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Abstract. We effect the thermodynamical formalism for the non-uniformly hyperbolic
C∞ map of the two-dimensional torus known as the Katok map [Katok. Bernoulli
diffeomorphisms on surfaces. Ann. of Math. (2) 110(3) 1979, 529–547]. It is a slow-
down of a linear Anosov map near the origin and it is a local (but not small) perturbation.
We prove the existence of equilibrium measures for any continuous potential function
and obtain uniqueness of equilibrium measures associated to the geometric t-potential
ϕt =−t log | d f |Eu(x)| for any t ∈ (t0,∞), t 6= 1, where Eu(x) denotes the unstable
direction. We show that t0 tends to −∞ as the domain of the perturbation shrinks to
zero. Finally, we establish exponential decay of correlations as well as the central limit
theorem for the equilibrium measures associated to ϕt for all values of t ∈ (t0, 1).

1. Introduction
In 1979, Katok introduced in [Kat79] the first example of an area-preserving C∞

diffeomorphism of the two-dimensional torus T2, which is non-uniformly hyperbolic.
Katok’s construction starts with a linear hyperbolic automorphism A of the torus and
proceeds by slowing down trajectories in a small neighborhood of a hyperbolic fixed point.
As a result, this point becomes neutral and thus produces trajectories with zero Lyapunov
exponents. One can, however, show that the Lyapunov exponents at almost every point are
non-zero (with one being positive and another one negative; see §2 for the construction
and some basic properties of the Katok map).

The goal of this paper is to effect the thermodynamical formalism for the Katok map.
More precisely, we show (see Theorem 3.2) that there is a number t0 < 0 such that, for
every t ∈ (t0, 1), there exists a unique equilibrium measureµt for the geometric t-potential
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ϕt (x)=−t log | d f |Eu(x)|, where Eu(x) is the (one-dimensional) unstable subspace at x .
Moreover, we prove that µt has exponential decay of correlations and satisfies the central
limit theorem (CLT). Furthermore, we show that the number |t0| can be made arbitrarily
large if the size of the slow-down neighborhood is sufficiently small. We emphasize
that, currently, this is one of only very few examples of non-uniformly hyperbolic
diffeomorphisms for which one can obtain a sufficiently complete description of the
thermodynamics (see [ST13, ST16, LR06, ADU93]); for a more complete picture of the
thermodynamics for non-uniformly hyperbolic systems, see the survey [CP16].

A crucial property of the Katok map is that it is topologically conjugate via a
homeomorphism to the hyperbolic linear automorphism. In particular, since the map A is
expansive, so is the Katok map and hence it admits an equilibrium measure associated to
any continuous potential ϕ. Furthermore, the Katok map admits a finite Markov partition
and, as a result, for every Hölder continuous function there exists a unique equilibrium
measure. In particular, the Katok map possesses a unique measure of maximal entropy.

We stress that despite the presence of zero Lyapunov exponents, the collection of stable
and unstable subspaces, E s(x) and Eu(x), for the Katok map (whose a priori existence
almost everywhere is guaranteed by the non-uniform hyperbolicity) can be extended to
continuous (one-dimensional) distributions on the whole torus. This implies that the
function ϕt (x) is continuous in x . However, neither the conjugacy homeomorphism nor
the geometric t-potential ϕt (x) are Hölder continuous. These are the main obstacles
for building thermodynamics for the Katok map as it is known that even a uniformly
expanding map may exhibit phase transitions if the potential loses Hölder continuity at a
single point (see [PZ06]). In this regard, we note that there are two equilibrium measures
corresponding to the potential ϕ1, the area and the Dirac measure at the origin†.

Our approach to effecting thermodynamics for the Katok map and the geometric t-
potential is based on showing that this map is a Young’s diffeomorphism. This is the
class of maps introduced by Young in [You98]; see §4 for details. These diffeomorphisms
admit a symbolic representation by a tower. The base of the tower can be partitioned into
countably many subsets and, with respect to this partition, the induced map on the base is
conjugate to the full Bernoulli shift on a countable set of states. The height of the tower is
a (not necessarily first) return time to the base (it is also called the inducing time). In our
earlier paper [PSZ16], we established, among other results, existence and uniqueness of
equilibrium measures for the geometric t-potential ϕt (x) and proved exponential decay of
correlations and the CLT for these measures.

In the case of the Katok map, the inducing time is the first-return time to the base, so
that the induced map is the first-return map to the base (see §6).

To show that the Katok map is a Young’s diffeomorphism, we need a substantially
deeper knowledge of the behavior of trajectories of the map than is provided in the original
Katok paper [Kat79]. This includes, among other results: (1) sharp estimates of the time
a given trajectory spends in the slow-down domain (see Lemma 5.2); (2) sharp estimates
on the contraction rates along the stable local curves and the angle between stable and
unstable curves when they pass through the slow-down domain (see Lemmas 5.3 and 5.5);

† Due to the entropy formula, the area is the unique equilibrium measure for the potential ϕ1 among all measures
of positive entropy.
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(3) construction of stable and unstable invariant cones with sufficiently small angle (see
Lemma 5.4)†; and (4) uniform bounds on the contraction and expansion rates and uniform
bounded distortion estimates for the induced map (see §6).

In addition, we establish a crucial property of the tower for the Katok map: the number
of partition elements of the base with the same inducing time admits an exponential bound
with the exponent strictly less than the metric entropy of the (two-dimensional) Lebesgue
measure (see Lemma 6.1). It is this estimate that is instrumental in proving the uniqueness
of equilibrium measures as well as showing that these measures have exponential decay of
correlations and satisfy the CLT (see Proposition 4.1).

We stress again that the loss of uniform hyperbolicity in the Katok map occurred due to
the presence of a neutral fixed point. In the one-dimensional setting, an example similar
in spirit to the Katok map is the well-known Manneville–Pomeau map (see [PM80]).
This map admits an invariant measure which is absolutely continuous with respect to the
(one-dimensional) Lebesgue measure. This invariant measure may or may not be finite
depending on the higher-order derivatives of the map in a small neighborhood of the neutral
fixed point. In the case where the invariant measure is finite, the thermodynamics of this
map are similar; see Remark 2 for more details.

There are other examples of multi-dimensional non-uniformly hyperbolic systems for
which some results on the thermodynamics of these systems are known. In particular,
Senti and Takahashi [ST13, ST16] proved a theorem similar to our main theorem 3.2 for
the Hénon map at the first bifurcation. Also, Leplaideur and Rios [LR06] considered a
C2 map of the unit square in R2 with a fixed hyperbolic point whose stable and unstable
separatrices have an orbit of homoclinic tangency. Under certain conditions, this map
possesses a horseshoe and, as shown in [LR06], every Hölder continuous potential admits
a unique equilibrium measure that gives positive weight to any open set intersecting the
horseshoe (see also [Bar13] for related results). For the thermodynamical formalism of
parabolic rational maps of the Riemann sphere see [ADU93] and references therein.

The structure of the paper is as follows. We first introduce the Katok map. In §3, we
state our main results. In §4, we describe Young’s diffeomorphisms. This structure yields
a coding on which we apply the thermodynamical formalism developed in [PS05, PS08,
PSZ16]. In §5, we show some additional crucial properties of the Katok map which are
mentioned above and which are instrumental to our arguments. In §6, we express the
Katok map as a Young’s diffeomorphism. The core technical arguments are in §§5 and 6.
Then, in §7, we apply the thermodynamics of Young’s diffeomorphisms from [PSZ16] to
effect thermodynamics of the Katok map.

2. Definition of the Katok map
Consider the automorphism of the two-dimensional torus T2

= R2/Z2 given by the matrix
A :=

(
2 1
1 1

)
. We choose a number 0< α < 1 and a function ψ : [0, 1] 7→ [0, 1] satisfying:

(K1) ψ is of class C∞ everywhere but at the origin;
(K2) ψ(u)= 1 for u ≥ r0 and some 0< r0 < 1;
(K3) ψ ′(u) > 0 and is decreasing for 0< u < r0; and

† In the original Katok paper, it is shown that the cones of angle π/4 centered around the eigendirections of the
matrix A are invariant under the map; this is a substantially simpler statement than Lemma 5.4.
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(K4) ψ(u)= (u/r0)
α for 0≤ u ≤ r0/2.

Let Dr = {(s1, s2) : s1
2
+ s2

2
≤ r}, where (s1, s2) is the coordinate system obtained from

the eigendirections of A. Let λ > 1 be the largest eigenvalue of A. Setting r1 := 2r0 log λ,

Dr0 ⊂ Int A(Dr1) ∩ Int A−1(Dr1). (1)

Consider the system of differential equations in Dr1 ,
ds1

dt
= s1 log λ,

ds2

dt
=−s2 log λ. (2)

Observe that A is the time-1 map of the local flow generated by this system.
We slow down trajectories of the flow by perturbing the system (2) in Dr0 as follows.

ds1

dt
= s1ψ(s1

2
+ s2

2) log λ,

ds2

dt
=−s2ψ(s1

2
+ s2

2) log λ.
(3)

This system of differential equations generates a local flow. Denote by g the time-1 map of
this flow. The choices ofψ , r0 and r1 (see (1)) guarantee that the domain of g contains Dr0 .
Furthermore, g is of class C∞ in Dr0\{0} and it coincides with A in some neighborhood
of the boundary ∂Dr0 . Therefore, the map

G(x)=

{
A(x) if x ∈ T2

\Dr0 ,

g(x) if x ∈ Dr0

(4)

defines a homeomorphism of the torus T2, which is a C∞ diffeomorphism everywhere
except at the origin. Since 0< α < 1,∫ 1

0

du
ψ(u)

<∞.

This implies that the map G preserves the probability measure dν = κ−1
0 κ dm, where m is

the area and the density κ is a positive C∞ function that is infinite at zero and is defined
by

κ(s1, s2) :=

{
(ψ(s1

2
+ s2

2))−1 if (s1, s2) ∈ Dr0 ,

1 otherwise,

and
κ0 :=

∫
T2
κ dm.

We further perturb the map G by a coordinate change φ in T2 to obtain an area-preserving
C∞ map. To achieve this, define a map φ in Dr0 by the formula

φ(s1, s2) :=
1√

κ0(s12 + s22)

(∫ s1
2
+s2

2

0

du
ψ(u)

)1/2

(s1, s2) (5)

and set φ = Id in T2
\Dr0 . Clearly, φ is a homeomorphism and is a C∞ diffeomorphism

outside the origin. One can show that φ transfers the measure ν into the area and that
the map GT2 = φ ◦ G ◦ φ−1 is a C1+ε diffeomorphism for some ε > 0 and is a C∞

diffeomorphism outside the origin. It is called the Katok map (see [Kat79] and also
[BP13]).
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The following proposition describes some basic properties of this map.

