of dynamical systems. By now only conformal dynamical systems

with discrete time have been subjects of study. They include conformal expanding maps
and conformal axiom diffeomorphisms (see [10] for the definition of conformal axiom

A diffeomorphisms, related results, and further references).

In this paper we extend the study to include conformal dynamical systems with
continuous time, more precisely, conformal axidrfiows. Our first result is the formula
for the Hausdorff dimension of basic sets of axidrflows (see Sect. 4). Itis an extension
to the continuous time case of the famous Bowen pressure formula for the Hausdorff
dimension of hyperbolic sets.

We then consider the two dimension spectra: the dimension spectrum for pointwise
dimensions generated by Gibbs measures and the dimension spectrum for Lyapunov
exponents. Using the symbolic representation of axibrftows by suspensions over
subshifts of finite type and the associated thermodynamic formalism of Bowen and
Ruelle ([4]), we obtain a complete description of these spectra. The statements of our
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results are similar in spirit to those in the discrete time case but proofs require some
substantial technical modifications.

We stress that we handle only axiofiflows which are conformal and we introduce
and study this notion in Sect. 3. Examples include suspensions over conformalAaxiom
diffeomorphisms and two-dimensional Anosov flows. Our results provide, in particular,
a formula for the dimension and a description of the dimension spectra for pointwise
dimensions and for Lyapunov exponents for the time-one map of the flow. This is the
first example of a partially hyperbolic diffeomorphism for which such results are now
known.

Let us emphasize that, in general, both dimension spectra are non-trivial. More pre-
cisely, as we show in Sect. 5, the dimension spectrum for pointwise dimension is trivial
(i.e., is as-function) if and only if the Gibbs measure is the measure of full dimension.
For an Anosov flow it holds if it preserves a smooth measure.

Furthermore, the dimension spectrum for Lyapunov exponents is trivial if and only
if the measure of full dimension coincides with the measure of maximal entropy. We
apply this statement to geodesic flows on compadimensional Riemannian manifolds
of negative curvature. Far = 2 we have that the spectrum is trivial if and only if the
topological entropy of the flow coincide with the metric entropy (see Sect. 3). This
provides a new insight into the famous Katok’s entropy conjecture (see [8]} Fa2,
the requirement that the flow is conformal implies that the curvature is constant. In
particular, the dimension spectrum for Lyapunov exponents is trivial.

Finally we describe multifractal decomposition associated with the two spectra. More
detailed description can be found in [2].

2. Preliminaries

Let M be a smooth finite-dimensional Riemannian manifold. Throughout this paper
ff: M — M is a flow onM without fixed points generated by @ -vector field

V,r>1,ie,908 — v(x) for everyx € M. A compactf’-invariant setA C M is
said to behyperbalic if there exist a continuous splitting of the tangent burithévl =
E® @ E™ @ X and constant€ > 0 and O< % such that for every € A andr € R,

1. df' (EW(x)) = EO(f'(x), dff (E¥(x)) = EW(f'(x)),and X = {aV :
a € R} is a one-dimensional subbundle;
2. forallr >0,

ldf'vll < Ce ||| if ve EW(x),
ldf "v|| < Ce |v| if ve EW(x).

The subspaces® (x) andE™ (x) are calledtableandunstablesubspacesatx respec-
tively and they depend Hélder continuously.arit is well-known (see, for example, [8])

that for everyx € A one can constructable and unstable local manifolds, Wl(s)(x)
and Wl(”)(x) They have the following properties:

3. xe€ Wl(é)(x) X € Wl(")(x)
4. WS (x) = EO(x), oW (x) = E®(x);
5. WS @) € WS 0), I WE () € W (F0);
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6. there existk > 0 and O< u such that for every > 0,

p(f (), f1(x) < Ke ™M p(y, x) forall y € W (x)

and
p(fT' ), £ () < Ke M p(y, x) forall y € Wi (x),
wherep is the distance itV induced by the Riemannian metric.

A hyperbolic setA is calledlocally maximal if there exists a neighborhodd of A

such that
A= [ rw.

—00<I<00

For a locally maximal hyperbolic set the following property holds:

7. for everye > O there exist$ > 0 such that for any two points, y € A with
p(x,y) < éone canfind a number= r(x, y), |t| < ¢, for which the intersection

WS (1) N W ()

consists of a single pointe A. We denote this point by = [x, y]; moreover, the
mapst (x, y) and[x, y] are continuous.

We definestable andunstable global manifoldsatx € A by

WO = (Wee( @), wOw = (e~ w).

>0 >0

They can be characterized as follows:

WO ={yeA: p(f'(y), f'(x)) > 0 ast — oo},
W) ={yeA: p(f " (»), f'(x)) = 0 ast — oo}

A flow f' is called anaxiom A flow if its set of non-wandering points is hyperbolic.
Let us remark that we deal only with flows without fixed points. If this assumption
is dropped one should assume in the above definition that the flow has finitely many
hyperbolic fixed points.

The Smale Spectral Decomposition Theorem claims (see [8]) that in this case the
hyperbolic set can be decomposed into finitely many disjoint clgéadvariant locally
maximal hyperbolic sets on each of whighis topologically transitive. These sets are
calledbasic sets.

From now on we will assume thgt is topologically transitive on a locally maximal
hyperbolic setA. One can show that periodic orbits are densa in

In [3], Bowen constructed Markov partitions of basic sets (see also [13] for the case
of Anosov flows). We provide here a concise description of his results. Given a point
x € A, consider a small compact didk containingx of co-dimension one which is
transversal to the floy”’. This disk is a local section of the flow, i.e., there exists 0
such thatthe mafy, 1) — f'(y) is a diffeomorphism of the direct produbtx [—7, 7]
onto a neighborhood’; (D). The projectionPp : U, (D) — D is a differentiable map.

Consider now a closed sBt ¢ A N D which does not intersect the boundarg.

For any two pointy, z € I let{y, z} = Pply, z]. The sefll is said to be aectangle if
I1 = intIT (where the interior of1 is considered with respect to the induced topology
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of AN D)and{y, z} € Il foranyy, z € II. If [T is a rectangle then for everye IT we
set
() . ©
W, ID ={{x,y}:yell}=0nNPp (UT(D) N Wloc(x))a 2
W, ) - (2.2
e @ T = {{z.x} rz € M) =TIN Pp (UT(D) N Wlffc)(x)>

(we assume that diaim is much smaller than the size of local stable and unstable
manifolds).

A collection of rectangle§ = {Ily, ..., I1,} is calledregular of size rq if there
exist small compact co-dimension one didhs, ..., D,, which are transversal to the
flow f7, such that
1. diamD; < rg andIl; C intD;;

2. fori # j at least one of the se®; N f1%°1p; or D; N fI0Ip; is empty; in
particular,D; N D; = @,
3. A = fl=0.0IP(T), wherel'(T) = M1 U - - - U TI,,.

LetT = {Il4,..., I1,} be a regular collection of rectangles of size For every
x € I'(T) one can find the smallest positive numb@n < rgsuchthatf’™ (x) e I'(7).
Since the disk®D; are disjoint there exists a numher> 0 such that (x) > g for all x.
The mapHy : I'(T) — ['(7) given by

Hy(x) = '@ (x) 2.2
is one-to-one. Note that the maggs) and Hy are not continuous of (7) but on

I'(T) = {x e O(T) : (HP*(x) e | JintT; forall keZj. 2.3)
i=1
The setl”(T) is dense im" (7) and the set);cr f' (I''(T)) is dense inA.
Given two rectanglesl; andIl; we denote by

UM, M) ={wel'(T): well, Hy(w)eTl,},
2.4

V(I TTj) = {w e T(T) : w e I1;, Hy'(w) e I;}.

A Markov collection of size rg (for a basic setA) is a regular collectiory’ =
{4, ..., I1,} of rectangles of sizey which satisfies the following conditions: for any
1<i,j<n,

1. if x € U(IT;, 1) then WS) (x, TT) € U(TT;, T ));

[o]e}

2. if y € V(II;, TT;) then W (y, TT)  V(IT;, 1)

ocC
(see (2.1)). In [3], Bowen proved that for any sufficiently smglihere exist a Markov
collection of sizer.
Given a rectanglé€l; € T, we call the set

R={J) U fmwca 2.5)

xell; 0<t<t(x)

aMarkov set (corresponding to the Markov collectidh). Note thatR; = intR; and
intR; NintR; = ¢ for anyi # j.

Using Markov collections one can obtain symbolic representations of Adidiows
by symbolic suspension flows (see Appendix; see also [4]).
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Proposition 2.1. Let A bea basic set for an axiom A flow f* generated by a C-vector
field V. Then there exists a topologically mixing subshift of finite type (X4, o) (see
Appendix), a positive Holder continuous function ¢ (in the metric dg for some g > 1,
(see(A.22)), and acontinuousprojectionmap x : A(A, ¥) — A suchthat thefollowing
diagram

AA W) —2 A4 )

«] K
f!
A — A

is commutative with §? a symbolic suspension flow (see (A.24)).

The mapy is called thecoding map.

The transfer matrid = (a;,;) is uniquely determined by a Markov collection for
A. Namely, ifT = {ITy, ..., I1,} is such a collection thes ; = 1 if and only if there
exists a poink € I'"(T) such thatc € IT; and Hy(x) € I1; (see (2.2) and (2.3)).

As an immediate consequence of Proposition 2.1 we obtain the following statement.

