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EQUILIBRIUM MEASURES FOR MAPS WITH INDUCING SCHEMES

YAKOV PESIN AND SAMUEL SENTI
(Communicated by Dmitry Dolgopyat)

ABSTRACT. We introduce a class of continuous maps f of a compact topologi-
cal space I admitting inducing schemes and describe the tower constructions
associated with them. We then establish a thermodynamic formalism, i.e., de-
scribe a class of real-valued potential functions ϕ on I , which admit a unique
equilibrium measure µϕ minimizing the free energy for a certain class of in-
variant measures. We also describe ergodic properties of equilibrium mea-
sures, including decay of correlation and the Central Limit Theorem. Our re-
sults apply to certain maps of the interval with critical points and/or singular-
ities (including some unimodal and multimodal maps) and to potential func-
tionsϕt =−t log |d f | with t ∈ (t0, t1) for some t0 < 1 < t1. In the particular case
of S-unimodal maps we show that one can choose t0 < 0 and that the class of
measures under consideration consists of all invariant Borel probability mea-
sures.

1. INTRODUCTION

In this paper we develop a thermodynamic formalism for some classes of con-
tinuous maps of compact topological spaces. In the classical setting, given a
continuous map f of a compact space I and a continuous potential function ϕ

on I , one studies the equilibrium measures for ϕ, i.e., invariant Borel probability
measures µϕ on I for which the supremum

(1) sup
µ∈M ( f ,I )

{

hµ( f )+
∫

I
ϕdµ

}

is attained, where hµ( f ) denotes the metric entropy and M ( f , I ) is the class of
all f -invariant Borel probability measures on I . According to the classical varia-
tional principle (see for example [30]) the above supremum is equal to the topo-
logical pressure P(ϕ) of ϕ.

For a smooth one-dimensional map f of a compact interval I with critical
points, the “natural” class of potential functions includes functions which are
not necessarily continuous, e.g., the function ϕ(x) = − log |d f (x)| which is un-
bounded at critical points. To allow noncontinuous potentials, we must change
the context; in particular, the class of invariant measures under consideration is
reduced. The question is also raised of adapting the notion of topological pres-
sure to this new context and establishing an appropriate version of the varia-
tional principle (we refer the reader to [24] for a discussion of these problems).
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In this paper we develop a thermodynamic formalism for a class of maps
admitting inducing schemes satisfying some basic requirements. We establish
“verifiable” conditions on potential functions which guarantee the existence of
a unique equilibrium measure for these potentials. We stress that one may have
to restrict the supremum in (1) to invariant measures satisfying some additional
liftability requirements. Furthermore, the class of potential functions for which
existence and uniqueness of equilibrium measures is guaranteed may depend
on the choice of the inducing scheme. Inducing schemes satisfying our require-
ments can be constructed for a broad class of one-dimensional maps, certain
polynomial maps of the Riemann sphere, and some multidimensional maps (see
[27]). We apply our results to study equilibrium measures for a broad class of
one-dimensional maps (including S-unimodal maps) and for potential func-
tions ϕt (x) =−t log |d f (x)| where t runs through some interval containing [0,1].

In the first part, we describe an abstract inducing scheme for a continuous
map f of a compact topological space of finite topological entropy. This scheme
provides a symbolic representation of f , restricted to some invariant subset X ⊂
I , as a tower over (W,F,τ) where F is the induced map acting on the inducing

domain W ⊂ I and τ is the inducing time, which is a return time (not necessarily
the first return time) to W . The level sets of the function τ are the basic elements
of the inducing scheme. As the base W of the tower can be a Cantor-like set, it
can have a complicated topological structure.

An important feature of the inducing scheme is that basic elements form a
countable generating Bernoulli partition for the induced map F that is thus equi-
valent to the full shift on a countable set of states. Our results can be further
generalized to towers for which the induced map F is equivalent to a subshift of
countable type, provided it satisfies certain additional assumptions, but we do
not consider this case here.

The inducing procedures and the corresponding tower constructions where
the inducing time is the first return time to the base are classical objects in er-
godic theory and were considered in works of Kakutani, Rokhlin, and others.
Tower constructions for which the inducing time is not the first return time al-
ready appeared in works of J. Neveu [25] under the name of temps d’arret and
in the works of Schweiger [35, 36] under the name jump transformation (which
are associated with some fibered systems; see also the paper by Aaronson, Denker
and Urbański [2] for some general results on ergodic properties of Markov fibered
systems and jump transformations).

An F -invariant measure ν on W with integrable inducing time (i.e.,
∫

W τdν<
∞) can be lifted to the tower, thus producing an f -invariant measure µ=L (ν),
called the lift of ν. Our thermodynamic formalism only allows f -invariant mea-
sures µ on I that can be lifted. In particular, they should give positive weight to
some invariant set X ⊆ I (associated to the inducing scheme) which may be a
proper subset of I . By Zweimüller [47], a measure µ on X is liftable to the tower
if it has integrable inducing time (i.e.,

∫

X τdµ < ∞). The measure ν for which
µ=L (ν) is called the induced measure for µ and is denoted by i (µ).

The liftability property is important. In particular, for liftable measures one
has Abramov’s and Kac’s formulas that connect respectively the entropy of the
original map f and the integral of the original potential ϕ with the entropy of the
induced map F and the integral of the induced potential function ϕ̄ : W →R with
respect to the induced measure. Whether a given invariant measure is liftable
depends on the inducing scheme and there may exist nonliftable measures (see
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EQUILIBRIUM MEASURES FOR MAPS WITH INDUCING SCHEMES 399

Section 4.6). The liftability problem is to construct, for a given map f , an “opti-
mal” inducing scheme that captures all invariant measures with positive weight
to the base of the tower (i.e., every such measure is liftable). Such inducing
schemes were studied in [27].

Our main result is that the lift of the equilibrium measure for the induced sys-
tem is indeed the equilibrium measure for the original system. This is proven
by studying the lift of a “normalized” potential cohomologous to ϕ. Also, we
describe a condition on the potential function ϕ, which allows one to transfer
results on ergodic properties of equilibrium measures for the induced system
(including exponential decay of correlations and the Central Limit Theorem) to
the original system. We stress again that the equilibrium measures we construct
minimize the free energy Eµ =−hµ−

∫

I ϕdµ only within the class of liftable mea-
sures, and we construct an example of an inducing scheme and a potential func-
tion ϕ satisfying all our requirements and which possesses a unique nonliftable
equilibrium measure (see Section 4.6).

In the second part of the paper we apply our results to effect thermodynamic
formalism for some one-dimensional maps. First, we present additional con-
ditions on the inducing schemes, namely bounded distortion, and a control of
the size and number of the basic elements of the scheme (see Section 5). These
conditions are used in Section 6 where we apply our results to one-dimensional
maps and to the family of potential functions ϕt (x) with t in some interval (t0, t1)
with t0 < 1 < t1. We establish existence and uniqueness of equilibrium measures
(in the space of liftable measures). We also show how a sufficiently small expo-
nential growth rate of the number of basic elements allows one to choose t0 < 0
and, in particular, to establish existence and uniqueness of the measure of max-
imal entropy (again within the class of liftable measures).

In this paper we are particularly interested in one principle example – uni-
modal maps from a positive Lebesgue measure set of parameters in a transverse
one-parameter family fa with the potential function ϕt ,a (x) = −t log |d fa(x)|,
where t is in some interval (see Section 7). We show that the inducing scheme
of [43, 38] satisfies the slow growth rate condition on the number of basic par-
tition elements thus proving existence and uniqueness of equilibrium measures
for ϕt ,a(x) for any t0 < t < t1 with t0 = t0(a) < 0 and t1 = t1(a) > 1. Applying
results in [38] and [6], we then solve the liftability problem in this case.

Our main result then claims that under the negative Schwarzian derivative
assumption the inducing scheme of [43, 38] is “optimal” in the sense that the
supremum in (1) can be taken over all f -invariant Borel probability measures:
for a transverse one-parameter family fa of unimodal maps of positive Lebesgue
measure in the parameter space, there exists a unique equilibrium measure with
respect to all (not only liftable) invariant measures associated to the potential
function ϕt ,a(x) for any t0 < t < t1 where t0 = t0(a)< 0 and t1 = t1(a)> 1. This ex-
tends the results of Bruin and Keller [7] for the parameters under consideration.
In particular, this also establishes the existence and uniqueness of the measure
of maximal entropy by a different method than Hofbauer [17, 18].

Finally, in Section 8 we show that for potentials ϕt (x) with t close to 1 our
results extend to some more general families of one-dimensional maps such
as certain families of multimodal maps introduced by Bruin, Luzzatto and van
Strien [8] and cups maps as presented in [14].
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Recently, Bruin and Todd [10] applied the results presented here (see also [26])
to certain multimodal maps and proved the existence and uniqueness of equi-
librium measures with respect to all invariant measures. They were able to deal
with the liftability problem by building various inducing schemes and compar-
ing the equilibrium measures associated to these schemes. The liftability prob-
lem for complex polynomials is also addressed in [9], and another class of po-
tential functions is studied in [11]

By a recent result of Dobbs [15], for the quadratic family there exists a set of
parameters B of positive Lebesgue measure such that for every b ∈ B one can
find tb ∈ (0,1) for which the phase transition occurs: the function ϕtb ,b possesses
two equilibrium measures. We observe that the maps fb with b ∈ B are finitely
(not infinitely) renormalizable while the unimodal maps for which our Theo-
rem 7.7 holds are nonrenormalizable. At this point we pose the following prob-
lem:

Given a transverse family of S-unimodal maps, is there a set A of parameters

of positive Lebesgue measure such that for every a ∈ A and every t ∈ (−∞,∞)
the function ϕt ,a possesses a unique equilibrium measure? Furthermore, is the

pressure function P(ϕt ,a ) real analytic in t ?