PROPOSITION 2.1. [Kat79, BP13] The map GT2 has the following properties.
(1) It is topologically conjugated to A via a homeomorphism H.
(2) It admits two transverse invariant continuous stable and unstable distributions E s(x)

and Eu(x) and, for almost every point x with respect to area m, it has two non-zero
Lyapunov exponents, positive in the direction of Eu(x) and negative in the direction
of E s(x). Moreover, the only invariant measure with zero Lyapunov exponents is the
Dirac measure at the origin δ0.

(3) It admits two continuous, uniformly transverse, invariant foliations with smooth
leaves which are the images under the conjugacy map of the stable and unstable
foliations for A, respectively.

(4) For every ε > 0, one can choose r0 > 0 such that∣∣∣∣∫ log
∣∣∣∣D GT2 |Eu

∣∣∣∣ dm − log λ
∣∣∣∣< ε.

(5) It is ergodic with respect to the area m.

3. Main results
Recall that, given a continuous map f of a compact metric space X and a potential function
ϕ, an invariant Borel probability measure µϕ is called an equilibrium measure if

hµϕ ( f )+
∫

X
ϕ dµϕ = sup

M( f,X)

{
hµ( f )+

∫
X
ϕ dµ

}
,

where M( f, X) is the class of all f -invariant ergodic Borel probability measures. The
supremum on the right-hand side coincides with the topological pressure P(ϕ) of the
function ϕ. We also recall that f has exponential decay of correlations with respect to
a measure µ ∈M( f, X) and a class H of functions on X if there exists 0< κ < 1 such
that, for any h1, h2 ∈H,∣∣∣∣∫ h1( f n(x))h2(x) dµ−

∫
h1(x) dµ

∫
h2(x) dµ

∣∣∣∣≤ Cκn

for some constant C = C(h1, h2) > 0.
The transformation f satisfies the CLT for a class H of functions if, for any h ∈H

which is not a coboundary (i.e., h 6= g ◦ f − g for any g ∈H), there exists σ > 0 such
that

µ

{
1
√

n

n−1∑
i=0

(
h( f i (x))−

∫
h dµ

)
< t
}
→

1

σ
√

2π

∫ t

−∞

e−τ
2/2σ 2

dτ.

By Statement 1 of Proposition 2.1, the Katok map GT2 is topologically conjugated to the
hyperbolic total automorphism A, which is an expansive map. As an immediate corollary,
one obtains that GT2 admits an equilibrium measure associated to any continuous potential.

Consider the geometric t-potential ϕt =−t log | D GT2 |Eu
|. Our goal is to describe

the existence, uniqueness and ergodic properties of the equilibrium measures associated to
ϕt .

By the continuity property of Eu (see Statement 2 of Proposition 2.1), ϕt is continuous
for all t . Hence, we obtain the following theorem.
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THEOREM 3.1. For every t ∈ R, the map GT2 admits an equilibrium measure associated
to ϕt .

The following result describes the uniqueness and ergodic properties of the equilibrium
measures associated to ϕt .

THEOREM 3.2. Consider the Katok map GT2 and the geometric t-potential ϕt . The
following statements hold.
(1) For any t0 < 0, one can find r0 = r0(t0) such that, for every t0 < t < 1:

• there exists a unique equilibrium measure µt associated to ϕt ;
• µt has exponential decay of correlations and satisfies the CLT with respect to

a class of functions which includes all Hölder continuous functions on T2; note
that uniqueness of µt implies that it is ergodic and, since correlations decay, µt

is, in fact, mixing.
(2) For t = 1 there exist two equilibrium measures associated to ϕ1, namely, the Dirac

measure at the origin δ0 and the area m.
(3) For t > 1, δ0 is the unique equilibrium measure associated to ϕt .

As an immediate corollary of this theorem, we obtain the following result.

COROLLARY 3.3. The map GT2 has unique measure of maximal entropy which has
exponential decay of correlations and satisfies the CLT with respect to a class of functions
which includes all Hölder continuous functions on T2.

Remark 1. One can show that the measure µt is Bernoulli and that the pressure function
P(t) := P(ϕt ) is real analytic in the open interval (t0, 1) (see [SZ17]). In addition, one
can show that the area m = µ1 has polynomial decay of correlations (see [PSS17]).

Remark 2. The Katok map is a two-dimensional analog of the well-known Manneville–
Pomeau map x 7→ x + x1+α (mod 1), where α ∈ (0, 1). For this map, the origin is a
neutral fixed point (as in the case of the Katok map). The thermodynamics of this map are
well understood (see [PW99, PS92, Lop93, PY01, LSV99, You99, Sar01, Sar02, Hu04])
and is quite similar to our Theorem 3.2.
(1) t < 1: the pressure function P(t) is real analytic and decreasing and there is a unique

equilibrium measure µt for ϕt ; this measure is Bernoulli, has exponential decay of
correlations, and satisfies the CLT with respect to the class of Hölder continuous
functions.

(2) t = 1: the pressure function P(t) is non-differentiable at t = 1, and ϕ1 has two
ergodic equilibrium measures. One of these is the absolutely continuous invariant
probability measure µ1 and the other is δ0. The measure µ1 is Bernoulli and it has
polynomial decay of correlations.

(3) t > 1: the unique equilibrium state for ϕt is δ0.
Our Theorem 3.2 establishes the exponential decay of correlations and the CLT with
respect to a class which contains all Hölder continuous potentials for the equilibrium
measures µt for a large set of values of t . However, the crucial difference between our
result for the Katok map and the results mentioned above for the Manneville–Pomeau
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map is that we can establish the uniqueness and describe the statistical properties of the
equilibrium measures µt on an arbitrarily large, albeit finite, interval (t0, 1) with t0 < 0. It
is an open problem whether, given r0 > 0, the number t0 is indeed finite and, if so, whether
a phase transition occurs at t = t0.

4. Young’s diffeomorphisms
4.1. Definition of Young’s diffeomorphisms. Consider a C1+ε diffeomorphism f :
M→ M of a compact smooth Riemannian manifold M . Following [You98], we describe
a collection of conditions on the map f .

An embedded C1 disk γ ⊂ M is called an unstable disk (respectively, a stable disk)
if, for all x, y ∈ γ , d( f −n(x), f −n(y))→ 0 (respectively, d( f n(x), f n(y))→ 0) as
n→+∞. A collection of embedded C1 disks 0u

= {γ u
} is called a continuous family

of unstable disks if there exists a homeomorphism 8 : K s
× Du

→
⋃
γ u satisfying:

• K s
⊂ M is a Borel subset and Du

⊂ Rd is the closed unit disk for some d < dim M ;
• x→8 | {x} × Du is a continuous map from K s to the space of C1 embeddings of Du

into M which can be extended to a continuous map of the closure K s ; and
• γ u

=8({x} × Du) is an unstable disk.
A continuous family of stable disks is defined similarly.

We allow the sets K s to be non-compact in order to deal with overlaps which appear in
most known examples including the Katok map.

A set 3⊂ M has hyperbolic product structure if there exists a continuous family
0u
= {γ u

} of unstable disks γ u and a continuous family 0s
= {γ s

} of stable disks γ s

such that:
• dim γ s

+ dim γ u
= dim M ;

• the γ u-disks are transversal to γ s-disks with an angle uniformly bounded away from
zero;

• each γ u-disk intersects each γ s-disk at exactly one point; and
• 3= (

⋃
γ u) ∩ (

⋃
γ s).

A subset 30 ⊂3 is called an s-subset if it has hyperbolic product structure and is
defined by the same family 0u of unstable disks as3 and a continuous subfamily 0s

0 ⊂ 0
s

of stable disks. A u-subset is defined analogously.
Assume that the map f satisfies the following conditions.

(Y1) There exists 3⊂ M with hyperbolic product structure, a countable collection of
continuous subfamilies 0s

i ⊂ 0
s of stable disks and positive integers τi , i ∈ N such

that the s-subsets
3s

i :=
⋃
γ∈0s

i

(γ ∩3)⊂3 (6)

are pairwise disjoint and satisfy:
(a) invariance: for every x ∈3s

i ,

f τi (γ s(x))⊂ γ s( f τi (x)), f τi (γ u(x))⊃ γ u( f τi (x)),

where γ u,s(x) denotes the (un)stable disk containing x ;
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(b) Markov property: 3u
i := f τi (3s

i ) is a u-subset of 3 such that, for all x ∈3s
i ,

f −τi (γ s( f τi (x)) ∩3u
i )= γ

s(x) ∩3,

f τi (γ u(x) ∩3s
i )= γ

u( f τi (x)) ∩3.

(Y2) For every γ u
∈ 0u ,

µγ u (γ u
∩3) > 0, µγ u

((
3
∖⋃

3s
i

)
∩ γ u

)
= 0,

where µγ u is the leaf volume on γ u .
For any x ∈3s

i , define the inducing time by τ(x) := τi and the induced map
F :

⋃
i∈N 3

s
i →3 by

F |3s
i
:= f τi |3s

i
.

(Y3) There exists 0< a < 1 such that, for any i ∈ N:
(a) for x ∈3s

i and y ∈ γ s(x),

d(F(x), F(y))≤ a d(x, y);

(b) for x ∈3s
i and y ∈ γ u(x) ∩3s

i ,

d(x, y)≤ a d(F(x), F(y)).

For x ∈3, let J u f (x)= det |D f |Eu(x)| and J u F(x)= det |DF |Eu(x)| denote the Jacobian
of D f |Eu(x) and DF |Eu(x), respectively.
(Y4) There exist c > 0 and 0< κ < 1 such that:

(a) for all n ≥ 0, x ∈ F−n(
⋃

i∈N 3
s
i ) and y ∈ γ s(x),∣∣∣∣log
J u F(Fn(x))
J u F(Fn(y))

∣∣∣∣≤ cκn
;

(b) for any i0, . . . , in ∈ N, Fk(x), Fk(y) ∈3s
ik

for 0≤ k ≤ n and y ∈ γ u(x),∣∣∣∣log
J u F(Fn−k(x))
J u F(Fn−k(y))

∣∣∣∣≤ cκk .

(Y5) There exists γ u
∈ 0u such that

∞∑
i=1

τiµγ u (3s
i ) <∞.

4.2. Thermodynamics of Young’s diffeomorphisms. For t ∈ R, consider the family of
geometric t-potentials

ϕt (x) := −t log |J u f (x)|.

Denote
log λ1 := sup

i≥1
sup

x∈3s
i

1
τi

log |J u F(x)| ≤max
x∈M

log |J u f (x)|. (7)

Further, denote
Sn = ] {3

s
i : τi = n}. (8)
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We say that the tower satisfies the arithmetic condition if the greatest common denominator
of the set of integers {τi } is one†.

The following result is an application of [PSZ16, Theorem 7.1] to the case when the
inducing time is the first-return time to the base.