Proposition 2.2. Let A be a basic set for anaxiom A flow f” and ¢ : A — R aHolder
continuous function. Then there exists a unique equilibrium measure v, corresponding
to ¢ (see (A.21)). Moreover, the measure v,, is ergodic and positive on open sets.

We describe the local structure of an equilibrium measwaresponding to a Holder
continuous function (see part 3 of the Appendix).

Let R1,..., R, be the Markov sets corresponding to a Markov collectiofior
A. Let us fix a setr; and consider the partitions™ and&®) of R; by local stable
and unstable manifolds. Denote b (x) andv® (x) the corresponding conditional
measures onV," (x) N R; and W) (x) N R; (wherex e R;) generated by. The
following statement shows that equilibrium measures have local product structure. Its
proof follows from Proposition A.5 (see Appendix) and local product structure of Gibbs
measures for subshifts of finite type (see [10]).

Proposition 2.3. Thereare positive constants A1 and A2 such that for somepointx € R;
and any Borel set E C R;

A / KOs 2 AV () dvO (@) dt < v(E)
ki (2.6)
< 4 / XE (s 200 dv@ () dv® (2) di

i

wherey € W (x) and z € W) (x).

3. Conformal Axiom A Flows

Let F = {f’} be aC?-flow on a locally maximal hyperbolic set. We say thatF
is u-conformal (respectively;s-conformal) if there exists a continuous functioh®
(respectivelyA®) on A x R such that for every € A andr € R,

df'| g = A @, 0 1" (x, 1),
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respectively,
df'lpo e = AV, 0 19 (x, 1),

whereI®(x,t) : E®(x) - E®(f'x) and I9(x, 1) : E®(x) —» EW(f'x) are
isometries.
We define functiong ™ (x) anda® (x) by

9 _loglldf'| g I
a™(x) = Y log A (x, 1) ;=0 = lim M
: 10 :

9 ~loglldf! |z
a®x) = Zlog AY (x, 1) |,—o = lim oglldf 1w Il

ot t—0 t
Since the subspac&$® (x) andE®) (x) depend Holder continuously arthe functions
a™ (x) anda® (x) are also Holder continuous. Note thd¥) (x) > 0 anda® (x) < 0
for everyx € A. For anyx € A and anyr € R, we have

t
Idf () |l = llv]l exp f a®(f*(x))dr foranyve E“(x), (31
0
and
t
Ildf' (w) |l = lw] exp / a® (fT(x))dv  forany w e E®(x). (3.2)
0

Aflow F = {f'} on A is calledconformal if it is u-conformal and-conformal as well.
It is easy to see that a three-dimensional flow on a locally maximal hyperbolic set is
conformal.

If F = {f'}is aconformal flow then for every € A the Lyapunov exponent at
takes on two values which are given by

log ldfL| !
) = lim QMleowl 3/ a(f () dr >0, (33
0

t—>00 t t—00 t

w00 = i

t t—o0 f

log |ldfE| zs !
glldfilzowl _ i, }/ a9 (T dr <0 (3.4)
0

(provided the limit exists). I is an f-invariant measure then by the Birkhoff ergodic

theorem, the above limits existalmost everywhere, and if is ergodic then they are

constant almost everywhere. We denote the corresponding valagsy and., < 0.
We describe some examples of conformal axiériows.

1. A suspension flow over a conformal axiotrdiffeomorphism is a conformal axiom
A flow. Note that if the roof function of a suspension flow is not conomologous to a
constant then the corresponding suspension flow is mixing.

2. Consider a conformal Anosov flof. Let A be a closed locally maximal hyperbolic
set forF. Then the restriction of'| 5 is a conformal axionA flow.

3. Consider the geodesic flow on a compact Riemannian marifotd negative cur-
vature. The flow acts on the spag®l = {(x,v) : x € M, v € T,}M, |v|| = 1} of
unit tangent vectors. We endow the second tangent buritilel with a Riemannian
metric whose projection t&'M is the given metric. If dind = 2 then the geodesic
flow is conformal since stable and unstable subspaces are one dimensional, and our
results apply.
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If dim M > 3 the result in [7] shows that conformality of the geodesic flow implies
thatM is of constant curvature (regardless of the metric on the second tangent bundle).
We thank M. Kanai for informing us on his result.

Onthe other hand, if the curvatureldfis constant then the geodesic flow is conformal
provided the second tangent bundle is endowed with the canonical metric.

Remark 3.1. Our main results (Theorems 4.1, 4.2, 5.1, 5.2, and 5.3) can be easily
generalized to the case when the flow is not conformal, but has bounded distortion.
By this we mean that there exist Hélder continuous functigfsanda® on A, and
constantsk1, K» > 0 such thatforany € A, v € E®(x), w € E® (x), andr € R,

t t
K1 |lvll exp /O a"“(fT(x)dr < |ldf' )|l < K2llv]| exp fo a" (f7(x))dr,
and
t t
K flwll exp fo aO(F ) dr < [dff )| < Kz w] exp /0 a9 (f* () de

(compare to (3.1) and (3.2) ). We thank A. Katok for providing us with this remark.

4. Hausdor ff and Box Dimension of Basic Setsfor Conformal Axiom A Flows
Let A be a basic set for a-conformal axiomA flow F = { f’}. Consider the function
—t®a™ (x) (4.1)
on A, wherer™ is a unique root of Bowen’s equation
PA(F,—ta™) =0 (4.2)

(see (A.16)-(A.18)). The functior:™@a® is Hélder continuous and therefore, there
exists a unique equilibrium measure corresponding to it. We denote this measifte by
LetT = {II4,...,II,} be a Markov collection fo andRy, ..., R, the Markov
sets corresponding. Givenx € A denote byR (x) a Markov set containing. Consider
the conditional measureg” (y) on W, (y) N R(x) (wherey € R(x)) generated by

oC
the measure ™.
We now state the result which describes the Hausdorff dimension of subsets of un-
stable manifolds.

Theorem 4.1. For any x € A and any open set U C W, (x) suchthat U N A # ¢ the
following statements hold:

1. dimy (U N A) =dimg(U N A) =dimp(U N A) =t®;

2.
e
S a®(y)di(y)’

whereh, ) (f1) isthe measure-theoretic entropy of thetime-onemap 1 with respect
to the measure « ;

3. dywp (y) = 1@ for all y € W (x) N R(x);

(4.3)
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4.1 = dimg n™ (x), i.e., the measure n (x) is the measure of full dimension (see

Appendix);
5. the +“-Hausdor ff measure of U N A is positive and finite; moreover, it is equivalent
to the measure n™ (x)|y .

Remark 4.1. Consider a-conformal diffeomorphisnf on alocally maximal hyperbolic
setX. This means that there exists a continuous funckiéh on X such that for any
x e X,

df | pw e = 0™ @) 1 (x),

where 1™ (x) : E®(x) - E®™(f(x)) is an isometry (see [10]). It is known that for

anyx € X and any open séf C W|g2(x) suchthatU N X # 4,

dimy (U N X) = dimg(U N X) = dimg(U N X) =W,
wherer™ s the unique root of Bowen’s equation
Px(f, —tlogh™) =0
(see [10]).

Consider a:-conformal flowF = { £’} and the corresponding time-one map It
is a partially hyperbolic diffeomorphism and the local strong unstable manifolgd¥or

at a pointx € A, Wl(gé‘)(x), coincides WithW,EJ”g (x) for the flow F. Note that

dft ooy = A, DI (x, 1).
In view of (A.19),

1
PA(F, —ta™) = P, (fl, —r/ a<“>(ffx)dr> =P, (fl, —tlog AW (x, 1)) .
0

Therefore, the first statement of Theorem 4.1 and (4.2) imply that fox any\ and for

any open set/ C W (x) such that/ N A # 4,

dimy (U N A) =dimg(UNA) =dimg(U N A) =™,
wherer® is the unique root of Bowen’s equation

Pp(fL, —tlogA®™(x, 1)) = 0.

This gives a formula for the dimension ng‘é‘)(x) N A for the partially hyperbolic

time-one diffeomorphismy®. This formula is the same as the one for-@onformal
diffeomorphism.

It is not known in general how to compute the dimensio#gf:’ (x) N A for an
arbitrary partially hyperbolic diffeomorphism.

We now consider a basic s&tfor ans-conformal axiomA flow F = { f*}. Similarly
to (4.1) and (4.2) define the function

19a® (x) (4.4)
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on A wherer® is a unique root of Bowen’s equation
PA(F,ta") =0 (4.5)

(see (A.16)—(A.18)). The function®a'®) is Holder continuous and therefore, there

exists a unique equilibrium measure corresponding to it. We denote this measure by
(s)

K7,

Givenx € A consider the conditional measung® (y) on ngg(y) N R(x) (where

y € R(x)) generated by the measwt’ on a Markov seR (x) containingx.

Similarly to Theorem 4.1, one can prove that for anye A and any open set
U C Wige (),

dimy (U N A) =dimg(U N A) =dimg(U N A) =19,

Moreover,

o oY
Jaa® () di®(y)
whereh, ) (f 1) is the measure-theoretic entropy of the time-one rfidwith respect
to the measure®.
The:)-Hausdorff measure df N A is positive and finite. In additiom, ), (y) =
1@ for all y € WS (x) N R(x), and therefore dim 1 (x) = 1, i.e. the measure

n® (x) is the measure of full dimension.