An affirmative solution of this problem would allow one, among other things,
to further develop thermodynamic formalism for unimodal maps.

Structure of the paper. In Section 2, we give a formal description of general in-
ducing schemes. In Section 3 we state some results on existence and uniqueness
of Gibbs (and equilibrium) measures for the one-sided Bernoulli shift (hence,
for the induced map F ) and for the induced potential; see Sarig [34, 31] and also
Mauldin and Urbański [23], Yuri [46] and Buzzi and Sarig [12]. In Section 4 we
introduce a set of conditions on the potential functions ϕ which ensure that the
corresponding induced potential functions ϕ possess unique equilibrium mea-
sures with respect to the induced system. These conditions are stated in terms
of the inducing scheme and hence the class of potential functions to which our
results apply depend on the choice of the inducing scheme. In Section 5, we
provide some additional conditions on the inducing scheme which then allow
us to prove, in Section 6, that the potential functions ϕt satisfy the conditions
of Section 4 for all t0 < t < t1 with t0 < 0 and t1 > 1. In Section 7, we build an
inducing scheme for a positive Lebesgue measure set of parameters in a one-
parameter family of unimodal maps which satisfy the conditions of Sections 2
and 5. We also address the liftability problem, proving that all measures of pos-
itive entropy which give positive weight to the tower are liftable. Moreover, we
prove that measures of zero entropy and measures that are not supported on the
tower cannot be equilibrium measures for ϕt with t0 < t < t1, thus proving exis-
tence and uniqueness of the equilibrium measure among all invariant measures.
In Section 8 we provide more examples, namely certain multimodal maps, cusp
maps and one-dimensional complex polynomials.

Part I. General Inducing Schemes

2. INDUCING SCHEMES AND THEIR PROPERTIES

Let f : I → I be a continuous map of a compact topological space I . Through-
out this paper we shall always assume that the topological entropy h( f ) of f is
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finite; in particular, the metric entropy hµ( f ) <∞ for any f -invariant Borel mea-
sure µ. Let S be a countable collection of disjoint Borel subsets of I called basic

elements and τ : S → N a positive integer-valued function. Define the inducing

domain by

W :=
⋃

J∈S

J ,

the inducing time τ : I →N by

τ(x) :=
{

τ(J), x ∈ J , J ∈ S

0, otherwise.

Let J denote the closure of the set J . We say that f admits an inducing scheme

{S,τ} if the following conditions hold:

(H1) for each J ∈ S there exists a connected open set UJ ⊇ J such that f τ(J)|UJ is
a homeomorphism onto its image and f τ(J)(J) =W ;

(H2) the partition R of W induced by the sets J ∈ S is Bernoulli generating in
the following sense: for any countable collection of elements {Jk }k∈N, the
intersection

J1 ∩
(

⋂

k≥2
f −τ(J1) ◦ · · · ◦ f −τ(Jk−1)(Jk )

)

is not empty and consists of a single point, where f −τ(J) denotes the inverse
branch of f τ(J)|J (here f −τ(J)(I )=; if I ∩ f τ(J)(J) = ;).

Define the induced map F : W →W by F (x) = f τ(x)(x) and then set

(2) X =
⋃

J∈S

τ(J)−1
⋃

k=0
f k (J).

The set X is forward invariant under f . We also set

(3) W =
⋃

J∈S

J .

Conditions (H1) and (H2) allow one to obtain a symbolic representation of the
induced map F via the Bernoulli shift on a countable set of states. Consider the
full shift of countable type (SN,σ) where SN is the space of one-sided infinite se-
quences with elements in S and σ is the (left) shift on SN, (σ(a))k := ak+1 for
a = (ak )k≥0. Define the coding map h : SN → W by h((ak )k∈N) := x where x is
such that x ∈ J a0 and

f τ(Jak
) ◦ · · · ◦ f τ(Ja0 )(x) ∈ J ak+1 for k ≥ 0.

PROPOSITION 2.1. The map h is well-defined, continuous and W ⊆ h(SN). It is

one-to-one on h−1(W ) and is a conjugacy between σ|h−1(W ) and F |W , i.e.,

h ◦σ|h−1(W ) = F ◦h|h−1(W ).

Proof. By (H2), given a = (ak )k≥0, there exists a unique point x ∈ I such that
h(a) = x. It follows that h is well-defined. Moreover, given x ∈ W , there is a
unique a = (ak )k≥0 such that

f τ(Jak
) ◦ · · · ◦ f τ(Ja0 )(x) ∈ Jak+1 for k ≥ 0.

It follows that W ⊆ h(SN) and that h is one-to-one on h−1(W ). Clearly, σ|h−1(W )
and F |W are conjugate via h. By (H2), for any a = (ak )k≥0 the sets h([a0, . . . , ak ])
form a basis of the topology at x = h(a). This implies that h is continuous.
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Observe that the set SNàh−1(W ) contains no open subsets: indeed, by Con-
ditions (H1) and (H2), the image of any cylinder [a1 . . . an] under the coding map
h must contain points in W . This means that the set SNàh−1(W ) is “small” in
the topological sense but we also need it to be small in the measure-theoretical
sense. More precisely, we require the following condition:

(H3) if µ is a shift invariant measure, which gives positive weight to any open
set, then the set SNàh−1(W ) has zero measure.

This condition allows one to transfer shift invariant measures on SN which give
positive weight to open sets (in particular, Gibbs measures) to measures on W

invariant under the induced map.
Let M (F,W ) be the set of F -invariant ergodic Borel probability measures on

W and M ( f , X ) the set of f -invariant ergodic Borel probability measures on X .
For any ν ∈M (F,W ), set

Qν :=
∑

J∈S

τ(J)ν(J).

If Qν < ∞ we define the lifted measure L (ν) on I in the following way (see for
instance [13]): for any measurable set E ⊆ I ,

L (ν)(E ) :=
1

Q ν

∑

J∈S

τ(J)−1
∑

k=0

ν( f −k (E )∩ J).

The following result is immediate.

PROPOSITION 2.2. If ν ∈ M (F,W ) satisfies Qν < ∞, then L (ν) ∈ M ( f , X ) with

L (ν)(X ) = 1 and L (ν)|W ≪ ν.

We consider the class of measures

ML( f , X ) :=
{

µ ∈M ( f , X ) : there exists ν ∈M (F,W ), L (ν)=µ
}

.

We call a measure µ ∈ ML( f , X ) liftable. It follows from Proposition 2.2 that ν
is uniquely defined. We call ν the induced measure for µ and we write ν =: i (µ).
Observe that Qi (µ) <∞ for any µ ∈ML( f , X ).

Let ϕ : I → R be a Borel function. In what follows we shall always assume
that ϕ is well-defined and is finite at every point x ∈ W (see (3)) and we call ϕ a
potential. We define the induced potential ϕ : W →R by

(4) ϕ(x) :=
τ(J)−1
∑

k=0

ϕ( f k (x)) for x ∈ J .

We stress that the function ϕ need not be continuous but in what follows we will
require that the induced function ϕ is continuous in the topology of W .

Although the induced map F may not be the first return time map, Abramov’s
formula, connecting the entropies of F and f , and Kac’s formula, connecting the
integrals of ϕ and ϕ, still hold ([25, Proposition 2], see also [47] and, for related
results, [20]).

THEOREM 2.3 (Abramov’s and Kac’s Formulae). Let ν ∈ M (F,W ) with Qν < ∞.

Then

hν(F )=Qν ·hL (ν)( f )<∞.

If
∫

W ϕdν is finite then

−∞<
∫

W
ϕdν=Qν ·

∫

X
ϕdL (ν)<∞.
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Proof. For the proof of Abramov’s formula we refer to [47] (recall that we require
the topological entropy of f to be finite). To prove Kac’s formula, using the defi-
nition of L (ν), we get

∫

W
ϕdν=

∫

W

τ(x)−1
∑

k=0
ϕ( f k x)dν(x)=

∑

J∈S

τ(J)−1
∑

k=0

∫

J
ϕ( f k x)dν|J(x)

=
∑

J∈S

τ(J)−1
∑

k=0

∫

X
ϕ(y)dν( f −k y ∩ J) =Qν ·

∫

X
ϕdL (ν).

The desired result follows.

We now prove that the space of liftable measures ML( f , X ) is nonempty. To
this end we observe that ML( f , X ) ⊆ M ( f , X ) and that µ(W ) > 0 for any µ ∈
ML( f , X ).

THEOREM 2.4. Let µ ∈M ( f , X ) and τ ∈ L1(X ,µ). Then µ ∈ML( f , X ) and

hi (µ)(F ) =Qi (µ) ·hµ( f ) <∞.

In addition, if
∫

X ϕdµ is finite, then

−∞<
∫

W
ϕdi (µ)=Qi (µ) ·

∫

X
ϕdµ<∞.

Proof. By [47] (see also [6] for related results), there is a measure i (µ) ∈M (F,W )
that is absolutely continuous with respect to µ and such that Qi (µ) < ∞ and
L (i (µ)) = µ. Therefore, µ ∈ ML( f , X ). To prove the other claims apply Theo-
rem 2.3 to the measure i (µ). Since hµ( f ) < ∞ (due to our assumption that the
topological entropy of f is finite) and L (i (µ))=µ, we get

hi (µ)(F ) =Qi (µ) ·hL (i (µ))( f ) =Qi (µ) ·hµ( f )<∞.