PROPOSITION 4.1. Let f : M→ M be a C1+ε diffeomorphism of a compact smooth
Riemannian manifold M satisfying conditions (Y1)–(Y5). Assume that the inducing time τ
is the first-return time to the base of the tower. Then the following statements hold.
(1) There exists an equilibrium measure µ1 for the potential ϕ1 which is the unique

Sinai–Ruelle–Bowen (SRB) measure.
(2) Assume that, for some constants C > 0 and 0< h < hµ1( f ) (where hµ1( f ) is the

metric entropy of µ1),
Sn ≤ Cehn . (9)

Define

t0 :=
h − hµ1( f )

log λ1 − hµ1( f )
. (10)

Then, for every t0 < t < 1, there exists a measure µt ∈M( f, Y ), which is a unique
equilibrium measure for the potential ϕt where Y := { f k(x) : x ∈

⋃
3s

i , 0≤ k ≤
τ(x)− 1}.

(3) Assume that the tower satisfies the arithmetic condition. Assume also that there is
K > 0 such that, for every i ≥ 0, every x, y ∈3s

i and any 0≤ j ≤ τi ,

d( f j (x), f j (y))≤ K max{d(x, y), d(F(x), F(y))}. (11)

Then, for every t0 < t < 1, the measure µt has exponential decay of correlations
and satisfies the CLT with respect to a class of functions which contains all Hölder
continuous functions on M.

Remark 3. In the proof of [PSZ16, Theorem 7.1], the constant C in (9) was assumed to
be 1, but the proof holds true for any C > 0. Furthermore, the quantity λ1 was defined as
maxx∈X |J u f (x)| but the proof carries through with λ1 defined as in (7).

We claim that log λ1 ≥ hµ1( f ), so that t0 < 0. To see this, by the entropy formula,

hµ1( f )= lim
n→∞

1
n

log |J u f n(x)|,

where x is an arbitrary generic point of the measure µ1 (and the limit exists and is
independent of x). Consider the subsequence nk(x)=

∑k−1
j=0 τ(F

j (x)):

log |J u f nk (x)| =
k−1∑
j=0

log |J u F(F j (x))| ≤ nk(x) log λ1

and the claim follows.

Remark 4. The requirements in Statement 3 of Proposition 4.1, that the tower satisfies the
arithmetic condition and that (11) holds, need to be added to Theorem 4.5, Statement 2
of Theorem 4.7 and Statement 2 of Theorem 7.7 in [PSZ16] for the conclusion of these
statements to hold.
† The arithmetic condition implies that the map on the tower generated by f is topologically mixing.
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Remark 5. Since t0 < 0, Proposition 4.1 implies, in particular, existence and uniqueness
of the measure of maximal entropy and establishes exponential decay of correlations and
the CLT for this measure.

Remark 6. The measure µt can be shown to be ergodic and, since it has exponential decay
of correlations, it is also mixing.

5. Some additional properties of the map G
In this section, we establish some crucial properties of the Katok map GT2 that are in
addition to the basic properties described in Proposition 4.1. Since GT2 is conjugate to the
map G given by (4), we will only consider this map. We begin with the following technical
lemma. Recall that the number α in property (K4) of the definition of the function ψ
satisfies 0< α < 1.

LEMMA 5.1. For s = (s1, s2) ∈ Dr0/2, let

di, j = di, j (s1, s2) :=
∂2

∂si∂s j
s2ψ(s2

1 + s2
2).

Then
max

i, j=1,2
|di, j | ≤

6α
rα0

(s2
1 + s2

2)
α−1/2.

Proof.

∂

∂s1
(s2ψ(s2

1 + s2
2))=

2α
rα0

s1 s2 (s2
1 + s2

2)
α−1,

∂

∂s2
(s2ψ(s2

1 + s2
2))=

1
rα0
(s2

1 + s2
2)
α
+

2α
rα0

s2
2 (s

2
1 + s2

2)
α−1.

Since −2≤ 2(α − 1)(s2
1/(s

2
1 + s2

2))≤ 0 and 0≤ (|s2|/

√
s2

1 + s2
2)≤ 1,

|d1,1| =
2α
rα0

∣∣∣∣ ∂∂s1
s1s2(s2

1 + s2
2)
α−1

∣∣∣∣
=

2α
rα0

(s2
1 + s2

2)
α−1
|s2|

∣∣∣∣1+ 2(α − 1)
s2

1

s2
1 + s2

2

∣∣∣∣
≤

2α
rα0

(s2
1 + s2

2)
α−1/2.

The same argument applies to

|d1,2| =
2α
rα0

(s2
1 + s2

2)
α−1
|s1|

∣∣∣∣1+ 2(α − 1)
s2

2

s2
1 + s2

2

∣∣∣∣
and

|d2,2| =
6α
rα0

(s2
1 + s2

2)
α−1
|s2|

∣∣∣∣1+ 2
3
(α − 1)

s2
2

s2
1 + s2

2

∣∣∣∣,
yielding the desired result. �
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Consider the solution s(t)= (s1(t), s2(t)) of equation (3) with an initial condition
s(0)= (s1(0), s2(0)). Assume it is defined on the maximal time interval [0, T ] for
which G−1(s(0)) /∈ Dr0/2 and G(s(T )) /∈ Dr0/2 but s(t) ∈ Dr0/2 for all 0≤ t ≤ T . In
particular, s1(t) 6= 0 and s2(t) 6= 0. Setting T1 = T/2, s1(t)≤ s2(t) for all 0≤ t ≤ T1 and
s1(t)≥ s2(t) for all T1 ≤ t ≤ T . The following statement provides effective lower and
upper bounds on the functions s1(t) and s2(t).

LEMMA 5.2. The following statements hold:

|s2(t)| ≥ |s2(a)|(1+ 2α C1 s2α
2 (a) (t − a))−1/2α, 0≤ a ≤ t ≤ T1;

|s2(t)| ≤ |s2(a)|(1+ C1 s2α
2 (a) (t − a))−1/2α, 0≤ a ≤ t ≤ T ;

|s1(t)| ≥ |s1(a)|(1− C1 s2α
1 (a) (t − a))−1/2α, 0≤ a ≤ t ≤ T ;

|s1(t)| ≤ |s1(T1)|(1− 2α C1 s2α
1 (T1) (t − T1))

−1/2α, T1 ≤ t ≤ T ;

|s1(t)| ≤ |s1(b)|(1+ C1 s2α
1 (b) (b − t))−1/2α, 0≤ t ≤ b ≤ T,

where C1 = (2α log λ)/rα0 is a constant. In particular,

T ≤
rα0

α2α log λ
s−2α

1 (T1). (12)

Proof. Assume that s1(t) > 0 and s2(t) > 0 for all 0≤ t ≤ T . Equation (3) with ψ(u)=
(u/r0)

α for 0≤ u ≤ r0/2 yields, for all 0≤ t ≤ T and i = 1, 2,

dsi (t)
dt
= (−1)i+1 log λ

rα0
si (t) (s2

1(t)+ s2
2(t))

α. (13)

Obviously, s2
i (t)≤ s2

1(t)+ s2
2(t) always holds and therefore

ds1(t)
dt
≥

log λ
rα0

s2α+1
1 (t)

and
ds2(t)

dt
≤−

log λ
rα0

s2α+1
2 (t).

Integrating between 0≤ a ≤ b ≤ T yields

s−2α
1 (b)− s−2α

1 (a)≤−C1 (b − a)

and
s−2α

2 (b)− s−2α
2 (a)≥ C1 (b − a)

with C1 = (2α log λ)/rα0 . The second and third inequalities now follow from these
two bounds with b = t (after observing that s1(t) is assumed positive and hence
T ≤ (1/C1) s−2α

1 (0)). The last inequality also follows from the above by taking a = t .
For the first and fourth inequalities, recall that s1(t)≤ s2(t) for 0≤ t ≤ T1 and s2(t)≤

s1(t) for T1 ≤ t ≤ T . Therefore,

s2
1(t)+ s2

2(t)≤ 2 s2
1(t) if T1 ≤ t ≤ T,

s2
1(t)+ s2

2(t)≤ 2 s2
2(t) if 0≤ t ≤ T1.

(14)
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Equation (13) now yields

ds1(t)
dt
≤ 2α

log λ
rα0

s2α+1
1 (t) if T1 ≤ t ≤ T,

ds2(t)
dt
≥−2α

log λ
rα0

s2α+1
2 (t) if 0≤ t ≤ T1.

Integration between a and b yields

s−2α
1 (b)− s−2α

1 (a)≥−2α C1 (b − a) if T1 ≤ a ≤ b ≤ T,

s−2α
2 (b)− s−2α

2 (a)≤ 2α C1 (b − a) if 0≤ a ≤ b ≤ T1.

The first bound follows by taking b = t . The fourth inequality follows by taking
a = T1 and b = t and observing that s1(t) is assumed positive and hence T − T1 ≤

(1/2α C1) s−2α
1 (T1). The last inequality follows by taking a = t . �

Consider another solution s̃(t)= (s̃1(t), s̃2(t)) of equation (3) satisfying an initial
condition s̃(0)= (s̃1(0), s̃2(0)). For i = 1, 2, we set

1si (t)= s̃i (t)− si (t).

Our goal is to obtain an upper bound for 1s(t)= s̃(t)− s(t).

LEMMA 5.3. Given 0< µ< 1, assume that s1(t) 6= 0 6= s2(t) and that:
(1) 1s2(t) > 0 and |1s1(t)| ≤ µ1s2(t) for t ∈ [0, T ]; and
(2) |(1s2/s2)(0)|< (1− µ)/72.
Then

1s2(t)≤
1s2(0)
s2(0)

s2(t)(1+ 2α C1 s2α
2 (0) t)−β , 0≤ t ≤ T1,

1s2(t)≤
1s2(T1)

s1(T1)
s1(t)(1− 2α C1 s2α

1 (T1) (t − T1))
−β , T1 ≤ t ≤ T,

where β = (1− µ)/2α+2 and C1 is the constant in Lemma 5.2. In addition,

‖1s(T )‖ ≤
√

1+ µ2 s1(T )
s2(0)

‖1s(0)‖.

Proof. We prove the lemma assuming that s1(t) and s2(t) are strictly positive. The
strictly negative cases follow by symmetry. To simplify notation, set s1 = s1(t), s2 = s2(t),
u := s2

1 + s2
2 and ũ := s̃2

1 + s̃2
2 . By equation (3),

d
dt
1s2(t)=

d
dt

s̃2(t)−
d
dt

s2(t)=−(log λ)(s̃2ψ(ũ)− s2ψ(u))

=−log λ
(
∂

∂s1
(s2ψ(u))1s1 +

∂

∂s2
(s2ψ(u))1s2

)
−

log λ
2

∑
i, j=1,2

di, j (ξ1, ξ2)(1si )(1s j ) (15)

for some ξ = (ξ1, ξ2) for which ξi lies between si (t) and s̃i (t) for i = 1, 2. Note that

∂

∂s2
(s1ψ(u))= 2s1s2ψ

′,
∂

∂s2
(s2ψ(u))= 2s2

2ψ
′
+ ψ
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and hence
d
dt

(
1s2

s2

)
=

1
s2

(
d
dt
1s2

)
−
1s2

s2
2

(
ds2

dt

)
=−log λ

(
2ψ ′(s11s1 + s21s2)+

1s2

s2
ψ

)
+ (log λ)

1s2

s2
ψ −

log λ
2

∑
i, j=1,2

di, j (ξ1, ξ2)
1si1s j

s2

=−
2α log λ

rα0
(s2

1 + s2
2)
α−1(s11s1 + s21s2)

−
log λ

2

∑
i, j=1,2

di, j (ξ1, ξ2)
1si1s j

s2
.