We now consider the case wharis a basic set for an axior flow F = { '} which
is boths- andu-conformal. Using Proposition 7.1 we compute the Hausdorff dimension
and box dimension oA.

Theorem 4.2. We have
dimy A = dimgA = dimgA = 1™ +/©) + 1,

(4.6)

where 1™ and ) are unique roots of Bowen's equations (4.2) and (4.5) and can be
computed by the formulae (4.3) and (4.6).

This result applies and produces a formula for the Hausdorff dimension and box
dimension of a basic set of an Axiorh flow on a surface which is clearly seen to be
boths- andu-conformal.

Consider the measure$” and«®) on A, which are equilibrium measures for the
functions—r®a® andra®) respectively. It is easy to see that

dimg € <@ +1© + 1 dimg @ <@ 419 + 1,
Moreover, the equalities hold if and only if
POEOR: 4.7

In this casex is the measure of full dimension. Condition (4.7) is a “rigidity” type
condition. It holds if and only if the functions—t®a® (x) and t®a®(x) are
cohomologous (see [8]). One can show that this is the case if and only if for any periodic
pointx € A of periodp,

O] /pa(“)(fr(x)) dtr = —t® /1’ a(s)(fr(X)) dr.
0 0
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5. Multifractal Analysis of Conformal Axiom A Flows on Basic Sets

We undertake the complete multifractal analysis of equilibrium measures on a locally
maximal hyperbolic set\ of a flow F = {f’} assuming that the flow is both and
u-conformal. We follow the approach suggested by Pesin and Weiss in [11] (see also
[10]).

Lety be a Holder continuous function @nandv = v, a unique equilibrium measure
for ¢.

Recall that a measureon a metric space is calldgederer if there exists a constant
K > 0 such that for any point and anyr > 0,

v(B(x,2r)) < Kv(B(x,r)).
Theorem 5.1. The measure v is Federer.
Fora > 0 consider the sets,, defined by
Ag={xeA: dyx)=a}
and thef, (a)-spectrum for dimensiong, (@) = dimy A, (see (A.6)).

Theorem 5.2.

1. The pointwise dimension d,, (x) exists for v-almost every x € A and

1 1

dy(x) = hy(f) (E - E) +1,

A, Ay are positive and negative values of the Lyapunov exponent of v (see (3.3),
(3.4)).

2. If v is not the measure of full dimension then the function f,(«) is defined on an
interval [or1, 2] (i.€., the spectrum is complete, see [14]); it is real analytic and
strictly convex.

3. If v is not the measure of full dimension then there exists a strictly convex function
T (g) such that the functions f, (@) and T (¢) form a Legendre transform pair (see
(A.26)) and for any ¢ € R we have

loginfg, > pcp, v(B)?
logr

’

T(g) = —Ilim
(q) r—0

where the infimum is taken over all finite covers B, of A by open ballsof radiusr; in
particular, for every g > 1,

T(q)

1-g = HP;(v) = R;(v)

(see (A7), (A8), (A.9)).

4. If visthemeasure of full dimensionthen T (¢) = (1—g¢) dimy A isalinear function;
in addition, f,(dimg A) = dimgy A and f,(«) = Ofor all « # dimy A. In other
words f, («) isa s-function if and only if v is the measure of full dimension.
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Remark 5.1. Consider the case whenis not the measure of full dimension. Note that
fu(@) <dimyg A foranya € [a1, az]. Sincef, (a(q)) = T(g) +qa(qg) (see Appendix)
we obtain that

f@(0) =T(0) =dimyA = dimgA = dimy A

(see (A.1) and Theorem 4.2). Therefoyg,attains its maximum value dignA at the
pointa (0).

Differentiating the equalityf, (@ (q)) = T (g) + qa(g) with respect tg and using
the factthatw(q) = —T’(¢) we find that%fv(a(q)) = g foreveryrealy. Thisimplies
that

. d . d d
lim — fy(a(g)) = +oo, lim — f,(a(q)) = —oco, and — f,(x(1)) = 1.
a—a1 do a—a2 dao da

SinceT (1) = 0 we have thaff («¢(1)) = «a(1). It follows that the graph of the function
fv(a) is tangent to the line with slope 1 at the pairfil). One can show that(1) is the
information dimension of (see [10]).

It easily follows from the above observations that gim € (a1, a2).

Another consequence of Theorem 5.2 is the followimgitifr actal decomposition
of a basic seA associated with the pointwise dimension of an equilibrium measure
corresponding to a Hélder continuous function. Namely,

A:Z\u(L&JAa),

where A, is the set of points for which the pointwise dimension takes on the value
and theirregular part A is the set of points with no pointwise dimension. One can
show thatA = #; moreover, it is everywhere densednand dimy A = dimy A (oral
communication by L. Barreira). We also have that eachhseis everywhere dense in
A.

An important manifestation of Theorem 5.2raultifractal decomposition of the
basic setA associated with the Lyapunov exponerit(x) andi~(x) (see (3.3), (3.4)).
We consider only the positive Lyapunov exponghix); similar statements hold true
for the negative Lyapunov exponertt (x) at pointsx € A. We can write

A:iﬂJ(UL;),

BeR

where .
LT = {x € A : the limitin (3.3) does not exist

is theirregular part, and

L;,f:{x eA: 2T (x) =Bl

If v is an ergodic measure fgt we obtain thak ™ (x) = Aﬁ”) for v-almost every € A.
Thus, the seL,, # #.
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We introduce thelimension spectrum for (positive) Lyapunov exponents by

e (B) =dimy L.

Let ¢ be a Hélder continuous function ax andv the unique equilibrium measure
for ¢. Let alsoR be a Markov set. For any € R we define a measur&® (y) on

(“)(y) N R as follows.
Let ¢ be the pull back op to A(A, ¥) by the coding magy . The unique equilibrium
measure corresponding ois

= (e x m)Yy )™ (e x mly,,

wherem is the Lebesgue measure Rrandy is the unique equilibrium measure @y
corresponding to the Hélder continuous function

¥ (w)
V(o) = /O (@, 1) dt — Pacau(S, %) (@)

(see Proposition A.5).
We define the measuge™ on =7 such that for any cylinde€;,_;, in X4 and its

projectionC;| ; to =7,

n(CE ) = u(Ci.iy)- (5.1)
Similarly, we define the measure®) on X, such that for any cylinde€;_,. i, in X4
and its projectiorC;_ , to X,

w0 = u(Ci, ig)- (5.2)

There exist constant&;, K> > 0 such that for every integers,n > 0, and any
(...i—1igi1...) € X4,

w(Ci_,..i,)

HO(C, ) x nO(CE

Ky < < K>

) =

(see [10]).
Let IT be a rectangle correspondingRo(see (2.5)), and e I1. Denote byv® (x)
the push forward of.™ to W(“)(x 1) by the coding magy. Let y € R(x), then
W (y) N R(x) is naturally diffeomorphic to¥," (x’, TT) for somex’ € 1. Denote
by 9™ (y) the push forward ob ™ (x') to Wl(“)(y) N R(x). Note thatv™ (y) is defined
for everyy € R, and it is equivalent to the conditional measure generated by

(”)(y) N R for v-almost every € R.

There is a relation between the positive Lyapunov expohént) and the pointwise
dimensiondvgqu;x(x)(x), wherevpay is the measure of maximal entropy. For dynamical
systems with discrete time this relation was first described by Weiss (see [15]). Notice
that the measure of maximal entropy is a unique equilibrium measure corresponding to
the functiony = 0.
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Proposition 5.1.

h 1
h {x“: g0 = 25 }

where f)r(rﬁ‘é)lx(x) is defined as above.

Recall that we denoted by™ the unique equilibrium measure corresponding to
the function—®a®, wheret® is defined by (4.2). Leff®™ (x) be the measure on
ng‘c) (x) N R(x) defined as above. Theorem 4.1 implies th#t(x) is the measure of
fulldimension. This together with Theorem 5.2 and Proposition 5.1 implies the following
result.

Theorem 5.3.

1. If 9(x) isnot equivalent to the measure 77 (x) for somex e A then the Lyapunov
spectrum £7(B) is a real analytic strictly convex function on an interval [B1, 82]
containing the point

B =ha(fh/ dimy (AN W ().

oc

2. 1f 5{(x) is equivalent to 7% (x) for some x € A then the Lyapunov spectrumis a
delta function, i.e.,

dimg A, for B =ha(fh/dimg (A N W (x))

0, for B # ha(fY/dimg(A N W (x)).

oc

(B =

Remark 5.2. One can show that if the measuniﬁ#&x(x) and7™ (x) are equivalent for
somex € A then they are equivalent for alle A.

As an immediate consequence of Theorem 5.3 we obtain the following statement.
Corollary 5.1. Assume that the measure f)r(#;x is not equivalent to the measure 7% (x)
for somex e A then the range of the function A1 (x) isan interval [81, B2] and for any
B outside thisinterval the set L; isempty (i.e, the spectrumis complete, see[14]); in
particular, the Lyapunov exponent attains uncountably many distinct values.

One can also show that the det is not empty and has full Hausdorff dimension
(oral communication by L. Barreira).

Consider the geodesic flow on compact surface on negative curvature. Since the flow
is conformal (see Sect. 3) the above results apply and give a complete description of the
dimension spectrum for Lyapunov exponents. In particular, this spectrusafisrection
if and only if the Liouville measure is the measure of maximal entropy and hence, the
topological entropy of the flow coincide with its metric entropy (with respect to the
Liouville measure). This implies that the curvature is constant.