If
∫

X ϕdµ is finite, we get
∫

W
ϕdi (µ)=Qi (µ) ·

∫

X
ϕdL (i (µ))=Qi (µ) ·

∫

X
ϕdµ.

This completes the proof of the theorem.

3. THERMODYNAMICS OF SUBSHIFTS OF COUNTABLE TYPE

Consider the full shift σ on SN and let Φ : SN → R be a continuous function
(with respect to the discrete topology on SN). The n-variation Vn (Φ) is defined
by

Vn(Φ) := sup
[a0,...,an−1]

sup
ω,ω′∈[a0,...,an−1]

{|Φ(ω)−Φ(ω′)|},

where the cylinder set [a0, . . . , an−1] consists of all infinite sequences ω= (ωk )k≥0

with ω0 = a0, ω1 = a1, . . . , ωn−1 = an−1.
The Gurevich pressure ofΦ is defined by

(5) PG (Φ) := lim
n→∞

1

n
log

∑

σn (ω)=ω
exp(Φn(ω))1[a](ω),

where a ∈ S, 1[a] is the characteristic function of the cylinder [a] and

Φn(ω) :=
n−1
∑

k=0

Φ(σk (ω)).
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It can be shown (see [31, 33]) that if
∑

n≥2
Vn(Φ) < ∞ then the limit in (5) exists,

does not depend on a, is never −∞, and

PG (Φ) = lim
n→∞

1

n
log

∑

σn (ω)=ω
expΦn(ω).

A measure ν = νΦ is called a Gibbs measure for Φ if there exist constants C1 > 0
and C2 > 0 such that for any cylinder set [a0, . . . , an−1] and any ω ∈ [a0, . . . , an−1]
we have

(6) C1 ≤
ν([a0, . . . , an−1])

exp(−nPG(Φ)+Φn (ω))
≤C2.

Let M (σ) be the class of all σ-invariant ergodic Borel probability measures on
SN. A σ-invariant measure νΦ is said to be an equilibrium measure for Φ if
−

∫

SNΦdνΦ <∞ and

(7) hνΦ(σ)+
∫

ΦdνΦ = sup
ν∈M (σ):−

∫

SN Φdν<∞

{

hν(σ)+
∫

Φdν

}

.

Note that unlike the classical case of subshifts of finite type the supremum above
is taken only over the (restricted) class of measures ν for which −

∫

SNΦdν<∞.
Aσ-invariant Gibbs measure ν forΦ is an equilibrium measure forΦ provided

−
∑

b∈S ν([b]) logν([b])<∞ ([5], see also [34]). The following results establish the
variational principle and the existence and uniqueness of Gibbs and equilibrium
measures for the full shift of countable type and for a certain class of potential
functions. Various versions of these results were obtained by Mauldin and Ur-
bański [23], by Sarig [31, 32, 34] and by Yuri [46] (see also [1] and [12]). In our
presentation we follow [31, 34].

PROPOSITION 3.1. Assume that the potentialΦ is continuous and supω∈SNΦ<∞.

The following statements hold.

1. If
∑

n≥2
Vn(Φ) <∞, then the variational principle forΦ holds:

PG (Φ) = sup
ν∈M (σ)

−
∫

SN Φdν<∞

{

hν(σ)+
∫

Φdν

}

.

2. If
∑

n≥1
Vn (Φ) <∞ and PG (Φ) < ∞, then there exists an ergodic σ-invariant

Gibbs measure νΦ for Φ. If in addition, the entropy hνΦ(σ) <∞, then νΦ is

the unique Gibbs and equilibrium measure.

Observe that a Gibbs measure νΦ is ergodic and positive on every nonempty
open set.

In order to describe some ergodic properties of equilibrium measures let us
recall some definitions. A continuous transformation T has exponential decay of

correlations with respect to an invariant Borel probability measure µ and a class
H of functions if there exists 0 < θ < 1 such that, for any h1,h2 ∈H ,

∣

∣

∣

∫

h1(T n(x))h2(x)dµ−
∫

h1(x)dµ

∫

h2(x)dµ
∣

∣

∣≤ Kθn ,

for some K = K (h1,h2) > 0.
The transformation T satisfies the Central Limit Theorem (CLT) for functions

in H if, for any h ∈ H , which is not a coboundary (i.e., h 6= g ◦T − g for any g ),
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there exists γ> 0 such that

µ
{ 1
p

n

n−1
∑

i=0
(h(T i x)−

∫

h dµ)< t
}

→
1

γ
p

2π

∫t

−∞
e−τ2/2γ2

dτ.

The following statement describes ergodic properties of the equilibrium mea-
sure νΦ and is a corollary of the well-known results by Ruelle [30] (see also [1, 16]
and [22]). We say that the function Φ is locally Hölder-continuous if there exist
A > 0 and 0 < r < 1 such that for all n ≥ 1,

(8) Vn(Φ) ≤ Ar n .

PROPOSITION 3.2. Assume that PG (Φ) <∞, supω∈SNΦ<∞ and that Φ is locally

Hölder-continuous. If hνΦ(σ) < ∞ then the measure νΦ has exponential decay

of correlations and satisfies the CLT with respect to the class of bounded Hölder-

continuous functions.

4. THERMODYNAMICS ASSOCIATED WITH AN INDUCING SCHEME

4.1. Classes of measures and potentials. Let f be a continuous map of a com-
pact topological space I admitting an inducing scheme {S,τ} satisfying condi-
tions (H1)–(H3) as described in Section 2. Let also ϕ : X →R be a potential func-
tion, ϕ its induced function, and ML( f , X ) the class of liftable measures. We
write

(9) PL(ϕ) := sup
ML( f ,X )

{

hµ( f )+
∫

X
ϕdµ

}

and we call a measure µϕ ∈ML( f , X ) an equilibrium measure for ϕ (with respect
to the class of measures ML( f , X )) if

hµϕ
( f )+

∫

X
ϕdµϕ = PL(ϕ).

Let us stress that our definition of equilibrium measures differs from the clas-
sical one as we only allow liftable measures, which give full weight to the non-

compact set X . Note that in general PL(ϕ) may not be finite and so we will need
to impose conditions on the potential function in order to guarantee the finite-
ness of PL(ϕ).

While dealing with the class of all f -invariant ergodic Borel probability mea-
sures M ( f , I ), depending on the potential function ϕ, one may expect the equi-
librium measure µϕ to be either nonliftable or to be supported outside of the
tower, i.e., µϕ(X ) = 0. In [28], an example of a one-dimensional map of a com-
pact interval is given which admits an inducing scheme {S,τ} and a potential
function ϕ such that there exists a unique equilibrium measure µϕ for ϕ (with
respect to the class of measures M ( f , I )) with µϕ(X ) = 0. The liftability problem
is addressed in [27, 29], where some characterizations of and criteria for lifta-
bility are obtained. Let us point out that nonliftable measures may exist and
the liftability property of a given invariant measure depends on the inducing
scheme. For certain interval maps, for instance, one can construct different in-
ducing schemes over the same base such that a measure with positive weight to
the base is liftable with respect to one of the schemes but not with respect to the
other (see [29], also [6]). In Sections 7 and 8 we discuss liftability for unimodal
and multimodal maps satisfying the Collet–Eckmann condition. In these partic-
ular cases we show that every measure in M ( f , X ) is liftable.
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Two functions ϕ and ψ are said to be cohomologous if there exists a bounded
function h and a real number C such that ϕ−ψ= h ◦ f −h +C . An equilibrium
measure for ϕ is also an equilibrium measure for any ψ cohomologous to ϕ. In
particular, if ϕ satisfies the conditions of Theorem 4.5 below, then there exists a
unique equilibrium measure for anyψ cohomologous to ϕ regardless of whether
ψ satisfies these conditions or not.

4.2. Gibbs and equilibrium measures for the induced map. In order to prove
the existence of a unique equilibrium measure νϕ for the induced map F we
impose some conditions on the induced potential function ϕ.

REMARK 4.1. Note that in view of (4), given J ∈ S, the function ϕ can be naturally
extended to the closure J . This means that the functionΦ :=ϕ◦h is well-defined
on SN, where h is the coding map (see Proposition 2.1).

We call a measure νϕ on W a Gibbs measure for ϕ if the measure (h−1)∗νϕ is
a Gibbs measure for the function Φ. We call νϕ an equilibrium measure for ϕ if
−

∫

W ϕdνϕ <∞ and

hνϕ
(F )+

∫

W
ϕdνϕ = sup

ν∈M (F,W )

−
∫

W ϕdν<∞

{

hν(F )+
∫

W
ϕdν

}

.

We say that the potential ϕ

(a) has summable variations if the functionΦ has summable variations, i.e.,
∑

n≥1
Vn (ϕ◦h)=

∑

n≥1
Vn(Φ) <∞;

(b) has finite Gurevich pressure if PG (ϕ◦h)=PG (Φ) <∞.

Note that the image under the coding map h of any periodic orbit for the shift σ
is a periodic orbit for the map f . Nevertheless, it may happen that the induced
map F possesses no periodic orbits. This is why from now on we assume that F

has at least one periodic orbit. In all interesting cases this requirement is satis-
fied.

THEOREM 4.2. Assume that the function ϕ has summable variations and finite

Gurevich pressure. Then

−∞< PL(ϕ) <∞.

Proof. By the above assumption, there is a periodic orbit for F in the set W . For
the Dirac measure on that orbit

∫

X ϕdµ>−∞. Since 0 ≤ hµ( f ), we conclude that
PL(ϕ) >−∞.

For every µ ∈ ML( f , X ) there exists a measure i (µ) ∈ M (F,W ) with Qi (µ) <∞
and by Theorem 2.3,

(10) 0 ≤ hi (µ)(F ) =Qi (µ) ·hµ( f ) <∞.