For 0≤ t ≤ T1, 0< s1(t)≤ s2(t). Since |1s1| ≤ µ1s2,

s11s1 + s21s2 ≥ (−s1µ+ s2)1s2 ≥ (1− µ)s21s2.

Since |1s1| ≤ µ1s2 <1s2, Lemma 5.1 yields∑
i, j=1,2

di, j (ξ1, ξ2)1si1s j ≥−
24 α
rα0

(ξ2
1 + ξ

2
2 )
α−1/2(1s2)

2. (16)

It follows that

d
dt

(
1s2

s2

)
≤−(1− µ)

2α log λ
rα0

(s2
1 + s2

2)
α s2

2

s2
1 + s2

2

1s2

s2

+
12α log λ

rα0
s2α

2

(
ξ2

1 + ξ
2
2

s2
2

)α−1/2(
1s2

s2

)2

.

Using again the fact that 0< s1(t)≤ s2(t) for 0≤ t ≤ T1, we obtain that s2
2 ≤ s2

1 + s2
2 ≤

2s2
2 and conclude that

d
dt

(
1s2

s2

)
≤−(1− µ)

α log λ
rα0

s2α
2
1s2

s2

+
12α log λ

rα0
s2α

2

(
ξ2

1 + ξ
2
2

s2
2

)α−1/2(
1s2

s2

)2

.

Setting κ = κ(t)= (1s2/s2)(t),

dκ
dt
≤−

α log λ
rα0

s2α
2 κ

(
1− µ− 12

(
ξ2

1 + ξ
2
2

s2
2

)α−1/2

κ

)
. (17)

Observe that

0< s2 ≤ ξ2 ≤ s̃2 = s2 +1s2, ξ1 ≤ s1 + |1s1| ≤ s2 + µ1s2.

This implies that

1≤
ξ2

2

s2
2
≤
ξ2

1 + ξ
2
2

s2
2
≤ (1+ µκ)2 + (1+ κ)2 < 2(1+ κ)2.
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It follows that (
ξ2

1 + ξ
2
2

s2
2

)α−1/2

≤


1, 0< α ≤

1
2
,

(2(1+ κ)2)α−1/2,
1
2
≤ α < 1.

Using assumption (2), it is easy to verify that(
1− µ− 12

(
ξ2

1 + ξ
2
2

s2
2

)α−1/2

κ(0)
)
>

1− µ
2

and equation (17) now yields
dκ
dt

∣∣∣∣
t=0

<−
(1− µ)α log λ

2rα0
s2α

2 (0)κ(0) < 0.

Hence, κ(t) satisfies

0< κ(t) <
1− µ

72
(18)

for all 0≤ t < δ for some sufficiently small δ. Therefore, the same argument as above
applies, yielding

dκ(t)
dt

<−
(1− µ)α log λ

2rα0
s2α

2 (t)κ(t) < 0 (19)

for all 0≤ t < δ. Using positivity and continuity of functions κ(t) and s2(t) on the interval
[0, T1], it is easy to see that repeating this argument yields the estimates (18) and (19) for
all 0≤ t ≤ T1.

By the first inequality in Lemma 5.2, (19) and Gronwall’s inequality,

κ(t)≤ κ(0) exp
(
−
(1− µ)α log λ

2rα0

∫ t

0
s2(τ )

2α dτ
)

≤ κ(0) exp
(
−
(1− µ)α log λ

2rα0

∫ t

0
s2(0)2α(1+ C12αs2α

2 (0) τ )−1 dτ
)

= κ(0) exp
(
−
(1− µ)α log λ

2rα0

1
C12α

log(1+ C12αs2α
2 (0) t)

)
= κ(0)(1+ C12αs2α

2 (0) t)−(1−µ)/2
α+2
.

This implies the first estimate.
To prove the second estimate, using (15) and arguing as above,

d
dt

(
1s2

s1

)
=−log λ

(
2s2ψ

′1s1 + (2s2
2ψ
′
+ ψ)

1s2

s1

)
− log λψ

1s2

s1

−
log λ

2

∑
i, j=1,2

di, j (ξ1, ξ2)
1si1s j

s1
.

The assumption that |1s1| ≤ µ1s2 and positivity of s1, s2, ψ
′ and 1s2 imply that

d
dt

(
1s2

s1

)
≤−2 log λ(ψ − µs1s2ψ

′)
1s2

s1

−
log λ

2

∑
i, j=1,2

di, j (ξ1, ξ2)
1si1s j

s1
.

ψ

ψ ′
− µs1s2 =

1
α
(s2

1 + s2
2)− µs1s2 ≥

(
1
α
−
µ

2

)
(s2

1 + s2
2)=

2− µ
2α

(s2
1 + s2

2).
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Together with the bound for di, j from (16), this yields

d
dt

(
1s2

s1

)
≤−(2− µ)

log λ
rα0

s2α
1

(
1s2

s1

)
+ 12α

log λ
rα0

s2α
1

(
ξ2

1 + ξ
2
2

s2
1

)α−1/2(
1s2

s1

)2

. (20)

Setting χ = χ(t)= (1s2/s1)(t),

dχ
dt
≤−

log λ
rα0

s2α
1 χ

(
2− µ− 12α

(
ξ2

1 + ξ
2
2

s2
1

)α−1/2

χ

)
. (21)

Now note that min{si , s̃i } ≤ ξi ≤max{si , s̃i } and 1si = s̃i − si for i = 1, 2 and thus

si − |1si | ≤ ξi ≤ si + |1si |.

Since |1s1| ≤ µ1s2, it follows that

ξ2
1 + ξ

2
2 ≥ ξ

2
1 ≥ (s1 − |1s1|)

2
≥ (s1 − µ|1s2|)

2
≥ s2

1

(
1− µ

|1s2|

s1

)2

≥ s2
1(1− χ)

2

and
ξ2

1 + ξ
2
2

s2
1
≤ (1+ µχ)2 + (1+ χ)2 < 2(1+ χ)2.

It follows that (
ξ2

1 + ξ
2
2

s2
1

)α−1/2

≤

{
(1− χ)2α−1, 0< α ≤ 1

2 ,

2α−1/2(1+ χ)2α−1, 1
2 ≤ α < 1.

Observing that s1(T1)= s2(T1), by the first estimate in the lemma and assumption (2),

0≤ χ(T1)=
1s2(T1)

s1(T1)
=
1s2(T1)

s2(T1)
≤
1s2(0)
s2(0)

<
1− µ

72
.

Therefore, by assumption (2),(
2− µ− 12α

(
ξ2

1 + ξ
2
2

s2
1

)α−1/2

χ(T1)

)
>

1− µ
2

and equation (21) now yields
dχ
dt

∣∣∣∣
t=T1

<−
(1− µ) log λ

2rα0
s2α

1 (T1)χ(T1) < 0. (22)

Repeating the above argument, we conclude that the relations (22) hold for all T1 ≤ t ≤ T .
Therefore, Gronwall’s inequality and the fourth inequality in Lemma 5.2 now yield

χ(t)≤ χ(T1) exp
(
−
(1− µ) log λ

2rα0

∫ t

T1

s2α
1 (τ ) dτ

)
≤ χ(T1) exp

(
−
(1− µ) log λ

2rα0

∫ t

T1

s2α
1 (T1)(1− C12αs2α

1 (T1)(τ − T1))
−1 dτ

)
= χ(T1) exp

(
−
(1− µ) log λ

2rα0

1
C12α

log(1− C12αs2α
1 (T1)(t − T1))

)
= χ(T1)(1− C12αs2α

1 (T1)(t − T1))
−(1−µ)/α2α+2

,

which thus proves the second estimate.
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To prove the last inequality, we apply the last inequality in Lemma 5.2 and Gronwall’s
inequality to (22) on the interval [T1, T ] to obtain

χ(T )≤ χ(T1) exp
(
−
(1− µ) log λ

2rα0

∫ T

T1

s2α
1 (τ ) dτ

)
≤ χ(T1) exp

(
−
(1− µ) log λ

2rα0

∫ T

T1

s2α
1 (T )(1+ C12αs2α

1 (T )(T − τ))−1 dτ
)

≤ χ(T1) exp
(

1− µ
α2α+2 log

(
1

1+ C12αs2α
1 (T )(T − T1)

))
≤ χ(T1) (1+ C12αs2α

1 (T ) (T − T1))
−(1−µ)/α2α+1

≤ χ(T1).

Thus
1s2(T1)

s2(T1)
≤
1s2(0)
s2(0)

and
1s2(T )
s1(T )

≤
1s2(T1)

s1(T1)
.

Since s1(T1)= s2(T1), combining the two inequalities gives

1s2(T )≤
s1(T )
s2(0)

1s2(0).

Since |1s1| ≤ µ1s2, 1s2 ≤ ‖1s‖ ≤
√

1+ µ21s2 and the last estimate in the statement
of the lemma follows. �

For every x ∈ T2, we define the two families of cones

K+(x) := {v = (v1, v2) ∈ R2
: |v2|< µ|v1|},

K−(x) := {v = (v1, v2) ∈ R2
: |v1|< µ|v2|},

where we use the coordinate system in the plane generated by the eigendirections of the
matrix A. The following result shows that, with an appropriate choice of µ, these cone
families are invariant under G. Observe that, in Katok’s original construction, µ= 1,
whereas we now require µ < 1.

LEMMA 5.4. There exists 0< µ0 < 1 such that, for all µ0 < µ< 1 and all x ∈ T2,

(DG)K+(x)⊆ K+(G(x)), (DG)−1 K−(G(x))⊆ K−(x).

Proof. We shall only prove invariance of the cone family K+(x) as invariance of the cone
family K−(x) can be obtained by reversing the time. For every x outside of Dr0 , the
invariance of cone family K+(x) is obvious. We now prove invariance of the cones in Dr0 .
The variational equations for equation (3) are

dζ1

dt
= (log λ)((ψ + 2s2

1ψ
′)ζ1 + 2s1s2ψ

′ζ2),

dζ2

dt
=−(log λ)(2s1s2ψ

′ζ1 + (ψ + 2s2
2ψ
′)ζ2).

(23)

This yields the equation for the tangent η = ζ2/ζ1

dη
dt
=−2 log λ((ψ + (s2

1 + s2
2)ψ
′)η + s1s2ψ

′(η2
+ 1)). (24)
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If u = s2
1 + s2

2 ∈ [r0/2, r0], then, since ψ is positive and increasing and since ψ ′ is positive
and decreasing,

ψ

ψ ′
(u)≥

ψ

ψ ′
(r0/2)=

(1/2)α

αr−1
0 (1/2)α−1

=
1

2α
r0 ≥

1
2α

u.