Remark 5.3. The above results provide a complete description of the dimension spectra
for pointwise dimensions and Lyapunov exponents for the time-one map of a conformal
axiom A flow.
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6. Moran Covers

Letx € A andIl be a rectangle containing We construct a special cover of the set

(”)(x IT) which will be an “optimal” cover in computing the Hausdorff dimension
and box dimensions.
Letx € I''(T7) ands > O be a number such thatx € T. Let alsoll ., be the

rectangle containingf’x. For any pointy € Wl(”)(f’x I s,) there exists a unique

numberz (y) > 0 such thaf "™y e W% (x, I) and the pointg’~*y (0 < < 7())
and f~7(f'x) (0 < t < t) visit the same rectangles in the same order. Define

0,0 ={fT Wy, ye W (f'x, )} C W (x, ).

Lemma®6.l. 1. Q(x, t) containsaball in WI(”)(x,H) of radiusr (x, ) and is contained

inaball in Wl(“)(x, I) of radius 7 (x, 7).
2. There exist positive constants K1 and K> independent of x and ¢ such that for any
y € Q(x, 1),

-1
T(y)

K1 (exp / a(”)(f’y)df> <r(x, 0 <7(x,1)
0

-1
7(y)

5K2<e><p/ a(”)(f’y)dr> :
0

We assume that the rectanglésare small so thak, < 1.
Fix anumber > 0. Foranyy € W|(”)(x IHNI'(T) letz(y) be the smallest number

such thatf'®y e T and
1) -1
exp / a“(fTyydr| < (6.1)
0

Among all pointg suchthat € Q(y, t(y)) choose a poing for whichz (zp) is minimal.
Let

0(y) = 0(zo0, (z0))-

The properties of the Markov collectidn imply that the setg(y) for differenty €
(”)(x IT) N I'’(T) either coincide or overlap only along their boundaries. These sets
comprise a cover oWl(”)(x IT) which we call aMoran cover of Wl(”)(x I) of sizer.

We can also constructa Moran coverwqﬁ‘c) (x, IT) using the symbolic representation
of the flow (see Proposition 2.1 and Appendix). Recall thataryA is the image under
the coding maypy of a point(w, t) € A(A, ¥). If y € T theny = x(w, 0) for some
w € X4. Ifanumberr > Oissuchthatf®y ¢ T for0 <t <t thenf'y = x(w, 1).

Leta®™ anda® be the pull back of the functions™ anda'® to A(A, y) by the
coding mapy. Let alsoa® anda®™ be the Hélder continuous function &y defined
by

V(@) V(@)
a® (w) = exp / a(w,ndt, a™(w)=exp / a"(w,t)dt. (6.2
0 0
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Choose = (...i_1ipi1...) € T4 such thate = x (®). We identify the set of points
in X4 having the same past dswith the cyIinderC£ C Ty

Givenr > 0 and a pointv € C;g choose the number(w) such that

n(w)-1 @)
[] @ @*on™t>r.  J]@ @ o)™ <r 6.3)
k=0 k=0

(compare to (6.1)). It is easy to see thdatv) — co asr — 0 uniformly inw.
For anyw e C; consider the cylindec; . Let C(w) C C;f be the largest

{0-in(@)
cylinder set containing with the property that (w) = for somew’ € C(w)

10 q (e
andC]; vy C C(w) foranyw” € C(w). The sets correspondmg to differentc CJr
either coincide or are disjoint. Thus, we obtain a cd\lefC*) of CJr of sizer which
we also call avioran cover.

Similarly one can construct a Moran cougr(C; ) of C of sizer.

The sets

0 =x(0), CelUl()

comprise a cover oWl(”)(x IT) which is a Moran cover oWl(“)(x IT) of sizer. These
sets may overlap only along their boundaries.

Lemma 6.1 implies that a Moran cover has the following properties:
(6.4). Any element of the cover is contained in a ball of radiasd contains a ball of
radiusK1r in Wl(”)(x, 1), whereK is a constant independent af

(6.5). The number of elements of the cover which intersects ®lgallr) C Wl(”) (x, ID)
is bounded from above by a constamiindependent af andr. The numbew is called
theMoran multiplicity factor.

Letx be a pointin a rectangld. Starting with a Moran cover d#/l(“)(x 1) we will
obtain a cover of the rectanglé by the sets

Q) = |J Wl m.
z€0 ()

We call this cover thextended Moran cover corresponding to a given Moran cover. It
follows from Lemma 6.1 and the construction of the €@ts) that

-1
t(z)
sup exp/ a®(fTdr| < Kar, (6.6)
z€0(y) 0

wheret (z) is defined by (6.1) an&’s > 0 is a constant.
7. Proofs

Proof of Theorem 4.1. We first show that® < d := dimy Wl(“)(x IT) for anyx €
T/ (T).
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Fix e > 0. By the definition of the Hausdorff dimension there exists a numbe
and a cover oW,“‘)(x IT) by ballsB;, 1 =1, 2, ... of radiusr; < r such that

Zrldﬂ" <1
I

For everyl > 0 consider a Moran cover ch(”)(x IT) of sizer; and the corresponding
extended Moran cover dfl. Choose those sets from the extended cover that intersect
B;. Denote them b}QZ . Ql(’”(”) The collection of set$Qlf }j 12’;,'1(1) forms a
cover ofIT which we denote by.

By (6.5),m(l) <M, [1=12,..., whereM is a Moran multiplicity factor. Using
(6.6) we conclude that

—(d+e)

1(z)
sup (exp/ a(“)(f’z)dr) <M (K3r)?*® < K,
Qe Q) 0 1

(/)

whereK4 > 0 is a constant. The cylindecs(j) = X*Q}-"), e G form a coverg

of Ci, = x~1(IT) for which

—(d+e)

n(w)—1 ¢(ka)
> sup [exp > / a"(o*w, t)dt < Ka,
cied wec? k=0 O
wheren(w) is defined by (6.3). Let
¥ (w)
o) = —(d+ 8)/ a"™(w, 7)dr.
0
Note that the cyhnder@m are of the formC;” . rwity” ClvENanumben > 0 choose
r so small that:(w) > N foranyw € 4. Then
n(w)—1
M(Cip, 0.9 WP N) < > sup |exp Y ¢(c*o) | < Ka,
C(/) g weC, 2 k=0

wherelU©@ is the cover ofs 4 by cylindersC; = {w € 4 : wo = i} (see (A.13)).
LetU® be the cover o& 4 by cylindersC;_, . ;, . It follows from the definition of\f
that
M(Ciy. 0,0, UM N) < |A[*M(Ci. 0,0, UP N +k) < Ks,

where|A| is the number of elements in the alphaldleand K5 > 0 is a constant. This
implies that
me(Cig, 0,9, UM) < K5 and Pe, (9. UP) <0

(see (A.14), (A.15)). Hence, (0, ) < 0 and

Ps,(0,¢) = Ps,(0,¢9) = max P, (o, ¢) <O0.
1<i<n
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We now estimate the topological pressure of the functiga+ £)a™ on A (A, v) with
respect to the suspension fldw It is known (see [9]) thaPs 4,w) (S, —(d + g)a)
is the unique real numbersuch thatPs, (o, ¢ — cy) = 0, andPx, (o, ¢ — cy) is a
decreasing function over This implies that

Praw)(S, —(d +e)a™)=c<0.

It follows that:™ < d + . Since the inequality holds true for any> 0, we conclude
thatr™ < 4. This easily implies that®) < dimy (U N A) foranyx € A and any open
setU ¢ W (x).

We prove that/ = dimg(U) < t®, whereU is an open set irwl(”)(x) N A. Recall

oC
that oG N (U
d =lim supM

e—0 log(1/e) '
where N (U, ¢) is the maximal cardinality of an-separated set ity. For anys > 0

there exists a sequengg }, e — 0, such thatV (U, &) > (1/sk)3_5 foranyk > 0.
Fix ¢ > 0. Takee; < ¢ and letX,, be ans;-separated set it. For anyy € X,, let
7(y) be the number for which

T(y) 2
exp/ a(fTyydr = =
0

Ek ’
We have that
W) 2 )
(y) mina" < log < 1(y) maxa'.
A Ek A

It follows that 1 1
(y) € [Ke log—, K7 Iog—} .
Ek Ek

This implies that there exists a numbgsuch that

‘ (1/e)?°
cardly € X - T €l =L} = oo

LetEy ={y e X, : t(y) € [tx — 1, %] }. If & is sufficiently small we obtain
cardE; > (1/ex)?~2.

By constructionEy is an(e, 1;)-separated set in. Hence,

Zy(F,—(d—28)a" &) = ) exp f —(d —28)a" (fTy)dr
0
YEE

() —(d—25)
= Ko ) (eXp /O a“”(ffy)dr)

YEE)

1 d—25 2 —(d—25)
> Ko | — — > K10
Ek Ek

(see (A.16), (A.17), (A.18)).
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Note thaty, — oo ask — oo. Therefore,
Py(F,—(d —25)a™, &) >0 and PA(F, —(d —28)a™) > 0.

It follows thatd — 25 < 1™, Since the inequality holds true for afiy> 0, we conclude
thatd < ™ and complete the proof of the first statement.