Take µ ∈ ML( f , X ) such that
∫

W ϕdi (µ) > −∞. Since ϕ has summable varia-
tions and finite Gurevich pressure, one can show that it is bounded from above.
Hence, −∞<

∫

W ϕdi (µ)<∞ and, by Theorem 2.3,

−∞<
∫

W
ϕdi (µ)=Qi (µ) ·

∫

X
ϕdµ<∞.
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If PL(ϕ) is nonpositive the upper bound is immediate. If PL(ϕ) is positive, using
the fact that 1 ≤Qi (µ) <∞, we get

PL(ϕ) = sup
µ∈ML ( f ,X )

∫

W ϕdi (µ)>−∞

(

hi (µ)(F )+
∫

W ϕdi (µ)

Qi (µ)

)

≤ sup
ν∈M (F,W )

−
∫

W ϕdν<∞

(

hν(F )+
∫

W
ϕdν

)

<∞,

where the first equality follows from the fact that PL(ϕ) cannot be achieved by a
measure with

∫

W ϕdi (µ)=−∞. Indeed, otherwise,

∫

X
ϕ(x)dL (i (µ))(x) =

∫

X

1

Qi (µ)
ϕ(x)

∑

J∈S

τ(J)−1
∑

k=0
di (µ)( f −k (x)∩ J)

=
1

Qi (µ)

∫

W

∑

J∈S

τ(J)−1
∑

k=0
ϕ( f k (y))di (µ)(y ∩ J)

=
1

Qi (µ)

∫

W
ϕ(y)di (µ)=−∞

would imply PL(ϕ) =−∞ contradicting the lower bound established above.

In order to show that equilibrium measures for the induced system lift to
equilibrium measures for the original system, it is useful to work with a poten-
tial function which is cohomologous to the original potential function ϕ: when
PL(ϕ) is finite we denote the induced function for ϕ−PL(ϕ) by ϕ+ :=ϕ−PL(ϕ) =
ϕ− PL(ϕ)τ. Given J ∈ S, this function can be naturally extended to the closure
J and hence the function Φ+ :=ϕ+ ◦h is well-defined on SN where h is the cod-
ing map (see Proposition 2.1). The following statement establishes the existence
and uniqueness of equilibrium measures for ϕ+ for the induced map F .

THEOREM 4.3. Assume that the induced function ϕ on W has summable vari-

ations and finite Gurevich pressure. Also assume that the function ϕ+ has finite

Gurevich pressure and hence satisfies

(11) sup
J∈S

sup
x∈J

ϕ+(x) <∞.

Then the following statements hold:

1. there exists an F -invariant ergodic Gibbs measureνϕ+ on W which is unique

when hνϕ+ (F ) <∞;

2. if Qνϕ+ < ∞ then νϕ+ is the unique equilibrium measure among the mea-

sures ν ∈M (F,W ) satisfying
∫

W ϕdν>−∞.

Proof. Since ϕ has summable variations, it is continuous on W . Note that the
inducing time τ is constant on elements J ∈ S. It follows that the function ϕ+ is
also continuous on W and has summable variations. In view of (11), we can ap-
ply Proposition 3.1 proving the existence of a σ-invariant ergodic Gibbs measure
for Φ+. As a Gibbs measure must give positive weight to cylinders, it cannot be
supported on SNàh−1(W ) due to Condition (H3) and the first statement follows.

For an f -invariant Borel probability measure µ, we have 0≤ hµ( f )<∞. Theo-
rem 2.3 and the assumption Qνϕ+ <∞ imply hνϕ+ (F ) <∞. The second statement
then follows from Proposition 3.1.
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4.3. Lifting Gibbs measures. We now describe a condition on the induced func-
tion ϕ, which will help us prove that the natural candidate – the lifted measure
µϕ := L (νϕ+) where the measure νϕ+ is constructed in Theorem 4.3 – is indeed
an equilibrium measure for ϕ.

We say that the induced function ϕ is positive recurrent if there exists ε0 > 0
such that

ϕ+
ε0

:=ϕ−PL(ϕ)+ε0 =ϕ++ε0τ

has finite Gurevich pressure. It follows that for any 0 ≤ ε≤ ε0 the function ϕ+
ε :=

ϕ−PL(ϕ)+ε=ϕ++ετ also has finite Gurevich pressure.

THEOREM 4.4. Assume that the induced function ϕ on W has summable vari-

ations, finite Gurevich pressure and is positive recurrent. Also assume that the

function ϕ+ satisfies (11) and Qνϕ+ <∞ for the equilibrium measure νϕ+ of Theo-

rem 4.3. Then the measure µϕ =L (νϕ+) is the unique equilibrium measure for ϕ

with respect to the class of liftable measures ML( f , X ).

Proof. Since ϕ is positive recurrent, the function ϕ+ has finite Gurevich pres-
sure and all requirements of Theorem 4.3 hold. By this theorem, the measure
µϕ is well defined and belongs to ML( f , X ). We show that PG (Φ+) = 0 and that
µϕ is the unique equilibrium measure (with respect to the class of measures
ML( f , X )). As hµϕ

( f )+
∫

X (ϕ−PL(ϕ))dµϕ ≤ 0 and Qνϕ+ ∈ [1,∞), Proposition 3.1
and Theorem 2.3 imply

PG (Φ+) =hνϕ+ (F )+
∫

W
ϕ+ dνϕ+

=Qνϕ+ ·
(

hµϕ
( f )+

∫

X
(ϕ−PL(ϕ))dµϕ

)

≤ 0.(12)

On the other hand, for every ε> 0 there is µ ∈ML( f , X ) such that

hµ( f )+
∫

X
ϕdµ≥ PL(ϕ)−ε.

Since Qi (µ) is strictly positive for all µ, Theorem 2.3 gives

PG (Φ+
ε ) ≥hi (µ)(F )+

∫

W
ϕ+
ε di (µ)

=Qi (µ) ·
(

hµ( f )+
∫

X
(ϕ−PL(ϕ)+ε)dµ

)

≥ 0.

By (5) and positive recurrence, PG (Φ+
ε ) is continuous in ε for 0 ≤ ε≤ ε0. We con-

clude that PG (Φ+)≥ 0, hence (12) becomes

0 = PG (Φ+) =Qνϕ+ ·
(

hµϕ
( f )+

∫

X
(ϕ−PL(ϕ))dµϕ

)

.

As Qνϕ+ ∈ [1,∞), the measure µϕ is an equilibrium measure for ϕ (for the class of
measures ML( f , X )). Unicity (over this class) follows from the unicity of νϕ+ .

4.4. Conditions on potential functions. Verifying that the hypotheses of The-
orems 4.4 and 4.6 are satisfied may be intricate. Additional conditions on the
induced potential ϕ can help us check them.

Given a cylinder [a0, . . . , an−1], we set

J[a0,...,an−1] := h([a0, . . . , an−1]) = Ja0 ∩
(

n−1
⋂

k=2
f −τ(Ja0 ) ◦ · · · ◦ f −τ(Jan−2 )(Jan−1 )

)
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(see Proposition 2.1 for the definition of the conjugacy h). The n-variation of ϕ
is defined by

Vn(ϕ) := sup
[a0,...,an−1]

sup
x,x ′∈J[a0 ,...,an−1 ]

{

|ϕ(x)−ϕ(x ′)|
}

.

We assume the following conditions on the potential function ϕ:

(P1) ϕ is locally Hölder-continuous (see (8)): there exist A > 0 and 0 < r < 1 such
that for all n ≥ 1,

Vn(ϕ) ≤ Ar n ;

(P2)
∑

J∈S

sup
x∈J

exp ϕ(x) <∞;

(P3) there exists ε0 > 0 such that
∑

J∈S

τ(J)sup
x∈J

exp(ϕ+(x)+ε0τ(x)) <∞;

Let ϕ be a bounded Borel function on I , which is Hölder-continuous on the
closure J of each J ∈ S. Then ϕ has bounded variation and there exists C ≥ 0 such
that the function ϕ−c satisfies Condition (P2) for every c ≥C .

THEOREM 4.5. Let f be a continuous map of a compact topological space. Assume

that the topological entropy h( f ) <∞and that f admits an inducing scheme {S,τ}
satisfying Conditions (H1)–(H3). Let ϕ be a potential function satisfying Condi-

tions (P1)–(P3). Then there exists a unique equilibrium measure µϕ for ϕ (with

respect to the class of measures ML( f , X )).

Proof. The proof will follow from Theorem 4.4 if we prove that the induced po-
tentialϕ satisfies its assumptions. By Condition (P1), the induced potential func-
tion ϕ is continuous on W and has summable variations. Proposition 2.1 implies
that given any cylinder [a0, . . . , an−1], there exists a unique x in J[a0,...,an−1] with
F n(x) = x. Therefore, Condition (P2) implies

lim
n→∞

1

n
log

∑

F n (x)=x

x∈Ja0

exp

(

n−1
∑

i=0
ϕ(F i (x))

)

≤ lim
n→∞

1

n
log

(

∑

J∈S

sup
x∈J

exp ϕ(x)

)n

<∞,

thus proving that ϕ has finite Gurevich pressure. Positive recurrence follows
from (P3) in the same way. Condition (P1) also implies that the induced function
ϕ satisfies (11). Together with Theorem 4.2 this implies the finiteness of PL(ϕ),
and so Conditions (P1) and (P3) (with ε= 0) imply that the induced potential ϕ+

corresponding to the “normalized” potential ϕ−PL(ϕ) has summable variations
and finite Gurevich pressure. By Theorem 4.3, there exists a Gibbs measure νϕ+

for ϕ+ on W . By (6), there exist C1,C2 > 0 such that for every J ∈ S and x ∈ J ,

(13) C1 ≤
νϕ+(J)

exp(−P +ϕ+(x))
≤C2,

where P = PG (Φ+) is the Gurevich pressure of Φ+. Summing (13) over all J ∈ S

and using Condition (P3) we get

Qνϕ+ =
∑

J∈S

τ(J)νϕ+ (J) ≤
C2

eP

∑

J∈S

τ(J) sup
x∈J

exp(ϕ+(x)) <∞.