If u ∈ (0, r0/2), an explicit computation yields

ψ

ψ ′
(u)=

r−α0 uα

r−α0 αuα−1
=

1
α

u >
1

2α
u.

For η > 0 this implies that

dη
dt
≤−2(log λ)ψ ′

((
1+

1
2α

)
(s2

1 + s2
2)η + s1s2(η

2
+ 1)

)
.

Note that (
1+

1
2α

)
(s2

1 + s2
2)η + s1s2(η

2
+ 1)

=

((
1+

1
2α

)
η −

1
2
(η2
+ 1)

)
(s2

1 + s2
2)+

1
2
(η2
+ 1)(s1 + s2)

2

≥

(
1

2α
η −

1
2
(η − 1)2

)
(s2

1 + s2
2) := ϕ(η)(s

2
1 + s2

2).

Since ϕ(1)= 1/2α > 0, there exists 0< µ0 < 1 such that ϕ(η) > 0 for all η ∈ [µ0, 1]. As
a result, dη/dt < 0 whenever η = µ > µ0.

When η < 0, observe that

dη
dt
= 2 log λ((ψ + (s2

1 + s2
2)ψ
′)|η| − s1s2ψ

′(η2
+ 1)).

An argument similar to the above shows that dη/dt > 0 when η =−µ <−µ0. This
proves that the cones are invariant. �

For any x ∈ T2, denote

γ (x) := max
v,w∈K+(x)
‖v‖=‖w‖=1

{
∠(DG(x)v, DG(x)w)

∠(v, w)

}
(25)

and γ j (x) := γ (G j (x)).

LEMMA 5.5. For x ∈ Dr0/2,

k∏
j=0

γ j (x)≤ (1+ C1s2(0)2αk)−1/α,

where C1 is the constant in Lemma 5.2.

Proof. Let G j (x)= (s1( j), s2( j)) ∈ Dr0/2 for all 0≤ j ≤ k. Equation (24) implies that

dη
ds1
=−2

((
1
s1
+

s2
1 + s2

2
s1

ψ ′

ψ

)
η + s2

ψ ′

ψ
(η2
+ 1)

)
. (26)
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Let η(s1)= η(s1, s1( j), ηi ) be the solution of this differential equation with the initial
condition η = ηi at s1 = s1( j), where i = 1, 2. Then

d(η1 − η2)

ds1
=−2

1
s1

(
1+

ψ ′

ψ
(s2

1 + s2
2 + s1s2(η1 + η2))

)
(η1 − η2).

For |η|< µ< 1, η1 + η2 ≥−2. Since both ψ and ψ ′ are positive, this fact and Gronwall’s
inequality applied to solutions with s1 > 0 yield

|η(s1( j + 1), s1( j), η1)− η(s1( j + 1), s1( j), η2)|

≤ |η1 − η2| exp
(
−2

∫ s1( j+1)

s1( j)

1
s1

(
1+

ψ ′

ψ
(s1 − s2)

2
)

ds1

)
≤ |η1 − η2| exp

(
−2

∫ s1( j+1)

s1( j)

ds1

s1

)
= |η1 − η2|

(
s2( j + 1)

s2( j)

)2

,

where the last line follows from the fact that the trajectory (s1( j), s2( j)) of the map G is
a hyperbola and hence the product s1( j)s2( j) is constant. Similar arguments hold for the
case s1 < 0. Since

γ j (x)≤max
η1,η2

|η(s1( j), s1( j − 1), η1)− η(s1( j), s1( j − 1), η2)|

|η1 − η2|
,

k∏
j=0

γ j (x)≤
(

s2(k)
s2(0)

)2

.

Since all iterates G j (x)= (s1( j), s2( j)) ∈ Dr0/2 for 0≤ j ≤ k, the second inequality in
Lemma 5.2 applies and the statement follows. �

The following lemma supplements Lemma 5.4 by providing controls on the time spent
by the orbits in Dr0\Dr0/2.

LEMMA 5.6. There exists T0 > 0 depending only on λ and α such that, for any solution
s(t) of equation (3) with s(0) ∈ Dr0 ,

max{t : s(t) ∈ Dr0\Dr0/2}< T0.

Proof. By equation (3), for s1 ≤ s2,

du
dt
= 2ψ log λ(s2

1 − s2
2)=−2ψ log λ(u2

− 4s2
1s2

2)
1/2,

where u = s2
1 + s2

2 . For s2 ≤ s1, this reads

du
dt
= 2ψ log λ(u2

− 4s2
1 s2

2)
1/2.

We consider the two cases depending on the value of s1s2, which is invariant under the
flow.

Case 1. 4s2
1 s2

2 ≤ r2
0/8. Under the assumptions of s1 ≤ s2 and r0/2≤ u ≤ r0,

du
dt
≤−2ψ log λ(r2

0/4− r2
0/8)

1/2
≤−

1
√

2
ψ log λr0 ≤−2−α−1 log λr0,
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where we use the fact that, by our assumption, ψ(u)≥ ψ(r0/2)= 2−α . Then, starting
from u(0)= r0, it takes at most 2α/ log λ time to reach u = r0/2, unless the assumption
s1 ≤ s2 is violated. In the latter case, by symmetry, the orbit will leave Dr0 in at most
2× 2α/ log λ time.

Case 2. 4s2
1s2

2 > r2
0/8. Using r0 ≥ s2

1 + s2
2 ≥ s2

2 , r2
0/8< 4s2

1 s2
2 ≤ 4s2

1r0 and hence s2
1 >

r0/32. By equation (3),

d
dt
(s2

1)= 2s2
1ψ log λ >

r2
0

16
2−α log λ.

In this case, s2
1 will increase to r0 in at most 16 · 2α/ log λ time, and the orbit leaves Dr0 .

Similar arguments hold when s2 ≤ s1. �

6. The Katok map as a Young’s diffeomorphism
6.1. A tower representation for the automorphism A. Consider a finite Markov partition
P̃ for the automorphism A and let P̃ ∈ P̃ be a partition element which does not contain
the origin. Given δ > 0, we can always choose the Markov partition P̃ in such a way
that diam (P̃) < δ and P̃ = Int P̃ for any P̃ ∈ P̃ . For a point x ∈ P̃ , denote by γ̃ s(x)
(respectively, γ̃ u(x)) the connected component of the intersection of P̃ with the stable
(respectively, unstable) leaf of x , which contains x . We say that γ̃ s(x) and γ̃ u(x) are full
length stable and unstable curves through x .

Given x ∈ P̃ , let τ̃ (x) be the first-return time of x to Int P̃ . For all x with τ̃ (x) <∞,
denote

3̃s(x)=
⋃

y∈Ũ u(x)\ Ãu(x)

γ̃ s(y),

where Ũ u(x)⊆ γ̃ u(x) is an interval containing x and open in the induced topology of
γ̃ u(x), and Ãu(x)⊂ Ũ u(x) is the set of points which either lie on the boundary of the
Markov partition or never return to the set P̃ . Note that the one-dimensional Lebesgue
measure of Ãu(x) in γ̃ u(x) is zero. One can choose Ũ u(x) such that:
(1) for any y ∈ 3̃s(x), τ̃ (y)= τ̃ (x);
(2) for any y ∈ P̃ such that τ̃ (y)= τ̃ (x), y ∈ 3̃s(x).
Moreover, the image under Aτ̃ (x) of 3̃s(x) is a u-subset containing Aτ̃ (x)(x). It is easy
to see that, for any x, y ∈ P̃ with finite first-return time, the sets 3̃s(x) and 3̃s(y)
either coincide or are disjoint. Thus we have a countable collection of disjoint sets
3̃s

i and numbers τ̃i which give a representation of the automorphism A as a Young’s
diffeomorphism for which the set

3̃=
⋃
i≥1

3̃s
i

is the base of the tower, the sets 3̃s
i are the s-sets and the numbers τ̃i are the inducing times.

Moreover, the set 3̃ has direct product structure given by the full length stable and unstable
curves, the s-sets 3̃s

i are disjoint and so are the corresponding u-sets 3̃u
i = Aτ̃i (3̃s

i ). It is
easy to see that conditions (Y1), (Y3) and (Y4) hold. Condition (Y2) is satisfied since
x ∈ (3̃\

⋃
3̃s

i ) ∩ γ̃
u implies that either x lies on the boundary of the Markov partition or

it never returns to the Int P̃ . Since the inducing time is the first-return time to the base,
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by Kac’s formula, it is integrable. Hence condition (Y5) holds too. We shall obtain an
exponential bound to the number Sn of s-sets with the given inducing time.

LEMMA 6.1. There exists h < htop(A) such that

Sn ≤ ehn .

Proof. It suffices to estimate the number of sets 3̃s
i with a given i . This number is less

than the number of periodic orbits of A that originate in P̃ and have minimal period τ̃i .
Using the symbolic representation of A as a sub-shift of finite type induced by the Markov
partition P̃ , one sees that the latter equals the number of symbolic words of length τ̃i for
which the symbol P̃ occurs only as the first and last symbol (but nowhere in between).
The number of such words grows exponentially with exponent h < htop(A) (see [KH95],
Corollary 1.9.12 and Proposition 3.2.5). �

6.2. A tower representation for the Katok map. Applying the conjugacy map H , one
obtains the element P = H(P̃) of the Markov partition P = H(P̃). Since the map H
is continuous, given ε, there is δ > 0 such that diam (P) < ε for any P ∈ P provided
diam (P̃) < δ. Further, we obtain the set 3= H(3̃), which has direct product structure
given by the full length stable γ s(x)= H(γ̃ s(x)) and unstable γ u(x)= H(γ̃ u(x)) curves.
We thus obtain a representation of the Katok map as a Young’s diffeomorphism for which
3s

i = H(3̃s
i ) are s-sets,3u

i = H(3̃u
i )= Gτi

T2(3
s
i ) are u-sets and the inducing times τi = τ̃i

are the first-return time to 3. Note that, for all x with τ(x) <∞,

3s(x)=
⋃

y∈U u(x)\Au(x)

γ s(y),

where U u(x)= H(Ũ u(x))⊆ γ u(x) is an interval containing x and open in the induced
topology of γ u(x), and Au(x)= H( Ãu(x))⊂U u(x) is the set of points which either lie
on the boundary of the Markov partition or never return to the set P . Note that the one-
dimensional Lebesgue measure of Au(x) in γ u(x) is zero.

We further restrict the choice of the partition element P . Given Q > 0, we can take
the number r0 in the construction of the Katok map so small and, by refining the Markov
partition if necessary, we can choose a partition element P such that

Gn
T2(x) /∈ Dr0 for any 0≤ n ≤ Q (27)

and any point x for which either x ∈ P or x /∈ GT2(Dr0) while G−1
T2 (x) ∈ Dr0 .

PROPOSITION 6.2. There exists Q > 0 such that the collection of s-subsets H(3s
i )

satisfies conditions (Y1)–(Y5).