Sincex ™ is the unique equilibrium measure corresponding to the Holder continuous
function —t®aq® (x), we have

0= Pa(—1a®) = by (Y ~1® [ a3 ac )
A

(see (4.1), (4.2), (A.21)), and the second statement follows.
We will prove the last three statements of the theorem.
Consider the functior-r®a® which is the pull back of the functioasa™ (x)
to A(A, ¥) by the coding may. The unique equilibrium measure corresponding to
—t®Wg™ is equal to
ho = (@ x m)(Yy) L@ x m)ly,,

where? is the unique equilibrium measure corresponding to the Hdlder continuous
function

V(@)
—t® / a“(w, 1) dt = —1™ loga™ (w)
0

on X, andm is the Lebesgue measureRr{see (A.25), (A.26), Proposition A.5). Since
Prayp (S, —t™a®) = 0, we obtain that

Ps, (o, —t“ loga™) = 0.
Therefore, there exist constarksi, K12 > 0 such that for any € X4 and anyz > 0,

Ho' @ 0] =w;, i =0,...,n)
K11 < n m < K12 (7.1)
I1 (a(”)(crka)))it
k=0

(see Proposition A.4).

LetITbe arectangle, ande I1. LetalsoC;, be the cylinder such th&t;, = x~L1).
We introduce the measutg™ on 7 such that for any cylindeC;, ;, C £, and its
projectionC;| ; to X7,

Ni

9W(CE ) =9 (Cigi)-

i0...ipn
Let €™ (x) be the push forward af ™ to W,g‘c) (x, IT) by the coding map. Thef(™ (x)
is equivalent to the conditional measure “C) (x, IT) generated by the measwé&.

Let B(y, r) beaballinW (x, TT) of radius-. Consider a Moran cover 6¥, (x, 1)

of sizer. LetQ1, ..., Q,, be the elements of this cover which intersect the Bajl, r).
Recall thatQ; = C(w"/)) for somew) € ¥ (see Sect. 6). We have

A

DBy, 1) <Y QN =) 2" (C")
j=1 j=1
m o [n@d) - (72

kY | T] a“@Y) < KoM,
j=1 \ k=0

IA
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where M is the Moran multiplicity factor, that does not dependrofsee (6.3), (6.5),
(7.2)).

Letw = (...i_1ipi1...) € X4 be such thaly = x(w). Consider the cylinder
cr , wheren(w) is defined by (6.3). Thew (C;" .,) is contained inB(y, r).

0.+ In(w) i0...Ip

Thus, by (7.1),

(u) o+
VB, M) = CE )
—
n(w) w (73)
> Ku | [[a" (@) > Kiar' .
k=0

It follows from (7.2) and (7.3) thatlzw,,(y) = ™ for all y € Wi (x, ). This
together with Proposition A.2 implies that digng “ (x) = 1@,

Let § be a finite or countable cover of an open &etc W,(”)(x, 1) by open sets
V with diamV < e. For anyV € §G there exists a balB such thatV ¢ B and
diamB < 2 diamV. Such balls comprise a cov@&rof U. By (7.2),

. o)
Sy = 3 (FTE) = 2l S 0w = K w),

Ves BeB z KM (=

and hencen g (U, t®) > K146 (U) (see (A.2)).
Givens > 0 there existg > 0 such that for any covéj of U with diamG < e,

my U, 1) < Z(diamV)f(") + 8.
Ve§
Let B be a finite or countable cover &f by balls of diameter at mostsuch that
> 9B < )+
BeB

Using (7.3) we conclude that

mp U1y < 3 (diamB)" + § < = Z 0B+ 5
BeB 1 BeB

_ W) ( )
— 41
~  Kis * K13 *

Sinces can be chosen arbitrarily, it follows thaity (U, 1)) < is(“)(U)
Note thatW,(”)(x IT) is diffeomorphic toWl(”)(x) N R(x), and the push forward of

£W(x)to W,(“) (x) N R(x) is equivalent to™ (x). Statements 3, 4 and 5 of the theorem
follow. O

Proof of Theorem 4.2. The following statement is a corollary of results by Hasselblatt
[6].

Lemma7.1. Let F beaconformal axiom A flowonabasicset A. Thentheweak unstable
distribution E® @ X and the weak stable distribution E¢) @ X are Lipschitz.
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Recall that any rectangl@ lies in a small disk of co-dimension one which is transver-
sal to the flow. The lemma implies thaét has a Lipschitz continuous local product
structure. Since

dimy (Wige (x, T) =dim (Wse (x, TT)) = ¢, and

oC oc
dimp (Wioa (x. 1)) =dimp (W) (x, 1)) = ¢

oc ocC

for anyx e II, the Proposition A.1 implies that
dimy I = dim, I = dimpIl = ™ + ),

The theorem follows sinca is locally diffeomorphic to the product of a rectangle and
aninterval. O

Proof of Theorem 5.1. We begin with the following observation.
Let be the pull back op to A (A, ¥) by the coding magy . The unique equilibrium
measure corresponding dois equal to

= (e x m)(Yy) "M x m)ly,.

where i is the unique equilibrium measure corresponding to the Hdlder continuous
function log® on X 4 such that

¥ (w)
log®(w) = / ¢(w, 1) dt — e (),
0

andc = Pp(a,y)(S, ¢). Note thatP, (o, log®) = 0. (See (A.25), (A.26), Proposi-
tion A.5.)
Let us introduce the functions

. Ci, i
|qu>(u)(w+) — _ lim |Og M( 11...1,,)’
n—=oo = u(Ci..i,)
C4 .
Iog CD(X)((X)_) — — lim Iog u( z,n.‘.z_l),
n=o0 = p(Ci,..ip)
whereo™ = (ipi1...in...) € Zf and o™ = (...i_y...i_1i0) € T.

One can show that the above limits exist, the functionsiifig and logd®) are
Holder continuous, and they are projectionﬁp andx’, respectively of functions on
> 4 which are strictly cohomologous to @ (see [10]). In particular,

Pg+(log oWy = Py (log ®®) = 0.

We introduce the measurgs” on =} andu® on X as in (5.1) and (5.2). The

measureg. ™ andu®) are unique equilibrium measures corresponding to the Hélder
continuous function lo@™ and logd'®) respectively (see [10]).
It follows from the definition of the equilibrium measure (see (A.12)) that

/ |og<1><“>(w+)dw>=/ |ogcb<f>(a)—)dw)=/ log ®(w) dp
=i = Z4 (7.4)
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Starting with the functiona® anda®™ one can similarly define functiora*®*) on
¥, anda®™® on =7 which are projections of functions strictly cohomologous{d

anda™ respectively.

We proceed with the proof of Theorem 5.1. Consider a rectafigknd a point
x € intTl. Letv™ be the push forward of the measur®) to W, (x, ) by the coding
mapy . Thenv®™ is equivalent to the conditional measurewﬂ”g (x, IT) generated by.

We will show that the measuné®) is Federer.

SincePEX (log ®®) = 0 we conclude that there exist constakitsandK» such that

foranyw e =7,

(DY PNAN ! — oy ] —
KlSM {a).:)l w;, 1 0,...,n}§K2 (7.5)
[1 2@ (ok(w))
k=0

(see Proposition A.4).
)

Given a number > 0 consider a Moran cover (Wlf)”C (x, IT) of sizer. Fix a point
(u)

y € Wi (x, IT). Let Qo be an element of the Moran cover that contains.et also
Qo, ... Om be the elements of the Moran cover that intersB¢t, 2r). Recall that
0, = x(C(@W)) for somew!) € =7 (see Sect. 6). By the property (6.5) of the Moran
cover, we have tha: < M, whereM is a constant independent efandr. Since
diamQq < r, we obtain

QoC B(y.r)c B(y.2r)c | J 0,
j=0

Sincea®™ is a Holder continuous function oBy, it is easy to show that there exist
positive constants; and L, such that

n(w(o))

[T @@k @@)))™

1 k=0
 n(@®)

[T (i)™
k=0

< Lo,

wheren(w) is defined by (6.3). This implies that(w©@) — n(w)| < K3, wherekKs
is a constant independent pfandr. So we conclude that

n(w(o)
1‘[ q;(u)(ak(w(o)))
k=0

= (W)
[T ®®(@k@d))
k=0

< Ks. (7.6)
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It follows from (7.5) and (7.6) that

v (B(y.2r) = Y v =) u(C@?)

j=1 j=1
m n(@P) 1 (@)
< K oW (k) < KoM — oW (% (®
_z;ﬂ) (())_2K4k11 (" (@)

-1 1
< KoM ——-pn“(C(0?) = Ke v (Qo) < Kev™(B(y,r)).
K4 Kq

Letv® be the push forward qi®) to W, (x, TT). Arguing similarly one can prove
thatv® is Federer.

Since the measuneis locally equivalent to the produet” x v®) x m (wherem is
the Lebesgue measure), it is also Federer.

Proof of Theorem 5.2. First we define the “symbolic” level set. Given9 r < 1 and
w € ¥4, chooser™ =n~(w, r) andnt = n*(w, r) such that

0 0
[T @@ @ni>r.  [] @@ @I =r
k=1-n— k=—n~—
1 o+ (7.7)
[T @ @) *>r [l @) t=r
k=0 k=0

Fix a numbe& > 0 and letJ; be the set of points in X4 for which the limit

0 +

> log®® ok (w)) nZ log ®® (% (w™))
lim k=—n— . k=0
r—0 0

nt
Y. loglat9)(ak(@™)| 3 logla® (ok(wh))]
k=—n— k=0

exists and is equal .
Lemma7.2. Let Ay = {(w,1) € A(A,¥) : ® € Ju_1}. Then x(Aq) = Ag.