By Theorem 4.3, νϕ+ ∈ M (F,W ) is the unique equilibrium measure for ϕ+ and,
by Theorem 4.4, L (νϕ+) ∈ ML( f , X ) is the unique equilibrium measure (with
respect to the class of measures ML( f , X )).
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4.5. Ergodic properties. We introduce another condition to describe some er-
godic properties of equilibrium measures. Let ϕ be a potential function. Con-
sider the function ϕ+ =ϕ−PL(ϕ) and let νϕ+ be its equilibrium measure. We say
that it has exponential tail if there exist K > 0 and 0 < θ < 1 such that for all n > 0,

(P4) νϕ+({x ∈W : τ(x) ≥ n}) ≤Kθn .

THEOREM 4.6. Assume that the induced function ϕ on W is locally Hölder-conti-

nuous, positively recurrent and has finite Gurevich pressure. Also assume that the

function ϕ+ satisfies Condition (11). If νϕ+ has exponential tail then there exists a

unique equilibrium measure µϕ (with respect to the class of measures ML( f , X )).

It is ergodic, has exponential decay of correlations and satisfies the Central Limit

Theorem with respect to the class of functions whose induced functions on W are

bounded Hölder-continuous.

Proof. If ϕ is locally Hölder-continuous then it has summable variations. Theo-
rem 4.3 then implies the existence of a Gibbs measure νϕ+ . Since νϕ+ has expo-
nential tail, we obtain

Qνϕ+ =
∑

J∈S

τ(J)νϕ+ (J) ≤
∞
∑

ℓ=1
ℓ

∑

J∈S

τ(J)=ℓ

νϕ+(J) ≤ K
∞
∑

ℓ=1
ℓθℓ <∞.

Since ϕ is positive recurrent, by Theorem 4.4, the measure µϕ = L (νϕ+) is the
unique equilibrium measure for ϕ. The desired result then follows from Theo-
rem 3.2 and Theorems 2 and 3 of Young in [45].

4.6. Non-liftable equilibrium measures. We present an example of an inducing
scheme {S,τ} for an interval map f and a potential function ϕ such that: (1) ϕ
satisfies Conditions (P1)–(P3); (2) ϕ admits a unique equilibrium measure µϕ

within the class of all invariant measures which gives positive weight to the base
of the tower; (3) µϕ is not liftable. Of course, by Theorem 4.5, there exists another
invariant measure, which is a unique equilibrium measure within the class of
liftable measures.

Consider the map f = 2x (mod 1) of the unit interval I . The Lebesgue mea-
sure Leb is the unique equilibrium measure of maximal entropy, i.e., the unique
equilibrium measure for the potential function ϕ=constant.

Set I (1) = [0, 1
2 ], I (2) = ( 1

2 ,1] and consider the inducing scheme {S ′,τ′} where S ′

is the countable collection of intervals In such that I0 = I (2) and In = f −1(In−1)∩
I (1) for n ≥ 1, and τ′(In) = n. It is easy to see that this inducing scheme satisfies
Conditions (H1)–(H3) and that the function ϕ=−2 satisfies Conditions (P1)–(P3)
(with respect to the scheme {S ′,τ′}). The corresponding equilibrium measure
µϕ = Leb. In fact, every measure µ ∈M ( f , X ) is liftable to {S ′,τ′}.

Now subdivide each interval In into 22n

intervals of equal length and call them

I
j
n . Consider the inducing scheme {S,τ} where S consists of intervals I

j
n , j =

1, . . . ,22n

, n ≥ 1 and τ(I
j
n) = 2n +n. It is shown in [29] that Leb is not liftable

to {S,τ}, however, it is easy to check that the function ϕ = −2 satisfies Condi-
tions (P1)–(P3) (with respect to the inducing scheme {S,τ}). By Theorem 4.5, the
function ϕ possesses a unique equilibrium measure (within the class of liftable
measures) µϕ, which is singular with respect to Leb.

In [28] the authors also provide examples of inducing schemes such that the
supremum PL(ϕ) of (9) is strictly less than the supremum in (1).

The liftability problem for general piecewise invertible maps is addressed in
detail in [27]. Others consider the problem of comparing equilibrium measures
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obtained by different inducing schemes for certain multimodal maps and for the
potentials −t log |d f (x)| with t close to 1 [9, 10, 11].

Part II. Applications to Interval Maps

5. INDUCING SCHEMES WITH EXPONENTIAL TAIL AND BOUNDED DISTORTION

In this section we apply the above results to effect the thermodynamic formal-
ism for C 1 maps f of a compact interval I that admit inducing schemes {S,τ}. We
shall study equilibrium measures corresponding to the special family of poten-
tial functions ϕt (x) =−t log |d f (x)| where t runs in some interval of R. We shall
show that ϕt (x) satisfies Conditions (P1)–(P4) of Part I for t in some interval
(t0, t1) provided that the inducing scheme satisfies some additional properties,
namely an exponential bound on the “size” of the partition elements with large
inducing time, bounded distortion and a bound on the cardinality of partition
elements with given inducing time. We also present some examples of systems,
which admit such inducing schemes.

Denote the Lebesgue measure of the set J ∈ S by Leb(J). We assume that the
inducing scheme satisfies the following additional conditions

(H4) exponential tail: We have Leb(W ) > 0 and there are constants c1 > 0 and
λ1 > 1 such that for all n ≥ 0,

∑

J∈S : τ(J)≥n

Leb(J) ≤ c−1
1 λ−n

1 ;

(H5) bounded distortion: there are constants c2 > 0 and λ2 > 1 such that for all
n ≥ 0, each cylinder [a0, . . . , an−1], any two points x, y ∈ J[a0,...,an−1] (see Sec-
tion 4.4 for the definition of the set), and each 0 ≤ i ≤ n −1, we have

∣

∣

∣

∣

dF (F i (x))

dF (F i (y))
−1

∣

∣

∣

∣

≤ c2λ
−n
2 .

Conditions (H4) and (H5) imply the following.

COROLLARY 5.1. There are positive constants c3,c4 and λ3 > 1 such that for every

J ∈ S and x ∈ J ,

c1λ
τ(J)
1 ≤ Leb(J)−1 ≤ c3|dF (x)| ≤ c4λ

τ(J)
3 .

Proof. The first inequality follows from (H4). Since W = F (J) for any J ∈ S, the
other inequalities follow from Conditions (H4) and (H5) and the fact that the
derivative is bounded from above on a compact interval I .

REMARK 5.2. Without loss of generality one can assume that c1 = 1. Indeed, par-
tition elements of lower order can be refined and the constant λ1 can be adjusted
for this purpose. Obviously, one can also choose λ3 such that c4 = 1.

THEOREM 5.3. Assume that f admits an inducing scheme {S,τ} satisfying Condi-

tions (H1)–(H5). Then for any measure µ ∈ML( f , X ),

logλ1 ≤
∫

X
log |d f |dµ≤ logλ3.

Proof. By Corollary 5.1, for every J ∈ S and any x ∈ J ,

(14) τ(J) logλ1 ≤ log |dF (x)| ≤ τ(J) logλ3.
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For any µ ∈ ML( f , X ) integrating (14) against i (µ) over J and summing over all
J ∈ S yields

Qi (µ) logλ1 ≤
∫

W
log |dF (x)|di (µ)≤Qi (µ) logλ3.

By Theorem 2.4, we have
∫

W
log |dF (x)|di (µ)=Qi (µ)

∫

X
log |d f (x)|dµ,

and the statement follows since Qi (µ) is positive.

As an immediate corollary of this result we obtain the following statement.

COROLLARY 5.4. Assume that f admits an inducing scheme {S,τ} satisfying Con-

ditions (H1)–(H5). Then for any ergodic measure µ ∈ ML( f , X ) the Lyapunov ex-

ponent λ(µ) of µ is strictly positive. Moreover, logλ1 ≤λ(µ) ≤ logλ3.

Proof. It suffices to notice that λ(µ) =
∫

X log |d f |dµ and use Theorem 5.3.

Denote by S(n) := Card{J ∈ S | τ(J) = n}. Conditions (H4) and (H5) imply that

(15) S(n)≤ c6γ
n

for some 1 ≤ γ ≤ λ3
λ1

and c6 = c6(γ) > 0. For our main results, we need a better
control of the growth rate of S(n), which is given by the following condition

(H6) Subexponential growth of basic elements: for every γ > 1 there exists d > 0
such that S(n)≤ dγn for every n ≥ 1.

6. EQUILIBRIUM MEASURES FOR POTENTIALS −t log |d f (x)|

We now apply the results of the previous sections to the family of potential
functions ϕt (x) = −t log |d f (x)|, x ∈ I for t ∈ R. The corresponding induced po-
tential is

ϕt (x) =
τ(x)−1
∑

k=0
−t log |d f ( f k (x))| =−t log |dF (x)|.

Given c ∈ R, we also consider the shifted potential ξc ,t := ϕt + c and its induced

potential

ξc ,t (x) :=
τ(x)−1
∑

k=0

(ϕt (x)+c) =−t log |dF (x)|+cτ(x).