Proof. Condition (Y1) follows from the corresponding properties for A and the fact that
H is a topological conjugacy. Condition (Y2) holds since x ∈ (3\

⋃
3s

i ) ∩ γ
u implies

that either x lies on the boundary of the Markov partition or it never returns to the Int P .
Condition (Y5) follows from Kac’s formula, since the inducing time is the first-return time.
We shall prove conditions (Y3) and (Y4).
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Using the conjugacy map φ from (5),

F(x)= Gτ(x)
T2 (x)= φ ◦ Gτ(x)

◦ φ−1(x), x ∈
⋃

i

3s
i ⊂ P. (28)

Since φ is smooth everywhere except the origin and dφ(x) is bounded from below and
above on P , to establish condition (Y3) it suffices to prove it for Gτ(x).

For any x ∈ P with τ(x) <∞, we define the finite collection of positive integers {n` =
n`(x) : 0≤ `≤ k = k(x)}, called the itinerary of x , as

0= n0 < n1 < · · ·< n2k < n2k+1 = τ(x) (29)

and G j (x) ∈ Dr1† if and only if n2`−1 ≤ n < n2` for some 1≤ `≤ k.
Given x, y ∈ P , denote xn = Gn(x) and yn = Gn(y). If y lies on the stable curve

through x , then yn lies on the stable curve through xn . For n2` ≤ n < n2`+1, the latter
lies in the stable cone for A at xn and, indeed, is an admissible manifold for A. It follows
that the segment of the stable curve, which connects xn and yn , expands uniformly under
the linear map A−n . Hence, due to the choice of the number Q, there exists 0< γ < 1
such that

d(xn2l+1 , yn2l+1)≤ γ
n2l+1−n2l d(xn2l , yn2l )≤ γ

Qd(xn2l , yn2l ). (30)

We now turn to the case n2l+1 ≤ n < n2l+2 − 1. Let [ml , ml+1] ⊂ [n2l+1, n2l+2 − 1]
be the largest interval (possibly empty) with xn ∈ Dr0/2 for all n ∈ [ml , ml+1]. By
Lemma 5.6, there exists a uniform T0 > 0 such that ml − n2l+1, n2l+2 − ml+1 < T0. Then
there exists a constant C > 0 such that

d(xml , yml )≤ Cd(xn2l+1 , yn2l+1), d(xn2l+2 , yn2l+2)≤ Cd(xml+1 , yml+1).

Furthermore, let s, s̃ : [ml , ml+1] → R2 be the solutions of equation (3) with initial
conditions s(0)= xn and s̃(0)= yn respectively. We apply Lemma 5.3 to these orbits.
The first two assumptions are satisfied, since yn is contained in the stable cone from xn .
The third assumption requires d(xml , yml ) to be sufficiently small. In view of (30), this can
be assured if we choose the number r0 in the construction of the Katok map sufficiently
small to ensure that Q in (27) is sufficiently large. Lemma 5.3 implies that

d(xml+1 , yml+1)≤

√
1+ µ2 s1(ml+1)

s2(ml)
d(xml , yml ). (31)

Note that s1(ml+1)/s2(ml) is uniformly bounded, as both the numerator and denominator
are of order r0. This fact and the estimates (31) and (30) imply that there exists 0< θ1 < 1,
such that

d(xn2l+2 , yn2l+2)≤ C2γ Q s1(ml+1)

s2(ml)
d(xn2l , yn2l )≤ θ1d(xn2l , yn2l ) (32)

and the same holds for the odd indices. It follows that

d(Gτ(x)x, Gτ(x)y)≤ θk
1 d(x, y),

where k is defined by (29). Condition (Y3a) follows. Condition (Y3b) can be proved
similarly by considering the inverse map.

† Recall that r1 = (log λ)r0 so that (1) holds.
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We now prove condition (Y4a) noting that condition (Y4b) can be verified in a similar
manner. Using the relation (28) and the fact that the conjugacy map φ is smooth
everywhere except at the origin, it suffices to prove the corresponding statement for Gτ(x).
We need the following general statement.

LEMMA 6.3. Let {An} and {Bn}, 0≤ n ≤ N be two collections of linear transformations
of Rd and let K = K (E, θ) be the cone of angle θ around a subspace E. Assume that:
(1) An K ⊂ K ;
(2) there are numbers γn > 0 such that, for every v, w ∈ K , ‖v‖ = ‖w‖ = 1,

∠(Anv, Anw)≤ γn∠(v, w);

(3) there are numbers d > 0 and δn > 0 such that, for every v ∈ K ,

‖Anv − Bnv‖ ≤ dδn‖Anv‖;

(4) there is c > 0 such that, for every v ∈ K ,

‖Anv‖ ≥ c‖v‖.

Then there is C > 0, which is independent of the collections of linear transformations,
such that, for every v, w ∈ K ,∣∣∣∣log

‖
∏N

n=0 Anv‖

‖
∏N

n=0 Bnw‖

∣∣∣∣≤ C
(

d
N∑

n=0

δn + ∠(v, w)
N∑

n=0

n∏
k=0

γk

)
.

Proof. Set v0
= v, w0

= w and

vn
=

n−1∏
k=0

Akv, wn
=

n−1∏
k=0

Bkw.

For an = |log ‖vn
‖/‖wn

‖| and ṽn
= vn/‖vn

‖ and w̃n
= wn/‖wn

‖,

an =

∣∣∣∣log
‖Anv

n−1
‖

‖Bnwn−1‖

∣∣∣∣= ∣∣∣∣log
(
‖Anv

n−1
‖

‖Anwn−1‖

‖Anw
n−1
‖

‖Bnwn−1‖

)∣∣∣∣
≤

∣∣∣∣log
(
‖vn−1

‖

‖wn−1‖

‖An ṽ
n−1
‖

‖Anw̃n−1‖

)∣∣∣∣+ ∣∣∣∣log
(
‖Anw

n−1
‖

‖Bnwn−1‖

)∣∣∣∣
≤ an−1 +

∣∣∣∣log
(
‖An ṽ

n−1
‖

‖Anw̃n−1‖

)∣∣∣∣+ ∣∣∣∣log
(
‖Anw

n−1
‖

‖Bnwn−1‖

)∣∣∣∣.
By the assumptions,∣∣∣∣log

(
‖An ṽ

n−1
‖

‖Anw̃n−1‖

)∣∣∣∣= ∣∣∣∣log
(

1+
‖An ṽ

n−1
‖ − ‖Anw̃

n−1
‖

‖Anw̃n−1‖

)∣∣∣∣
≤ C ′∠(An ṽ

n−1, Anw̃
n−1)= C ′γn∠(v

n−1, wn−1)

and ∣∣∣∣log
‖Anw

n−1
‖

‖Bnwn−1‖

∣∣∣∣= ∣∣∣∣log
‖Bnw

n−1
‖

‖Anwn−1‖

∣∣∣∣
=

∣∣∣∣log
(

1+
‖Bnw

n−1
‖ − ‖Anw

n−1
‖

‖Anwn−1‖

)∣∣∣∣
≤ C ′′

‖Anw
n−1
− Bnw

n−1
‖

‖Anwn−1‖
≤ C ′′dδn−1,
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where C ′ > 0 and C ′′ > 0 are constants independent of the collections An and Bn . This
implies that

aN ≤C ′
N−1∑
n=0

∠(vn, wn)+ C ′′d
N−1∑
n=0

δn

≤C ′
(N−1∑

n=0

n∏
k=0

γk

)
∠(v, w)+ C ′′d

N−1∑
n=0

δn .

The desired result follows. �

We proceed with the proof of condition (Y4a). We lift the map G to R2 viewed as the
universal cover of the torus and we endow R2 with the coordinate system (s1, s2). Fix
x ∈ P with N = τ(x) <∞ and y ∈ γ s(x). Let K+ = K+(x) be the cone of angle
arctan µ. By Lemma 5.4, K+ is invariant under G. For 0≤ n ≤ N , we set An =

DG(Gn(x)) and Bn = DG(Gn(y)) and we further define γn by (25), δn by

δn =
1

d(x, y)
max

v∈K+\{0}

‖Anv − Bnv‖

‖Anv‖
(33)

and d = d(x, y).

LEMMA 6.4. The maps An , Bn and the cone K+ satisfy the conditions of Lemma 6.3.
Furthermore, there exist constants C̃ > 0 and 0< θ2 < 1, independent of the choice of x,
such that δn and γn satisfy

τ(x)−1∑
n=0

δn < C̃,
τ(x)−1∑

n=0

n∏
j=0

γ j < C̃,
τ(x)−1∏

n=0

γn < θ2. (34)

We first show how to derive property (Y4a) from Lemma 6.4. For y ∈ γ s(x) and two
vectors v ∈ K+(x) and w ∈ K+(y), Lemmas 6.3 and 6.4 yield∣∣∣∣log

‖DGτ(x)(x)v‖
‖DGτ(x)(y)w‖

∣∣∣∣= ∣∣∣∣log
‖
∏τ(x)−1

n=0 Anv‖

‖
∏τ(x)−1

n=0 Bnw‖

∣∣∣∣
≤ C(C ′d(x, y)+ C ′′∠(v, w)).

Furthermore,

∠(DGτ(x)(x)v, DGτ(x)(y)w)
∠(v, w)

≤

τ(x)−1∏
n=0

γn < θ2. (35)

Assume that vn
∈ Eu((Gτ(x))n(x)) and wn

∈ Eu((Gτ(x))n(y)). Then there exists v ∈
Eu(x), w ∈ Eu(y) such that vn

= D(Gτ(x))n(x)v and wn
= D(Gτ(x))n(y)w. Using (35)

and property (Y3),∣∣∣∣log
‖DGτ(x)((Gτ(x))n(x))vn

‖

‖DGτ(x)((Gτ(x))n(y))wn‖

∣∣∣∣≤CC ′d((Gτ(x))n(x), (Gτ(x))n(y))

+ CC ′′∠(D(Gτ(x))n(x)v, D(Gτ(x))n(y)w)

≤ cCC ′θn
1 d(x, y)+ CC ′′θn

2∠(v, w).
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By the relation (28), the same ratio for the induced map F differs only by the differential of
the conjugacy map φ. Since x, y /∈ Dr0 and φ is smooth everywhere except at the origin,
the above inequality also hold for F . Observe that 0< θ1, θ2 < 1 and property (Y4a)
follows. This completes the proof of the theorem modulo Lemma 6.4. �

Proof of Lemma 6.4. In this proof, C refers to an unspecified positive constant that may
depend on the Hölder exponent α of the function ψ and constants λ and r0, but not on the
choice of x (and hence, not on τ(x)). We will also use the phrase ‘uniformly bounded’ if
an expression can be bounded by such a constant.

We have already shown the invariance of the cone K+ and hence the first requirement
in Lemma 6.3 is satisfied. The second and third requirements hold by the choice of δn and
γn (see (25) and (33)). Condition (4) follows from the definition of An and the fact that G
is a diffeomorphism, and hence ‖DG(x)‖ is bounded below by a constant.

We now proceed with the proof of (34).