Proof. Let Jy—1 = {x € T : dywy,0(*) = a — 1} and BW(x,r) be a ball in
qug“g(x,l‘l) centered atc € J,_1. Fix x and choose»r = (...i_1igi1...) € X4
such thatr = x(w). Consider the cylinde€;" ¥ wheren(w) is defined by (6.3).

i0--in(w

Let 0W(x,r) = x(CT ). We havex € Q®™(x,r) and diamQ®™(x,r) < r.

i0-+-In(w)
Therefore,0™ (x, r) ¢ B®(x, r). SinceQ™ (x, r) contains a ball of radiug 1 and
v is Federer, we obtain

pct oy = v a ) = v BWx, ) <
K7v®(Q"x.r) = Kzu"(Cy ;-

i0-+-In(w)
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It follows from (7.5) and (7.7) that

l’l+
| (uu) (k¢ Yy —1
l0g v (BW(x, ry) i 012 @ @D
X

lim =1
r—0 logr nt
> log @@ ok (wt))
k=0
Arguing similarly one can show that
0 (s5) (5K
log [a¥* (0" (@7))]
im [ 109vYBY@ ) % .
r—0 logr 0 -
> log@®(o*(w)
k=—n—

whereB® (x, r) are balls inW_) (x, ).
This implies that/y—1 = x (J4—1). Since locallyA,, is a direct product of,_; and

aninterval,A, = x(A). The lemma is proven. o

We proceed with the proof of Theorem 5.2. Consider the one-parameter families of
functions onX 4,

(@) = ~T®(g) log|a®™ ()| + ¢ log ® (@),

(s) 7 (5) (s) (7.8)
¢, (@) =T (q)logla” (»)| + g log @ (w),
whereT ® (q) andT ) (¢) are chosen such that
Ps, (¢{") =0 and Ps, (") = 0. (7.9

It is known that that the functiorE® and7®) are real analytic (see [10]).
We introduce the functions

¢ @") = —T“ (@) log|a“ @h)] + g log &* ("),
o8 (@7) = TV (g)log[a"” (w7)| + ¢ log @ (@),

which are projections t& | andZ ; of functions strictly cohomologous @5” and<p§”
respectively.

Letuf]”) andug” be the equilibrium measures corresponding to the Hélder continuous

functionsgy™’ on £ ande™*) on x5 respectively.
For each reay define

[51log@® (@) dpl” [ log ) (@) dp

5 () —
a(q) =— .
J5 logla® (@) dpg”

a(g) =

[ logla® (@) dpg’

Note thatfzx log [ (w™)|dp > 0. The variational principle implies that

fz logo™ (@) duf’ < Pg+(oge™) =0

A
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(see (A.11)), and hencé&™ () > 0 for allg € R. Similarly,&@*)(q) > Oforallg € R.
It is known that @™ (¢) = —(T™)’ (¢) and &) (q) = —(T®)'(¢) (see [10]), in
particular,(T™) (¢) < 0 and(T®) (q) < Oforallg € R.

Lemma7.3. 1. If v® jsthe measure of full dimension then

TW(g) = (1 — q)dimy W% (x, 1), and

oc

dyw (y) = 1™ for all y e W x, ),

oc

(7.10)

where t ™ is defined by (4.2).
2. If v® js not the measure of full dimension, then (T®)”(q) > Ofor all g € R.

Proof. Recall that the conditional measure A (x, 1) generated by the measure

«® is the measure of full dimension, whet&’ is the unique equilibrium measure on
A for the function—r@aq®),

1. If v® is the measure of full dimension, thef") is the equilibrium measure for the
function —® log |a®*)|, and therefore the functions ldgf*)> and—:" log|a®“®)| are
cohomologous (see Appendix). Since

Py (Iog <I>(”)) = Py+ (—t(“) log |a(”“)|> =0,
the functions are strictly cohomologous. It follows that
0= P, (go;")) = Pys (wgf“)) =Py ((—T<”>(q) — qt™) |og|a<"“>|) :

By the definition ofr™ (see (4.2))—T"™(q) — ¢ t™ = —t®, and hencd ™ (q) =
(1= @)™ = (1 - q)dimy W (x, TD).
The third statement of Theorem 4.1 implies that'if is the measure of full dimen-

sion, thend, ) (y) =t forall y € ng‘c)(x, IT).

2. Itis known tha(T ®))”(¢) > 0 for somey if the functions logb™ and— (7)) (¢)
log |a“*)| are not cohomologous (see [10]). Assume that the functions are conomologous

for someg. Since(T™) (¢) = —a“(q), it is easy to see that

A

This implies that the functions lo§™ and— (7 ™) (¢) log|a®“®)| are strictly cohomol-
ogous, and hence

Py (—(T“”)’(q) log la(“”)l) = Py (Iog c1>(“>) =0

(see Appendix). It follows thatl ™)' (q) = t®, andv™ is the measure of full dimen-
sion. O
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Similarly to Lemma 7.3, one can prove that

1. If v® is the measure of full dimension then

70 (g) = A - ¢)dimy W) (x, 1), and

(7.12)
dyo (y) = 1@ forall y € W& (x, D),

wherer® is defined by (4.5).
2. If v is not the measure of full dimension, theR®))”(¢) > O forallg € R.

SetT (q) = T™(q) + T (¢), anda(q) = @“)(¢) + & (q). We can conclude that
a(q) = —T'(g), in particular,7’ < 0, T” > 0, andT” > 0 if and only if either® or
v® is not the measure of full dimension.

Assume thav is not the measure of full dimension and hend®, or v® is not the
measure of full dimension.

We define the measune, = f]”) X qu) Since the measurqs;“) and M(s) are
ergodic, it follows from the Birkhoff ergodic theorem that foy-a.e.w € X4,

0 nt
> log@@ (e @) Y log @™ (oK (wh))

r|i£1 "=0*"’ _ :jo =a(g). (712
Y loglat(ck(w ) 3 log|a®® (ak(wt))|
k=—n— k=0

Lemma7.4. Foral o = (...i_1igi1...) € Jagy),

Iog Hq (Ci_ - ...in+)

fim, logr =T(q) +qa(q),

wheren™ =n~(w,r) andn™ = n*(w, r) are defined by (7.7).

Proof. Slnce,u(s) and u<”) are equilibrium measures corresponding to the functions

o0& andp®, Proposition A.4 implies that the ratios

w(Ci o)

0 -
l—[ alss) (Gk(wf))T(-v)(q) q)(s)(ak(wf))q
k=—n—

and
@) .
Mq (Czo...zn+)

T
rll—[ auu) (Ok (a)+)) T (q) O (Gk (a)+))q
k=0
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are bounded from below and from above by constants independerdiod». Hence,
forallw € Jz(),

. |Og,qu (Cl;nf...inJr)
lim
r—0 logr

N 0 5 nt
TO(g)log [ 1889 (@ (@) +TW(g)log [] 1a®) (o*(wt))| 71

— I|m k=—n— k=0
r—0 logr

0 nt
> log@® (k@) Y logd®@ ok ()
. k=—n— k=0
ta ’!ILT]O 0 - nt
Y. loglat®) ok (w™))| log|a®) (ok (wt))]
k=—n— k=0

=T9(q) +T"(q) + qa(q).

The lemma is proven. O
We proceed with the proof of the theorem. Consider the measure
Ay = (g x m)(Yy) Hug x m)ly,
onA(A, ¥). Lety, be its push forward. It follows from (7.12) that
Vg (Agg+1) = 1. (7.13
Similarly to the proof of Lemma 7.2 one can show that

|Og Mq (Ciinf R - )

v, (x) = r“Djo logr +1
Lemma 7.4 implies that
dy,(x) = T(q) + qé(g) + 1 forall x € Ag(g)1- (7.14)
It follows that
f@(@) +1) = dimyAgg1 = T(q) +qalg) +1 (7.15)

(see [10]). B ~ ~
Recall thata(q) = —T'(¢), T’ <0 andT” > 0. Let us introduce the functions

a(g)=a(@)+1 and T(q)=T(q) —q+1

We have f, (a(q)) = T(gq) + agq , wherea(q) = —T'(q). Therefore, the functiong,
andT form a Legendre transform pair (see Appendix). Clearly, the funcfios real
analytic,7’ < 0, andT” > 0. Therefore,f, is also real analytic angd]’ < 0. The
function f, («) is defined on an intervédd, a2], where

ar=— lim T'(q), ax=— lim T(g).
q—+oo q——00
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SincePs, (®) = 0, we have thal (1) = T (1) = 0, andp™ (0) = ¢ (w) =

log @ (w) (see (7.8), (7.9)). Thereforg” = u®, andu (™ = 1. It follows from the
definition of@ and (7.4) that

f):A log ®(w) du fZA log ®(w)du
sz loga® (w)du f):A loga®™ (w) du

V(@)
=/ (/ G(w, 1) d —cl/f(a))) do
T4 \/O
X 1 — 1
S5, /3@ a0drdo  [5 [ awdt do
- <K3/ (p(a),t)dt—c/ 1//(0)))
AAD) o)

1 1
X = — -
(Kng(A,w)a(s)dtda) KSIA(A,x//)a(”)dtdw>

1 1
= (/;\<P(X)dv—c> X (an(S)dv — an(”)dv>

(1 1
:hV(f)<)\_+_)\__>7

whereKg = (1 x m)(Yy) andc = Pa(a,4)(S, ¢).