THEOREM 6.1. Assume that f admits an inducing scheme {S,τ} satisfying Condi-

tions (H1)–(H5). Then the following statements hold:

1. For every c , t ∈R the function ξc ,t satisfies Condition (P1);

2. For every t ∈ R there exists ct such that for every c < ct the potential ξc ,t sat-

isfies Condition (P2) and the function ξ+c ,t satisfies Condition (11); moreover,

Pt := PL(ϕt ) is finite for all t ∈R;

3. There exist t0 = t0(λ1,λ3,γ) < 1 and t1 = t1(λ1,λ3) > 1 such that ξc ,t satisfies

Condition (P3) for every t0 < t < t1 and every c ∈R (the number γ is defined

in (15)); moreover, if γ≤λ1 then t0 ≤ 0.

Proof. To prove the first statement, we use Condition (H5): for any c , t ∈R, n > 0,
any cylinder [a0, . . . , an−1], and any x, y ∈ J[a0,...,an−1], we have

∣

∣

∣ξc ,t (x)−ξc ,t (y)
∣

∣

∣= |t |
∣

∣

∣

∣

log
|dF (y)|
|dF (x)|

∣

∣

∣

∣

≤C |t |λ−n
2

for some constant C > 0, thus proving the first statement.

JOURNAL OF MODERN DYNAMICS VOLUME 2, NO. 3 (2008), 397–427



EQUILIBRIUM MEASURES FOR MAPS WITH INDUCING SCHEMES 413

To prove the second statement observe that
∑

J∈S

sup
x∈J

exp ξc ,t (x) =
∑

J∈S

ecτ(J) sup
x∈J

|dF (x)|−t .

It now follows immediately from Corollary 5.1 that given t ∈ R, there exists ct

such that for every c < ct the potential ξc ,t satisfies Condition (P2). The finiteness
of Pt follows from Theorem 4.2 applied to the induced potential ξc ,t . Indeed, by
Statement 1, it satisfies Condition (P1) and hence has summable variations. By
Statement 2, it satisfies Condition (P2) and hence has finite Gurevich pressure.
Then PL(ϕt +c) =Pt +c is finite and thus so is Pt . Now the fact that the function
ξ+c ,t satisfies Condition (11) is immediate.

To establish the remaining statements we need the following lemma.

LEMMA 6.2. We have that P1 = 0 and

Pt ≥
{

(1− t ) logλ1 for t ≤ 1;

(1− t ) logλ3 for t ≥ 1.

Proof. By the Margulis–Ruelle inequality, we have for any f -invariant measure
µ,

hµ( f ) ≤
∫

X
log |d f |dµ

and hence, P1 ≤ 0. To show the opposite inequality note that by Conditions (H1)
and (H2), for any cylinder [a0, . . . , an−1] we have that F n(J[a0 ,...,an−1]) = W . By the
Mean-Value Theorem and Conditions (H4) and (H5) there exists a constant c7 >
0 such that for any x ∈ Ja0 we have

Leb(W ) ≥ c7|dF n(x)|Leb(J[a0,...,an−1]).

It follows from Condition (H4) that
∑

[a1,...,an−1]
J[a0,...,an−1] = Ja0 .

Any cylinder [a1, . . . , an−1] contains a unique fixed point, which we denote by
ω = ω[a1,...,an−1] ∈ [a1, . . . , an−1]. Its image x = h(ω[a0,...,an−1]) lies in W and is a
periodic point for the induced map F . Since ϕ1 =− log |dF |, we have

PG (ϕ1) = lim
n→∞

1

n
log

∑

F n (x)=x∈Ja0

|dF n(x)|−1

≥ lim
n→∞

1

n
log

∑

[a1,...,an−1]

c7 Leb( J̄[a0,...,an−1])

Leb(W )

≥ lim
n→∞

1

n
log

c7 Leb(Ja0 )

Leb(W )
= 0.

By Proposition 3.1, given ε > 0, there exists ν ∈ M (F,W ) with
∫

W ϕ1 dµ > −∞
such that

hν(F )−
∫

W
log |dF |dν≥PG (ϕ1)−ε≥−ε.

Since P1 ≤ 0 and
∫

W ϕ1 dµ>−∞, we also have that hν(F ) <∞ which also yields
∫

W ϕ1 dµ < ∞. In view of Corollary 5.1, this implies Qν < ∞, hence L (ν) ∈
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ML( f , X ). By Theorem 2.3,

P1 ≥hL (ν)( f )−
∫

X
log |d f |dL (ν)

=
hν(F )−

∫

W log |dF |dν

Qν
≥−

ε

Qν
≥−ε.

As ε is arbitrary, P1 ≥ 0 and we conclude that P1 = 0. Now observe that

Pt = sup
µ∈ML( f ,X )

(hµ− t

∫

X
log |d f |dµ)

≥ hµ1 − t

∫

X
log |d f |dµ1

= (1− t )
∫

X
log |d f |dµ1

and the desired result follows from Theorem 5.3.

To prove the third statement of Theorem 6.1 observe that
∑

J∈S

τ(J)≥τ0

τ(J)sup
x∈J

exp(ξ+c ,t (x)+ε0τ(x)) =
∑

J∈S

τ(J)≥τ0

τ(J)e (−Pt+ε0)τ(J) sup
x∈J

|dF (x)|−t =: Tt

Set

t1 := logλ3(log
λ3

λ1
)−1 > 1.

To prove the finiteness of Tt consider the following three cases:

Case I:. 1 ≤ t < t1. Then −t logλ1 −Pt < 0 and Condition (H4) and Corollary 5.1
yield

Tt ≤ (c3)t
∑

n≥τ0

ne (−Pt+ε0)n
∑

τ(J)=n

|J |t−1|J |

≤ (c3)t
∑

n≥τ0

n(e−Pt+ε0λ−t
1 )n <∞

for any 0 ≤ ε0 < t logλ1 +Pt .

Case II:. 0 ≤ t ≤ 1. Jensen’s inequality yields

Tt ≤ (c3)t
∑

n≥τ0

ne (−Pt+ε0)nS(n)1−t
(

∑

J∈S

τ(J)=n

|J |
)t

≤ c1−t
6 (c3)t

∑

n≥τ0

n(e (−Pt+ε0)γ1−tλ−t
1 )n <∞

for any 0 ≤ ε0 < (t −1)logγ+ t logλ1 +Pt . By Lemma 6.2 the right-hand side is
positive for all

(16) t > 1−
logλ1

logγ
.

This proves the statement for 1− logλ1

logγ < t ≤ 1. If γ≥λ1, set 0 ≤ t0 := 1− logλ1

logγ < 1.

Otherwise, 1− logλ1

logγ is negative so Condition (P3) is satisfied for all values of 0 ≤
t ≤ 1. In this case t0 = 0.
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Case III:. t ≤ 0. Then

Tt ≤ c t
3

∑

n≥τ0

ne (−Pt+ε0)nS(n)λ−t n
3

≤ c t
3c6

∑

n≥τ0

n(e (−Pt+ε0)γλ−t
3 )n <∞

for any 0 ≤ ε0 < − logγ+ t logλ3 +Pt . Again, by Lemma 6.2, the right-hand side
is positive provided

t ≥ log
γ

λ1
(log

λ3

λ1
)−1 =: t0

and t0 < 0 if γ<λ1. This completes the proof of the third statement.

We now establish existence and uniqueness of equilibrium measures.

THEOREM 6.3. Let f be a C 1 map of a compact interval admitting an inducing

scheme {S,τ} satisfying Conditions (H1)–(H5). There exist constants t0 and t1 with

t0 < 1 < t1 such that for every t0 < t < t1 one can find a measure µt ∈ ML( f , X )
satisfying:

1. µt is the unique equilibrium measure (with respect to the class of liftable

measures ML( f , X )) for the function ϕt =−t log |d f |;
2. µt is ergodic, has exponential decay of correlations, and satisfies the CLT for

the class of functions whose induced functions are bounded Hölder-conti-

nuous;

3. assume that the inducing scheme {S,τ} is such that γ < λ1, then t0 ≤ 0 and

µ0 is the unique measure of maximal entropy (with respect to the class of

liftable measures ML( f , X )).

Proof. Statements 1 and 3 follow directly from Theorems 4.5 and 6.1. For State-
ment 2 we only need to prove that the potential ψt :=ϕt −Pt has exponential tail
with respect to the measure i (µt ) = νψt

(see Condition (P4)). By Theorem 6.1,
ψt = ξ+c ,t satisfies Condition (P3) for every t0 < t < t1. As i (µt ) is a Gibbs measure
there exist constants c8 > 0, K > 0, and 0 < θ < 1 such that

∑

τ(J)≥n

νψt
(J) ≤ c8

∑

τ(J)≥n

exp(sup
x∈J

(ϕt (x)−Ptτ(x))) ≤ Kθn .

The statement now follows from Theorem 4.6.

We conclude this section with the following statement.

THEOREM 6.4. Let f be a C 1 map of a compact interval admitting an inducing

scheme {S,τ} satisfying Conditions (H1)–(H5). Assume there exists c9 > 0 such that

for every µ ∈M ( f , I ) with hµ( f ) = 0 the Lyapunov exponent λ(µ) > c9. Then there

exist a > 0 and b > 0 such that measures µ ∈ M ( f , I ) with hµ( f ) = 0 cannot be

equilibrium measures for the potential function ϕt with −a < t < 1+b.

Proof. Assuming the contrary let µ ∈ M ( f , I ) with hµ( f ) = 0 be an equilibrium
measure for ϕt . For t > 0

Pt ≤ hµ( f )− t

∫

X
log |d f (x)|dµ(x) =−tλ(µ) <−t c9.