Part 1: Estimating δn . Denote xn = Gn(x), yn = Gn(y). Since yn ∈ γ
s(xn), the vector

yn − xn is contained in the stable cone K−. Due to symmetry, it suffices to consider xn

and yn in the first quadrant and to assume that s2 component of yn is larger than the s2

component of xn , i.e., that 1s2 > 0 (interchange xn and yn otherwise).
Let n0, . . . , nk be the itinerary of x , and consider n2l ≤ n ≤ n2l+1 − 1. We know that

xn /∈ Dr0 . In this case, An = Bn = A are constant matrices and hence δn = 0.
We now consider n ∈ [n2l+1, n2l+2 − 1] and let

D(s1, s2)= log λ
[
ψ + 2s2

1ψ
′ 2s1s2ψ

′

−2s1s2ψ
′ ψ + 2s2

2ψ
′

]
(36)

be the coefficient matrix of the variational equation (3). Let also s(t), s̃(t) : [n, n + 1] →
R2 be solutions of (3) with initial conditions s(n)= xn , s̃(n)= yn . Finally, let An(t), Bn(t)
be 2× 2-matrices solving the variational equations

d An(t)
dt

= D(s(n + t))An(t),
d Bn(t)

dt
= D(s̃(n + t))Bn(t),

with initial conditions An(0)= Bn(0)= Id:

An = dG(xn)= An(1), Bn = dG(yn)= Bn(1).

Since
d An(t)

dt
−

d Bn(t)
dt

=
(
D(s(n + t))− D(s̃(n + t))

)
An(t)

+ D(s̃(n + t))(An(t)− Bn(t)),

we obtain

An(t)− Bn(t)= An(t)
∫ t

0
A−1

n (τ )(D(s(n + τ))− D(s̃(n + τ)))An(τ )dτ.

We have ‖D(s)− D(s̃)‖ ≤ ‖∂D(ξ)‖ · ‖1s‖, where1s = s̃ − s and ξ = (ξ1, ξ2)with ξi ∈

[si , s̃i ] for i = 1, 2. By Lemma 5.1,

‖An − Bn‖ ≤ ‖An(1)‖

× sup
0≤τ≤1

[‖A−1
n (τ )‖‖An(τ )‖D(s(n + τ))− D(s̃(n + τ))‖]

≤C sup
0≤τ≤1

[(ξ2
1 + ξ

2
2 )
α−1/2(n + τ)‖1s(n + τ)‖]. (37)
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By assumption (4) of Lemma 6.3,

δn ≤
1

cd(x, y)
‖An − Bn‖ =

1
c

d(xn2l+1 , yn2l+1)

d(x, y)
‖An − Bn‖

d(xn2l+1 , yn2l+1)
.

Again, recall that [ml , ml+1] ⊂ [n2l+1, n2l+2 − 1] is the largest (possibly empty) interval
such that xn ∈ Dr0/2 for all n ∈ [ml , ml+1] and that [ml , Tl ] is the largest time interval
on which s1(t)≤ s2(t). If such a ml does not exist, then xn ∈ Dr0\Dr0/2 for all n ∈
[n2l+1, n2l+2 − 1] and Lemma 5.6 implies that n2l+2 − n2l+1 is uniformly bounded. We
now claim that

Dl :=

n2l+2∑
n=n2l+1

(‖An − Bn‖/d(xn2l+1 , yn2l+1))≤ C, (38)

where C is some constant independent of l. This implies the summability of δn since,
by (32),

τ(x)−1∑
n=0

δn =

k∑
l=1

n2l+2∑
n=n2l+1

δn

≤

k∑
l=1

1
c

d(xn2l+1 , yn2l+1)

d(x, y)

n2l+2∑
n=n2l+1

‖An − Bn‖

d(xn2l+1 , yn2l+1)
≤ C

1
c

k∑
l=1

αl
1.

We now prove the estimate (38),

Dl =

( ml−1∑
n=n2l+1

+

Tl−1∑
n=ml

+

ml+1−1∑
n=Tl

+

n2l+2∑
n=ml+1

)
‖An − Bn‖

d(xn2l+1 , yn2l+1)

and we shall show that each of the four sums is uniformly bounded. To this end,
observe that, by Lemma 5.6, ml − n2l+1 ≤ T0 and n2l+2 − ml+1 ≤ T0, and hence each
sum

∑ml−1
n=n2l+1

and
∑n2l+2

n=ml
involves at most T0 terms of uniformly bounded quantity, and

therefore is itself uniformly bounded.
Observe that since s̃ is contained in the stable cone at s, we always have

|1s1|< µ1s2 ≤1s2. (39)

Case 1. n ∈ [ml , Tl ]. Here s1 ≤ s2. To apply Lemma 5.3 to the time interval [ml , n], we
need to ensure that 1s2(m1)/s2(m1) < (1− µ)/72. This can be guaranteed by choosing
the number r0 in the construction of the Katok map sufficiently small so that the number
Q in (27) is sufficiently large. Using (39) and Lemma 5.3 for n ≤ Tl − 1 and 0≤ τ ≤ 1,

‖1s(n + τ)‖ ≤ 21s2(n + τ)

≤ 21s2(ml)
s2(n + τ)

s2(ml)
(1+ C1s2α

2 (ml)(n + τ − ml))
−β . (40)

As in the proof of Lemma 5.3,

s2
2(t)≤ ξ

2
1 (t)+ ξ

2
2 (t)≤ 2(1+ κ)2s2

2(t)≤ Cs2
2(t)
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and hence
(ξ2

1 (n + τ)+ ξ
2
2 (n + τ))

α−1/2
≤ C s2α−1

2 (n + τ).

Now (37) and (40) and the fact that |1s2| ≤ ‖1s‖ yield

‖An − Bn‖ ≤ C
‖1s(ml)‖

s2(ml)
sup

0≤τ≤1
[s2α

2 (n + τ)(1+ C1s2α
2 (ml)(n + τ − ml))

−β
].

Applying Lemma 5.2 on the time interval [ml , n + 1],

‖An − Bn‖ ≤C
‖1s(ml)‖

s2(ml)
sup

0≤τ≤1
[s2(ml)

2α(1+ C1s2α
2 (ml)(n + τ − ml))

−1−β
]

≤C‖1s(ml)‖s2(ml)
2α−1(1+ Cs2α

2 (ml)(n − ml))
−1−β .

Note that s2(ml) is bounded from above and below by a multiple of r0 (ml is the first time
larger than n2l+2 that the orbit enters Dr0/2), and |1s(ml)| = d(xml , yml ). Moreover, since
n2l+1 − ml is uniformly bounded in l, the ratio d(xml , yml )/d(xn2l+1 , yn2l+1) is uniformly
bounded in l.

We conclude that
‖An − Bn‖

d(xn2l+1 , yn2l+1)
≤ C(1+ C1s2α

2 (ml)(n − ml))
−1−β

and hence
Tl−1∑
n=ml

‖An − Bn‖

d(xn2l+1 , yn2l+1)
≤

Tl−1∑
n=ml

C(1+ C1s2α
2 (ml)(n − ml))

−1−β

is uniformly bounded in l.

Case 2. n ∈ [Tl , ml+1]. Here s1 ≥ s2. Due to symmetry of the system, Tl ≥ (ml+1 − ml −

2)/2 (the additional 2 coming from possible round-off to an integer).
By (22), (39) and Lemma 5.3 for all Tl ≤ t ≤ ml+1 and 0≤ τ ≤ 1,

‖1s(n + τ)‖ ≤ 21s2(n + τ)

≤ 2
1s2(Tl)

s1(Tl)
s1(n + τ)(1− C12αs2α

1 (Tl) (n + τ − Tl))
−β .

For i = 1, 2 and min{si , s̃i } ≤ ξi ≤max{si , s̃i } and 1si = s̃i − si ,

si − |1si | ≤ ξi ≤ si + |1si |.

From this, (22) and (39) it follows that

ξ2
1 + ξ

2
2 ≥ ξ

2
1 ≥ (s1 − |1s1|)

2
≥ (s1 − |1s2|)

2
≥ s2

1

(
1−
|1s2|

s1

)2

≥ C−1s2
1

and

s2
1 ≤ ξ

2
1 + ξ

2
2 ≤ 2(s1 + |1s2|)

2
≤ s2

1

(
1+
|1s1|

s1

)2

≤ Cs2
1 .

Hence, for all 0< α < 1,

(ξ2
1 (n + τ)+ ξ

2
2 (n + τ))

α−1/2
≤ Cs2α−1

1 (n + τ).
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Applying Lemma 5.2 on the time interval [ml , n + 1] and using (37) and the above
estimates,

‖An − Bn‖ ≤C sup
0≤τ≤1

[s2α−1
1 (n + τ)‖1s(n + τ)‖]

≤ 2C
1s2(Tl)

s1(Tl)
sup

0≤τ≤1
[s2α

1 (n + τ)(1− C12αs2α
1 (Tl) (n + τ − Tl))

−β
].

By (22),

‖An − Bn‖ ≤ C
|1s2(Tl)|

s1(Tl)
sup

0≤τ≤1
[s2α

1 (Tl)(1− C12αs2α
1 (Tl) (n + τ − Tl))

−β−1
].

Since s1(Tl)= s2(Tl), it follows from Lemma 5.3 that

‖An − Bn‖ ≤ C
|1s2(ml)|

s2(ml)
s2α

1 (Tl)(1− C12αs2α
1 (Tl) (n + 1− Tl))

−β−1.

Since r0/4≤ s2(ml)≤ r0 and both |1s2(ml)| and s2α
1 (Tl) are uniformly bounded, the

arguments similar to those in Case 1 yield

‖An − Bn‖

d(xn2l+1 , yn2l+1)
≤ C(1− C12αs2α

1 (Tl) (n − Tl))
−β−1

and we obtain
ml+1∑
n=Tl

‖An − Bn‖

d(xn2l+1 , yn2l+1)
≤ C.

This completes the proof of the summability for δn .

Part 2: Estimating γn . Observe that, for all n ∈ [n2l , n2l+1 − 1], the linear map
contracts angles uniformly, and hence γn < γ < 1. For n ∈ [ml , ml+1], where xn ∈ Dr0/2,
Lemma 5.5 applies and yields

ml+1∏
n=ml

γn ≤ (1+ C(ml+1 − ml))
−1/α

for some constant C > 0. Since [ml , ml+1] differs from [n2l+1, n2l+2] by a finite set,

n2l+2−1∏
n=n2l+1

γn ≤ C ′(1+ C(n2l+2 − n2l+1))
−1/α

for some constant C ′ > 0. In particular,

n2l+2−1∏
n=n2l

γn ≤ C ′γ n2l+1−n2l < θ3

for some constant 0< θ3 < 1, which implies the last estimate of Lemma 6.4 with θ2 = θ
l
3.
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Moreover,

τ(x)∑
n=0

n∏
j=0

γ j =

k(x)∑
l=0

n2l+2−1∑
n=n2l

n∏
j=0

γ j ≤

k(x)∑
l=0

(n2l−1∏
j=0

γ j

n2l+2−1∑
n=n2l

n∏
j=n2l

γ j

)

≤

k(x)∑
l=0

(
θ l

3

(n2l+1−1∑
n=n2l

n∏
j=n2l

γ j +

n2l+1−1∏
j=n2l

γ j

n2l+2−1∑
n=n2l+1

n∏
j=n2l+1

γ j

))

≤

k(x)∑
l=0

(
θ l

3

(n2l+1−1∑
n=n2l

γ n−n2l + θ3

n2l+2−1∑
n=n2l+1

(1+ C1(n2l+2 − n)−1/α
))
.