It follows from (5.3) thatu is equivalent tquy, and hence is equivalent tov;. By
(7.13) and (7.14)v(Aq@) = 1. Moreover,d,(x) = «(1) for all x € Aq. This
implies that

a(l) =

! i_i>
du(x)—hv(f)()”jr ~ +1

for v-a.e.x € A. This completes the proof of the first statement.
Let U, (C;5) andl,(C;;) be Moran covers of andC;, of sizer. Then

— - +
€ = { U (Cp) x U (CF), ioeal
is a cover of¥ 4. It is known that

109> cee, (W(C))?
logr '

T(g) = — i
(Q) rITO
Let D, be the cover ofA (A, ¥) which consists of the elements

maX,ec ¥ (w)
r

D =C x [kr, (k+1)r), whereC € @,, and 0<k <

We have that

109} ) p, (u (D))
— lim .
r—0 logr

=T(@)—q+1=T(Q.
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Consider the coveb, = x@r) of A. By the construction there exist constafiisand
K,, independent of such that any element @, contains a ball of radiug,r and is
contained in a ball of radiuk, ,r.

For anyD € D, consider a ball of radiusk,,» which containsD. Such balls
comprise a coveBg, of A. Since the measuneis Federer,

Yo DY =K Y (B,

DeD, BEBKlo,-

whereK11 is a constant independentaf
Let BKQ, be a cover ofA by balls of radiusK,r. For each seD € D, there exists a

ball B € Bg_, with the center insid®. Then the ballB of radius X, with the same
center contain®. Sincev is Federer,

D DT <Y B <Kz Y, (B,

DeD, B Beﬁkg,
whereK > is a constant independentafTherefore,

loginfg, 236& v(B)4
logr

T(g) = — lim
(q) r—0

)

where the infimum is taken over all finite covégs of A by open balls of radius. The
last part of the third statement follows now directly from the definitiodd?, (v) (see
(A.8)) and the fact thail P, (v) andR, (v) are equal (see Appendix).

If v is the measure of full dimension, then bet# andv® are the measures of full
dimension. Using (7.10), (7.11) and Theorem 4.2 we conclude that
T(q@) =T9(q)+T"(q)—q+1=(1-qg)dimy A, and
dy(x) =t +t® 4+ 1=dimy A forall x € A.

Hence, f,(dimg A) = dimyz A and f,(«) = 0 for @ # dimgy A. This completes the
proof of the theorem. O

Proof of Proposition 5.1. Recall thabvmaxis the unique equilibrium measure arfA, )
corresponding to the functiah = 0. Therefore it is equal td,,, whereu is the unique
equilibrium measure o& 4 corresponding to the Holder continuous function

V(o) = —c¥ (o),

where ¢ = Ppa.y)(S,0) = Po(F,0) = PA(f10) = ha(f1) (see (A.25), (A.26),
Proposition A.5).
SincePs, (V) = 0, Proposition A.4 implies that for any = (...igi1...) € X4 the

ratio
w(Ci..i,,)

exp Y. W (ok(w)
k=0

is bounded from above and from below by constants independenaotin.
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Let IT be a rectangley € 1N L}, andC;, = x~1(IT). Let ™ be the measure on
T defined by (5.1), and{, be the push forward gi® to W(")(x, I).

Let B® (x, r) be a ball le(”)(x ). Letw = (...i_1ipi1...) € T4 be such that
x = x(w). Repeating arguments in the proof of Lemma 7.2 one can show that

(u)( l-:)— in(w)) = U(M) (B(u)(x r)) = Klgu(u)(cl-:)— ln(a)))
wheren(w) is defined by (6.3),
logui(BW . r) . logn(Cg )
dv(u) (.x) = ||m =
max r—0 |Ogr r—0 |Ogr
n(w)
3 W(okw)
 lim £=0 i A GD )
r—~0  logr r—0 fé(x)a(u)(frx)dr
_ ha(fh _ ha(fh
lim ;- o %fé a®(frx)dr B’

wheret (x) is defined by (6.1). This implies thdgr%gx(x) = hx(fYH/p ifand only if

1 t
At ) = lim -/ a™(fTx)ydt = B,
t—>oot Jo
and the proposition follows. O

Proof of Theorem 5.3. We begin with the following observation. Let, xo € A. If
x2 = f'(x1) forsomer e R, orx; € W|(s)(x1) theni ™ (x1) = AT (x2).
For anyx € A we define the function

e x, By =dimg {y e W) NRx) : AT (y) = B},

whereR (x) is a Markov set containing. It follows from Lemma 7.1 that this function
does not depend an i.e. for anyxy, x2 € A,

def

¢ (1, B) = € (x2, B) = €1 (B).

Proposition 5.1 and the proof of Theorem 5.2 imply that

f vrﬁﬁ';xm is not equivalent to the measufié’ (x) then Zﬂf)(ﬁ) is a real analytic
strlctly convex function on an intervgbs, 8>].

. If 5y is equivalent taj® (x) thenﬁﬁf)(ﬂ) is a delta function, i.e.,

dimy Wigg (x),  for B = ha(fY)/ dimpu (A 0 Wl (x))

(u) —
B = 0. for 8 # ha(fh/ dimg (A N W (x)).
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ﬁ,ﬁ%‘&x(x) is not equivalent to the measuié” (x), an argument similar to Remark
5. 1 shows thati. 50 )(y) takes on the value dlm(WI(“)(x) N A) on a set of points

y € W|(“)(x) of positive Hausdorff dimension. Proposition 5.1 implies tkiaty) takes
on the valugi o (f1)/dimg (A N Wl(”)(x)) on this set, and hence

B =ha(fY/dimgy (AN WL (x)) € (Br, Ba).

Let IT be a rectangle, and € I1. Since

dimg {z € W (x, ) : AT (z) = B}
= dimy {y e Wl @) NR@): A*(») =g} =¢{"(B). and
dimg (WS (x, T)) =dimg (W) (x, TT))
= dimy (Wiga (1)) = dimg (W50 (x)) =

(see Sect. 4), an argument similar to the proof of Theorem 4.2 shows that

) =) +19 +1,

and the theorem follows. O

Appendix A

1. Factsfrom dimensiontheory [5]. LetZ be a subset of the-dimensional Euclidean
spaceR?. Theupper box dimension of Z is defined by

dimgpZ = lim supw
es0 log(1/e)

whereN (Z, ¢) is the maximal cardinality of an-separated set i@. The lower box
dimension of Z, dim, Z, is defined as the corresponding lower limit. Note that one can
useN (Z, ¢), the least number of balls of radiasieeded to cover, instead ofN (Z, ¢)

in the above definition.
Leta > 0 a number. We define theHausdor ff measure of Z by

: (A.1)

muy(Z, o) = I|m |nf Z(dlamU)“ (A.2)
UeS

where the infimum is taken over all finite or countable coveriigd Z by open sets
with diamG < ¢. TheHausdor ff dimension of Z (denoted diny Z) is defined by

dmyg Z =inf{a: my(Z,a) =0} =sup{a: my(Z,a) =00}. (A.3)

It is known that diny; Z < dimzZ < dimgZ.

The following proposition allows to compute the Hausdorff dimension and box di-
mensions of the Cartesian product of two sets.
Proposition A.1 ([5]). Let U ¢ R? and V C R? betwo Borel sets.

1.1f dimyg U = dimgU thendimyg (U x V) = dimy U + dimg V,
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2.1f dimy U = dimpU anddimy V = dimpV thendimp(U x V) = dimgz(U x V) =
dimyg (U x V) =dimg U +dimg V.

Let u be afinite Borel measure @& . Its Hausdor ff dimension, dimg u, is defined
by
dimg u = inf {dimyg Z : w(Z) =1}. (A.4)

Let K C R” be a compact subset apda finite Borel measure ok . The measure
wu is calleda measure of full dimension if dimy Z = dimy u.
We now introduce theointwise (local) dimension of i at a pointx € R? by

log u(B(x, 1))

logr (A5

) = i,
whereB(x, r) is the ball of radiug centered at.

If the above limit does not exist one can consider the lower and upper limits and
introduce respectivelthe lower and upper pointwise dimension of i atx which we
denote byl (x) andd(x). The functionsi(x) andd(x) are measurable.

The existence of the limit in (A.5) is an important problem in dimension theory of
dynamical systems. Measures for which this limit exists almost everywhere are called
exact dimensional. The following result was established by Young in [16].

Proposition A.2. Let 1 be a finite Borel measure on R”. If d,,(x) = d for u-almost
every x then dimy u = d.

We consider the case whenis an invariant measure for a dynamical system.

Proposition A.3 ([1]). Let f bea C1*¢ diffeomorphism of a smooth compact Rieman-
nian manifold M, and i« an f-invariant ergodic Borel probability measure. Assumethat
w is hyperbolic (i.e, all the Lyapunov exponents of f are non-zero at u-almost every
point). Then w isexact dimensional.

2. Dimension spectra [10]. We introduce the dimension spectrum of the meagure
which describes the distribution of values of pointwise dimension. Set

Xo={xeR’: d,(x) =a}.