On the other hand, since Pt is decreasing we have Pt ≥P1 = 0 for 0 ≤ t ≤ 1 leading
to a contradiction. By continuity, there exists b > 0 such that the statement also
holds for 1 ≤ t < 1+b. Since I is compact, the Lyapunov exponent of a C 1 map
f is bounded from above and the same reasoning leads to a contradiction for
t >−a for some positive a.
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7. UNIMODAL MAPS

When looking for examples illustrating our theory, we may choose to stress
two different points of view: on the one hand one can strive for the largest pos-
sible set of functions which admit a unique equilibrium measure; on the other
hand, one might be interested in obtaining as many potentials as possible. For
unimodal maps we will give examples in both directions.

7.1. Definition of unimodal maps. Let f : [b1,b2] → [b1,b2] be a C 3 interval map
with exactly one nonflat critical point (without loss of generality assumed to be
0). Suppose f (x) =±|θ(x)|l + f (0) for some local C 3 diffeomorphism θ and some
1 < l < ∞ (the order of the critical point). Such a map f is called unimodal if
0 ∈ (b1,b2), the derivative d f /d x changes signs at 0, and f (b1), f (b2) ∈ {b1,b2}.
An S-unimodal map is a unimodal map with negative Schwarzian derivative (for
details see, for instance [13]).

REMARK 7.1. The negative Schwarzian derivative assumption is not necessary
to prove distortion bounds for C 3-unimodal maps with no neutral periodic cy-
cles [21] (and even C 2+η unimodal maps, see [40]), or for C 3 multimodal maps
[42]. However, the negative Schwarzian derivative assumption avoids the simul-
taneous occurrence of various types of attractors in the unimodal case, so for the
sake of clarity we rather assume it than restrict the statements of our theorems
to the basins of the attractors.

For any x ∈ [b1,b2], x 6= 0 there exists a unique point denoted by −x 6= x with
f (x) = f (−x). If f is symmetrical with respect to 0, the minus symbol corre-
spond to the minus sign in the usual sense. Note that −b1 = b2 so without loss
of generality, we may assume that the fixed boundary point is b := b2 > 0 and
f : I := [−b,b] → I . If there are no nonrepelling periodic cycles there exists an-
other fixed point α with f ′(α) <−1 and 0 ∈ (α,b). Let α1 denote the unique point
in (−b,α) for which f (α1) = −α and let A = (α,−α) ⊆ (α1,−α1) = Â. An open
interval J is called regular of order τ(J) ∈ N if f τ(J)(J) = A and there exists an
open interval Ĵ ⊇ J such that the map f τ(J)| Ĵ : Ĵ → Â is a diffeomorphism onto
Â. A regular interval J is called maximal regular if for every regular interval J ′

with J ′∩ J 6= ; we have J ′ ⊆ J . Any two maximal regular intervals are disjoint but
their closures may intersect at a boundary point. Denote by Q the collection of
maximal regular intervals, which are strictly contained in A, and set

Ŵ :=
⋃

J∈Q

J and W :=
⋂

n≥0
F−n(A),

where F : Ŵ → A is the induced map given by F (x) = f τ(x)(x), x ∈ Ŵ . Note that
W is the maximal F -invariant subset in A, i.e., F−1(W ) =W and that W ⊂ Ŵ . We
define

S := {J ∩W : J ∈Q}, τ(J ∩W ) = τ(J).

7.2. Strongly regular parameters and the Collet–Eckmann condition. We con-
sider a one-parameter family of unimodal maps { fa }, which depends smoothly
on the parameter a. Let

(17) N0 = N0(a) := min{n ∈N : | f n
a (0)| < |α|}

and let Fa(0) := f
N0

a (0). Define Nk := Nk−1 +τ(F k
a (0)) for k ≥ 1, where F k−1

a (0) :=
f

Nk−1
a (0) (provided that F k−1

a (0) ∈ Ŵ ). We call a parameter a strongly regular if for

JOURNAL OF MODERN DYNAMICS VOLUME 2, NO. 3 (2008), 397–427



EQUILIBRIUM MEASURES FOR MAPS WITH INDUCING SCHEMES 417

all k ∈N we have

(18) F k
a (0) ∈ Ŵ and

∑

τ(F i
a(0)) < ρk ,

where the sum runs over those 1 ≤ i ≤ k for which τ(F i
a(0)) ≥ M , and where M =

M(N0) and ρ = ρ(N0) are constants satisfying

log2 N0 < M <
2

3
N0 and M2−M ≪ ρ≪ 1.

We denote by A the set of all strongly regular parameters. Observe that for any
a ∈ A , the first return time of the critical point to the interval A = (−|α|, |α|) is
N0. Given an integer N > 0, we denote by

A (N ) = {a ∈A : N0(a)= N }.

Note that A =
⋃

N>0 A (N ).
Recall that a unimodal map satisfies the Collet–Eckmann condition if there

exist constants c > 0 and ϑ> 1 such that for every n ≥ 0,

|D f n( f (0))| > c ϑn .

It is shown in Corollary 5.5 of [38] that a unimodal map fa with a ∈ A satisfies
the Collet–Eckmann condition.

7.3. Inducing schemes for unimodal maps. From now on we assume that { fa }
is a one-parameter family of unimodal maps with nonflat critical point in a neigh-
borhood of a preperiodic parameter a∗, that is, there exists an L ∈ N such that
x∗ := f L

a∗(0) is a non-stable periodic point of period p . The (periodic) point
χ(a) = f

p
a (χ(a)) of period p for the map fa such that χ(a∗) = f L

a∗(0) = x∗ is called
the continuation of the point x∗. Following [41] we call such a family of unimodal
maps transverse provided

d

d a
f L

a∗(0) 6=
d

d a
χ(a∗).

THEOREM 7.2. Let { fa } be a transverse one-parameter family of unimodal maps

at a preperiodic parameter a∗ and A the set of strongly regular parameters. Then

1. a∗ is a Lebesgue density point of A , i.e.,

lim
ε→0

Leb([a∗, a∗−ε]∩A )

ε
= 1;

moreover, there exists T > 0 such that Leb(A (N )) > 0 for all N ≥ T ;

2. for any fa with a ∈ A the pair {S,τ} forms an inducing scheme satisfying

Conditions (H1)–(H5). Moreover, Leb(A àW ) = 0 where W = W (a) is the

base.

Proof. The set of strongly regular parameters has a Lebesgue density point at
a = −2 for the quadratic family [43] (see also Propositions 4.2.1 and 4.2.15 of
[37]). A simple modification of the arguments presented there allows one to
prove the same result for a transverse one-parameter family of unimodal maps
at any preperiodic parameter. The first statement follows.

Condition (H1) follows from the definition of the collection S of basic ele-
ments and Condition (H2) holds, since the induced map F is expanding. To
prove Condition (H3) consider a point ω ∈ SN àh−1(W ). There exists n such
that the point h(σn(ω)) is one of the end points of a maximal regular interval.
It follows that the set SNàh−1(W ) is at most countable and hence cannot sup-
port a measure, which is positive on open sets. Condition (H4) is proven in [43]
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and Proposition 6.3 of [38] ( see also [37]) for the quadratic map. It is also shown
there that the base W has full Lebesgue measure in A. Similar arguments work
for any transverse family of unimodal maps using the fact that any nonrenormal-
izable map of a full unimodal family is quasisymmetrically conjugate to a map in
the quadratic family (see [19]). Condition (H5) follows from Koebe’s Distortion
Lemma (see for example, [13]).

We now show that the inducing scheme {S,τ} satisfies Condition (H6), i.e., the
number S(n) of elements J ∈ S with inducing time τ(J) = n grows subexponen-
tially with n. By [38, Proposition 2.2], the partition elements of R (see Condition
(H2)) of higher order are preimages of partition elements of lower order. Hence
in order to control S(n), we need to control the number of intervals of lower or-
der, which give rise to intervals of higher order. To do this we need to introduce
some extra notation following [38].

Denote by J(k) the maximal regular interval containing F k
a (0) and by B (k)

the regular interval containing Fa(0) for which f
Nk−1−N0

a (B (k)) = J(k − 1). Let
A(k) be the largest interval around 0 for which f

N0
a (A(k)) ⊆ B (k) and let L(k)

be the largest regular interval in B̂(k) à B (k) for which f
N0

a (∂A(k)) is a boundary
point. Also denote by Â(k) the largest interval containing 0 for which f

N0
a (Â(k))⊆

B (k)∪L(k). Finally, let ξk−1 := f
Nk−1

a (∂Â(k)) and

Kk := {regular intervals J : f
Nk

a (0) ∈ Ĵ and J 6⊆ [ξk ,β]}.

By Proposition 3.1 of [38], preimages F−k
a (J) of elements J ∈ S are also elements

of S, unless either F k
a (0) ∈ J or F k

a (0) ∈ Ĵ à J . In the first case, J = J(k) and in the

second case, J ∈Kk . Since f
Nk

a |Â(k)à int(A(k +1)) has two monotone branches,
for any element J ∈ S and any k ∈N the set Â(k)à int(A(k +1)) contains at most
two intervals in S (of order τ(J)+Nk ) whose image under f

Nk
a is J . Also, for each

J ′ ∈ Kk there are at most two intervals in S (of order τ(J)+ τ(J ′)+ Nk ) whose
image under f

Nk+τ(J ′)
a is J . For strongly regular parameters, Proposition 2.6 in

[38] implies that for any interval J ′ ∈ Kk , we have 1 ≤ τ(J ′) < M if k ≤ ⌊ρ−1M⌋
and 1 ≤ τ(J ′) < ρk otherwise (the brackets ⌊·⌋ denote the integer part). Since all
intervals in Kk have different order, Card(Kk ) ≤ max{1,ρk}.