In the last line of the above formula, each of the two sums in the inner parentheses is
uniformly bounded and hence, for some C ′′ > 0,

τ(x)−1∑
n=0

n∏
j=0

γ j ≤ C ′′
k(x)∑
l=0

θ l
3

is also uniformly bounded. This proves summability of γn and completes the proof of
Lemma 6.4. �

7. Proof of Theorem 3.2

Since the conjugacy map H preserves topological and combinatorial information about
A (e.g., its topological entropy), the number Sn of partition elements with inducing time
τi = n for GT2 and A is the same and hence, by Lemma 6.1, Sn ≤ ehn , where h < htop( f ).
Observe that h < h(µ1), where µ1 = m is the area. Indeed, this is the case for the
automorphism A and, by Statement 4 of Proposition 2.1, the same holds for GT2 provided
r0 is sufficiently small. Proposition 4.1 and the fact that the inducing time is the first-
return time imply the existence of t0 = t0(P) < 0 such that, for every t0 < t < 1, there
exists a unique equilibrium measure µt associated to the geometric t-potential ϕt among
all measures µ for which µ(P) > 0. The measure µt is ergodic, has exponential decay of
correlations and satisfies the CLT with respect to a class of functions which includes all
Hölder continuous functions on the torus. Note that µt (U ) > 0 for every open set U ⊂ P .

Since the linear map A has the Bernoulli property, every power of A is ergodic. This
implies that the tower for A satisfies the arithmetic condition and hence this is true for the
tower for the Katok map GT2 .

To prove the requirement (11), note that if x, y ∈3s
i and y ∈ γ s(x), the distance

d( f j (x), f j (y)) is decreasing with j (see (30) and (32)), and if y ∈ γ u(x), the distance
d( f j (x), f j (y)) is increasing with j , reaching its maximum ≤ diam P at j = τ(x).

We now show that t0 tends to −∞ as r0 approaches zero. To this end, we use the
formula (10) and prove that the number log λ1 given by (7) can be chosen arbitrarily close
to hµ1( f ) for sufficiently small r0.
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To this end, let us fix ε > 0 and chose a point x ∈3s
i . Note that φ = Id outside Dr0

and does not change the stable and unstable directions at points x 6∈ Dr0 . In view of
relation (28), it suffices to estimate log λ1 working with the map G instead of the Katok
map GT2 . We can assume that x is a generic point for the area m, which coincides with
the measure µ1. We write

τi =

s∑
j=1

n j ,

where the numbers n j are chosen in the following way: (1) the number n1 is the
first moment when Gn1(x) ∈ Dr0\Dr0/8; (2) the number n1 + n2 is the first moment
when Gn1+n2(x) ∈ Dr0/8; (3) the number n1 + n2 + n3 is the first moment when
Gn1+n2+n3(x) ∈ Dr0\Dr0/8; (4) the number n1 + n2 + n3 + n4 is the first moment when
Gn1+n2+n3+n4(x) /∈ Dr0 ; and continue in the same fashion†. Note that n1 ≥ Q, where the
number Q is given by (27). If r0 is sufficiently small, then Q becomes large enough to
ensure that

log |J uGn1(x)| ≤ n1(log λ+ ε). (41)

By equation (36), for x ∈ Dr0\Dr0/8, log |J uG(x)| ≤ log M for some constant M
independent of r0 and hence

log |J uGn2(x)| ≤ n2 log M. (42)

For x ∈ Dr0/8, ψ(u)= (u/r0)
α and ψ ′(u)= (α/r0)(u/r0)

α−1 and by equation (36),
log |J uG(x)| ≤ log λ. This implies that

log |J uGn3(x)| ≤ n3 log λ. (43)

Finally, as in (42),
log |J uGn4(x)| ≤ n4 log M. (44)

Similar estimates hold for other n j . It is easy to see that

log |J u F(x)| ≤
s∑

j=1

log |J u f n1+···+n j ( f n1+···+n j−1(x))|. (45)

As in Lemma 5.6, the maximal number of subsequent iterates (under G) any orbit spends
in Dr0\Dr0/8 is bounded from above by a constant T ′0 which does not depend on r0. It
follows from (41)–(45) that

log λ1 ≤ log λ+ ε +
2T ′0 log M

Q
≤ log λ+ 2ε.

On the other hand, by Statement 4 of Proposition 2.1, we can choose r0 so small that

log λ+ ε ≥ hm(GT2)≥ log λ− ε.

By Remark 3,
log λ+ 2ε ≥ log λ1 ≥ hm(GT2)≥ log λ− ε

† Of course, some of the numbers n j can be zero but this does not affect the argument.
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and hence the difference log λ1 − hm(GT2) can be made arbitrary small if r0 is sufficiently
small.

Let us choose another element P̃ of the Markov partition which satisfies condition (27).
Repeating the above argument, there exists t̃0 = t0(P̃) < 0 such that, for every t̃0 < t < 1,
there exists a unique equilibrium measure µ̃t associated to the geometric t-potential among
all measures µ for which µ(P̃) > 0, and µ̃t (Ũ ) > 0 for every open set Ũ ⊂ P̃ . Since the
map f is topologically transitive, for every open set U ⊂ P and Ũ ⊂ P̃ there exists an
integer k such that Gk

T2(U ) ∩ Ũ 6= ∅. Therefore, µt = µ̃t . Note that if r0 is sufficiently
small, the union of partition elements that satisfy condition (27) form a closed set Z whose
complement is a neighborhood of zero. The only measure which does not charge any
element of the Markov partition, lying outside this neighborhood, is the Dirac measure δ0

at the origin. Clearly, P(δ0)= 0. Set

t0 := max
P∈P,P∩Z 6=∅

t0(P).

It follows from what was said above that t0→−∞ as r0 approaches zero. The first
statement of the theorem now follows by observing that P(µt ) > 0 for every t0 < t < 1.

To prove the third statement of the theorem, fix t > 1 and choose an ergodic
measure µ for GT2 . Observe that the positive Lyapunov exponent of µ is equal to∫

log |J uGT2(x)| dµ(x). Using now the Margulis–Ruelle inequality for the entropy and
statement (2) of Proposition 2.1, we find that for t > 1,

hµ( f )≤
∫

M
log |J uGT2(x)| dµ(x) < t

∫
M

log |J uGT2(x)| dµ(x).

It follows that

hµ( f )− t
∫

M
log |J uGT2(x)| dµ(x) < 0

= hµ(δ0)− t
∫

M
log |J uGT2(x)| dδ0(x)

and hence the Dirac measure δ0 is the unique equilibrium measure for ϕt .
To prove the second statement of the theorem, let µ be the equilibrium measure for ϕ1.

Then either µ has zero Lyapunov exponents, in which case it is the Dirac measure at the
origin, or it has positive Lyapunov exponents, in which case, by the entropy formula, it
must be the area m.
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[ADU93] J. Aaronson, M. Denker and M. Urbański. Ergodic theory for Markov fibred systems and parabolic
rational maps. Trans. Amer. Math. Soc. 337(2) (1993), 495–548.

[Bar13] E. P. Barbosa. Formalismo termodinmico e estabilidade estatstica no desdobramento de tangncia
homoclnica. PhD Thesis, IM-UFRJ, http://www.pgmat.im.ufrj.br/index.php/pt-br/teses-e-dissertaco
es/teses/2013-1/33-18/file, 2013.

[BP13] L. Barreira and Y. B. Pesin. Introduction to Smooth Ergodic Theory (Graduate Studies in
Mathematics, 148). American Mathematical Society, Providence, RI, 2013.

[CP16] V. Climenhaga and Ya. Pesin. Building thermodynamics for non-uniformly hyperbolic maps. Arnold
Math. J. 3(1) (2017), 37–82.

[Hu04] H. Hu. Decay of correlations for piecewise smooth maps with indifferent fixed points. Ergod. Th. &
Dynam. Sys. 24(2) (2004), 495–524.

[Kat79] A. Katok. Bernoulli diffeomorphisms on surfaces. Ann. of Math. (2) 110(3) (1979), 529–547.
[KH95] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge

University Press, New York, 1995.
[Lop93] A. O. Lopes. The zeta function, nondifferentiability of pressure, and the critical exponent of

transition. Adv. Math. 101(2) (1993), 133–165.
[LR06] R. Leplaideur and I. Rios. Invariant manifolds and equilibrium states for non-uniformly hyperbolic

horseshoes. Nonlinearity 19(11) (2006), 2667–2694.
[LSV99] C. Liverani, B. Saussol and S. Vaienti. A probabilistic approach to intermittency. Ergod. Th. &

Dynam. Sys. 19(3) (1999), 671–685.
[PM80] Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissipative dynamical systems.

Comm. Math. Phys. 74(2) (1980), 189–197.
[PS05] Y. Pesin and S. Senti. Thermodynamical formalism associated with inducing schemes for

one-dimensional maps. Mosc. Math. J. 5(3) (2005), 669–678.
[PS08] Y. Pesin and S. Senti. Equilibrium measures for maps with inducing schemes. J. Mod. Dyn. 2(3)

(2008), 397–430.
[PS92] T. Prellberg and J. Slawny. Maps of intervals with indifferent fixed points: thermodynamic formalism

and phase transitions. J. Stat. Phys. 66(1–2) (1992), 503–514.
[PSS17] Y. Pesin, S. Samuel and F. Shahidi. Area preserving surface diffeomorphisms with polynomial decay

rate are ubiquitous. Preprint, 2017.
[PSZ16] Ya. B. Pesin, S. Senti and K. Zhang. Thermodynamics of towers of hyperbolic type. Trans Amer.

Math. Soc. (2016).
[PW99] M. Pollicott and H. Weiss. Multifractal analysis of Lyapunov exponent for continued fraction and

Manneville–Pomeau transformations and applications to Diophantine approximation. Comm. Math.
Phys. 207(1) (1999), 145–171.

[PY01] M. Pollicott and M. Yuri. Statistical properties of maps with indifferent periodic points. Comm. Math.
Phys. 217(3) (2001), 503–520.

[PZ06] Y. Pesin and K. Zhang. Phase transitions for uniformly expanding maps. J. Stat. Phys. 122(6) (2006),
1095–1110.

[Sar01] O. M. Sarig. Phase transitions for countable Markov shifts. Comm. Math. Phys. 217(3) (2001),
555–577.

[Sar02] O. Sarig. Subexponential decay of correlations. Invent. Math. 150(3) (2002), 629–653.
[ST13] S. Senti and H. Takahasi. Equilibrium measures for the Hénon map at the first bifurcation.
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