Thedimension spectrum for pointwise dimensions of the measurg or f,, («)- spec-
trum (for dimensions) is defined by

ful@) =dimy X,. (A.6)

The straightforward calculation of thg, («)-spectrum is difficult and one can try to
relate it to another characteristics (spectra) of the invariant measétmong them is
the Rényi spectrum for dimensions defined as follows: fog > 0 set

N Y

A7
qg—1r-0 logr A1

whereB;, i =1,..., N = N(r) are boxes of a (uniform) grid of mesh sizéwhich
cover the support of) with «(B;) > 0 (provided the limit exists).
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Another dimension spectrum is thkentschel—Pr ocaccia spectrum for dimensions.
Itis a one-parameter family of characteristics

loginfg 1> gy meg (B(xi, r))?
HP,(n) = lim 9{ Bennes }

A.8
qg—1r—-0 logr ’ (A8

where§ is a finite or countable cover of the support @fby balls of radius- and
g > 0, g # 1 (provided the limit exists). One can show that ot 1,

-1
HP,(p) = ! lim log [ 1(B(x, )7~ dpu(x)
qg—1r-0 |og(1/r)

(A.9)

Moreover,R, () = HP, ().

3. Factsfrom thermodynamic formalism [3,4,10,9,13] Let X be a compact metric
space,f: X — X a continuous map, ang a continuous function oX (called the

potential function). For everye > 0 andn > 0 a setE C X is called(e, n)-separated
if x,y e E, x # yimplies thato(f*(x), f¥(y)) > & for somek € [0, n]. Set

n—1
Zu(f, 9. 6) = sup:Z exp Yy p(ff )¢,
k=0

xeE

where the supremum is taken over @lln)-separated set® C X. Set further

. 1
PX(f9 @, 8) =lim Sup; Iog Zn(f, @, 8)»
PX(fa QD) Zél‘iIPOPX(fv (07‘9)' (Alo)

We call Px (f, ¢) thetopological pressure of the functionp on X (with respect tof).
The following result is a variational characterization of the topological pressure. Let
M(f) denote the space of afl-invariant Borel probability measures ah Then

Px(f,¢) = sup (hu(f)+f¢>du>, (A.1D)
neM(f) X

whereh,, (f) is the measure-theoretic entropyof

Measures that realize the variational principle for topological pressure play crucial
roles in ergodic theory. A measupe € M(f) is called anequilibrium measure for
the functiong if

Px(f.9) = hu(f) + /X odu. (A.12)

We also need the “dimensional” definition of topological pressure for the case of a
symbolic dynamical systert® 4, o) (see [10]):

LetU® be the open cover &t 4 by cylindersC;_,. ;,. (Notice that diani(® — 0
ask — o0.) Let Z be a subset o 4, anda be a real number. Let

M(Z. o, . UP N) =inf > exp (—a(m +1)+sup) (p(aj(a)))) . (A.13)

- eC
ce§ @&t j=0
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where the infimum is taken over all finite or countable collectigraf cylindersC =

Ci_y..ipsm Withm > N > k which coverZ. Define

me(Z, o, 0, UR) = Nlim M(Z,a, ¢, UP N), (A.14)
—00

Pz(, UR) =inf {a : me(Z,a, o, UR) =0}
=sup{a: m.(Z,«, @, u<’<>) = 00},

Pz(f, ) = Jim PzUW, ). (A.15)

If Z is a compact invariant subset Bfy then Pz (f, ¢) = Pz(f, ¢).

We now describe the thermodynamic formalism for dynamical systems with contin-
uoustime. LetF = {f’}: X — X be a continuous flow (i.e., a one-parameter group of
continuous maps ol which depend continuously aiandg a continuous function on
X.Foreverye > 0andr > OasetE C X is called(e, t)-separated ik, y € E, x # y
implies thatpo (f* (x), f*(y)) > e for somer € [0, ¢]. Set

t
> exp/0 go(ff(x))dr}, (A.16)

xeE

Z:/(F,@, &) = sup{

where the supremum is taken over@ll7)-separated set8 C X. Define

1
Px(F, ¢, ¢) =limsup-log Z,(F, ¢, ), (A.17)
t—oo I
Px(F,¢) = |im0Px(F,<p,8). (A.18)
e—

We call Px (F, ¢) thetopological pressure of the functiong on X (with respect to the
flow F = {f'}). One can show that

Px(F,¢) = Px(f*, ¢, (A.19)
where 11 is a time-one map ang! = fol(p(f’(x)) dt. Moreover, one can express the
variational principle for the topological pressure in the case of flows as follows:

Px(F,9) = sup (hlel) + / wldu> : (A.20
HeM(F) X

whereM(F) is the set of allF-invariant Borel probability measures ah Note that for
any such measure [ otdu = [pdp.
A measureu € M(F) is called arequilibrium measure for the functiony if

Px(F.¢) = hu(fY + /X ordu = (Y + /X odu. (A.21)

4. Symbolic dynamical systems[10,3,4,9] Given ap x p matrix A of Os and X
(calledtransfer matrix), consider the subshift of finite typ& 4, o), whereX 4 is the
space of two-sided infinite sequencegpafymbols which aradmissible by the matrix
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A (asequence = (w;), i € Zis admissible it ,,, = 1foralli € Z) ando is the
shift map. The spacE4 has a natural family of metrics

X o — o),
dp(w, @) = _Z 'ﬂ—|| (A.22)
i=—00
where > 1. The setX, is compact with respect to the topology induced dy
and the shift ma is a homeomorphism. If the matrix is transitive (i.e., for every
0 <i,j < pthere existsk > 0 such that thei, j)-entry of the matrixA* is strictly
positive) then the shift is topologically transitive (i.e., for every open sdt andV
there exist& > 0 such that*(U) N V # @). If the matrixA isirreducible (i.e., there
existsk > 0 such thatd* > 0) then the shift is topologically mixing (i.e., for every
open seU andV there exist& > 0 such that"(U) NV # @ for everyn > k).

Let ¢ be a Hdélder continuous function da,. The following statement describes
equilibrium measures for subshifts of finite type.

Proposition A.4. Assume that the transfer matrix A isirreducible. Then

1. there exists a unique equilibrium measure i = p, Which is mixing and is positive on
open sets;
2. there exist constants D1, D> > 0 such that for any w = (w;) andany m, n > 0,
b plo' o, =w;, i =—-m,...,n}
1=
exp(—(m+n+1DPs,(0,9) + > 4__,, ¢(c¥(w)))

A

<Dy, (A23

A measureu on 4 which satisfies (A.23) is callea Gibbs measure.
We describe a symbolic suspension flow over a subshift of finite (g o). Let
Y be positive continuous function an, and

Yy ={(w,s):5 €0, ¥y (@], we Ta} C Za xR

If for everyw € X 4 we identify the pointsw, ¥ (w)) and(o (w), 0) we obtain a compact
topological spacé (A, ).
We define thesymbolic suspension flow S = {S'} on A(A, ¥) by

S (w,s)=(w,s+1) ifs+1tel0y(w)]l, (A.29)

taking identification into account.

There is a canonical identification between the spaces of invariant measures for
symbolic suspension flows and subshifts of finite type. Namely, for any measare
M(o) and the Lebesgue measutieon R the measurg x m has the property that the
identificationsly, — A(A, ¥) are held on a set of measure zero. Therefore the measure

A= (e xm)(Yy) ™t (w x m)ly, (A.25)

is a probability measure on(A, ). Moreover,i, € M(S) and the magw — 4, is
one-to-one.
Let ¢ be a continuous function on(A, ¥). Set

¥ (w)
Yo(w) = /0 P(w,t)dt, Yw)=Vo(w)—cy(w), (A.26)
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wherec = Pa(a,4) (S, ) is the topological pressure of the functigron A (A, ) with
respect to the symbolic suspension flswPs,, (o, ¥) = 0, SinceP (4 y)(S, ¢) is the
unique real number such thatPs, (o, ¥o — cy) = 0 (see [9]).

The following statement describes equilibrium measures for symbolic suspension
flows.

Proposition A.5. Assume that the function W (w) is Hélder continuous on X4 with re-
spect to the dg-metric for some 8 > 1. Then

1. there exists a unique equilibrium measure u; for the function ¢ for the symbolic
suspension flow S = {S’}; the measure 1 is ergodic and positive on open sets;

2. ug = hyu, Where py is a unique equilibrium measure for the function ¥ and the
measure A, is defined by (A.25).

5. Legendre Transform. We remind the reader of the notion of a Legendre transform
pair of functions. Let: be aC2-function on an interval such that:”(x) > 0 for all
x € I. The Legendre transform éfis the differentiable functiog of a new variablep
defined by

g(p) = g\eip(px + h(x)). (A.27)

One can show that:

1. ¢" <0;

2. the Legendre transform is involutive;

3. strictly convex functiong: and g form a Legendre transform pair if and only if
g(a) = h(q) + qa, wherea(q) = —h'(q) andg = g'(@).

6. Cohomologous Functions[13]. Let X be a compact metric space, afid X — X
a continuous map. Two functiogg andg2 on X are called cohomologous if there exists
a Holder continuous functiog : X — R and a constank’ such that

p1—p2=g—gof+K.

If the above equality holds witikk = 0 the functions are called strictly cohomologous.
We recall some properties of conomologous functions:

1. The functiong; andg, are cohomologous if and only if equilibrium measureg pf
andg»; on X coincide.
2. If 91 andgy are strictly cohnomologous thePy (¢1) = Px (¢2).
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