THEOREM 7.3. For any γ > 1 there exists c = cγ > 0 and an integer N0 > 0 such

that for any a ∈A (N0) we have

S(n)< cγγ
n .

Proof. Observe that S(n)= 0 for n ∈ {0,1, N0−1, N0} and S(n)≤ 2 for 2 ≤ n ≤ N0−2
(see [38, Proposition 2.2]). Note that N0 −1+2i ≤ Ni and

2γ−N0+1
∞
∑

i=0
(2+ρi )γ−2i < 1
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for sufficiently large N0. By induction, we conclude that if Nk < n ≤ Nk+1 then

S(n)≤ 2
k
∑

i=0

(

S(n −Ni )+
∑

J ′∈Ki

S(n −Ni −τ(J ′))
)

≤ 2cγγ
n

k
∑

i=0

(

γ−Ni +
∑

J ′∈Ki

γ−Ni−τ(J ′)
)

≤ 2cγγ
n−N0+1

k
∑

i=0
(2+ρi )γ−2i

≤ 2cγγ
n−N0+1

∞
∑

i=0
(2+ρi )γ−2i < cγγ

n ,

The desired result follows.

7.4. The liftability property for unimodal maps. We establish liftability of mea-
sures µ ∈ M ( f , X ) of positive entropy which give positive weight to the base W .
For a multidimensional extension of this Theorem see [27]. We fix a map f = fa

where a is a strongly regular parameter.

THEOREM 7.4. Assume that µ ∈ M ( f , X ) and hµ( f ) > 0. Then there exists ν ∈
M (F,W ) with L (ν) =µ, i.e., µ ∈ML( f , X ).

Proof. Consider the Markov extension (I , f ) (which is also called the Hofbauer–
Keller tower) of the map f (see [17]). Define

F |π−1(J) := f τ(J)|π−1(J), J ∈ S

and then

A :=
⋃

k≥1
F k (inc (

⋃

J∈Q

J)),

where inc denotes the inclusion of the interval into the first level of I and π the
projection from I onto the interval I . By [20], any f -invariant measure µ with
hµ( f ) > 0 can be lifted to a measure µ=π∗µ on the Markov extension.

By [6], if the inducing scheme is naturally extendible, then the induced map
F is conjugate to the first return time map of A via the projection map π. It is
easy to show that the inducing scheme constructed in Theorem 7.2 is naturally
extendible, since the intervals considered are maximal with respect to inclusion.
Using the arguments in [6, Theorem 6] (see also [27]) we show that if µ ∈M ( f , X )
with hµ( f ) > 0 and µ(A) > 0, then µ ∈ ML( f , X ) as follows. Kac’s formula for the

first return time map F = f R (where R is the first return time) of A to itself with

ν= ν◦π−1 for the F -invariant probability measure ν yields

∫

τdν=
∫

R dν=
µ(

⋃

k≥0 f k (A))

µ(A)
<∞.

Note that

µ= lim
n→∞

1

n

n−1
∑

k=0

µ
1
◦ f k ,

where µ
1
◦π−1 = µ, and we obtain ν ≪ µ. By Zweimüller’s dichotomy rule [47,

Lemma2.1], we obtain that L (ν) = κ ·µ for some κ > 0. Normalizing ν if neces-
sary one has that µ ∈ML( f , X ).
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To prove that µ(A) > 0 for any µ ∈M ( f , X ) it suffices to show that

(19) π−1(X ) ⊆
⋃

k≥0
f −k (A) (mod µ).

Indeed, in view of (19), the assumption that µ(A) = 0 leads to the following con-
tradiction:

1 =µ(X ) =µ◦π−1(X ) ≤
∑

k≥0

µ( f −k (A)) =
∑

k≥0

µ(A) = 0.

In order to establish (19) for the inducing scheme constructed in Theorem 7.2
observe that by (H2), any point x ∈ X has a basis of neighborhoods, which are
sent diffeomorphically by some iterates of f onto Â (i.e., the extension of A). De-
note the (countable) set of boundary points of I by ∂I . Without loss of generality
we may assume that µ has no atoms and thus µ(∂I ) = 0. By the Markov property

of (I , f ), any point x ∈π−1(X )à∂I has a basis of neighborhoods U ⊂ Û such that
for some integer k and some level Dℓ of I we have

π◦ f k (U ) = A ⊂ π◦ f k (Û ) = Â ⊆ π(Dℓ)

(recall that the ℓ-th level of I is the image under f ℓ of the maximal interval of

monotonicity of f ℓ). Therefore we are left to show that for any Âℓ ∈π−1(Â)∩Dℓ

we have

∃ Aℓ ⊂ Âℓ, Aℓ ∈ A ⇐⇒ Â ⊆ π (Dℓ).

For our partition the “ ⇒” direction follows from the arguments of [6, Lemma2].
We are left to prove that if Â ⊆ π(Dℓ) then there exists some set J ∈ S and some

integer k such that F k (inc(J)) = Aℓ. Recall that Dℓ = [cℓ−i ,cℓ], where cn := f n(0)
and i := max1≤ j<ℓ{0 ∈ D j } < ℓ. Denote by c−n the n-th preimage of the critical
point, which lies closest to the critical point. We have that for 0 ≤ k ≤ l

0 6∈ f k (]c−ℓ,0[), f ℓ(inc ([c−(ℓ−i ),0])) =Dℓ

and there exist Jℓ ⊂ Ĵℓ ⊂ [c−(ℓ−i ),0] for which

f ℓ|inc (Jℓ)(inc(Jℓ)) = Aℓ ⊂ f ℓ|inc ( Ĵℓ)(inc( Ĵℓ)) = Âℓ ⊆ Dℓ.

If Jℓ ∈ S then F (inc (Jℓ)) = Aℓ and Aℓ ∈ A. Otherwise, Jℓ ⊂ J ∈ S. Again, there are
no preimages of the critical point of order less than τ(J) in J or between J and
the critical point, so π( f τ(J)(inc J)) = A and f τ(J)(inc J) ∈ A. Again, if f τ(J)(Jℓ) ∈ S

then

F 2(inc (Jℓ)) = f τ(J)+τ(Jℓ )(inc (Jℓ)) = Aℓ

and Aℓ ∈ A. Inductively, this shows that there exists J for which F k (inc (J)) = Aℓ.
Hence, Aℓ ∈ A. This completes the proof.

REMARK 7.5. If the inducing scheme constructed in Theorem 7.2 is refined ac-
cording to Remark 5.2, the new inducing scheme {S ′,τ′} is no longer naturally
extendible. However, one can express {S ′,τ′} as an inducing scheme over (W,F ).
Namely, for each element J ′ ∈ S ′ with J ′ ⊂ J ∈ S, set τ′(J ′) := n(J) + 1 where
n(J) ≥ 0 is the number of times J needs to be refined to obtain J ′. We then have
F ′(x) := F τ′(J ′)(x) for x ∈ J ′. Since the refinement of Remark 5.2 is finite there
exists a uniform bound on all n(J) and

∑

n(J ′)ν(J ′) <∞,
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by [47, Theorem 1.1], hence ν ∈ ML(W,F ). In other words, there exists an F ′-
invariant probability measure ν′ on W ′ such that L (ν′) = ν and therefore,

L (L (ν′)) =L (ν) =µ ∈ML(X , f ).

We now prove that for strongly regular parameters equilibrium measures must
give positive weight to the base W .

THEOREM 7.6. Let { fa } be a transverse one-parameter family of S-unimodal maps

with nonflat critical point in a neighborhood of a preperiodic parameter a∗. There

exists N0 such that for every n ≥ N0 and every a ∈ A (n) there exist t ′0 = t ′0(a) < 0
and 1< t ′1 = t ′1(a) such that for any t ′0 < t < t ′1 we have that

sup
ν∈M ( fa ,Ia )
ν(W )=0

{hν( fa )− tλ(ν)} < sup
µ∈ML( fa ,Xa )

{hµ( fa )− tλ(µ)},

where λ(ν) =λa (ν) =
∫

I log |d fa(x)|dν.

Proof. In the particular case of the quadratic family, we have

dimH (AàW ) =dimH (
⋃

k≥0
F−k (Aà

⋃

J∈S

J)) < c
log N0

N0

for all a ∈ A (N ) (see [37, 38]) and some constant c ∈ R. By definition of X , any
f -invariant Borel measure ν with ν(W ) = 0 must satisfy ν(X ) = 0, and by con-
struction, if f k (x) ∈ A for x ∈ X then f k (x) ∈ W . So X is the disjoint union of
W and of its preimages along Hölder-continuous inverse branches of f (they are
bounded away from the critical value) and hence

(20) dimH ν≤ dimH (( f (0), f 2(0))àX ) = c dimH (AàW )

for some constant c ∈ R, since the support of any f -invariant measure ν 6= δβ
is contained in ( f (0), f 2(0)). In particular, the Hausdorff dimension can thus
be made arbitrarily small by choosing the number N0 to be sufficiently large.
In the general case, by [19], fa is Hölder conjugate to a quadratic map, so the
Hausdorff dimension of ν can also be made arbitrarily small provided N0 is suf-
ficiently large.

We now proceed with the proof of the theorem and we argue by contradiction
assuming the statement is false. Then, for every ε > 0 there exists an invariant
Borel measure ν with ν(W ) = 0 and such that

hν( fa )− tλ(ν) ≥ Pt ,a −ε,

where Pt ,a = PL(ϕt ,a) is defined by (9). We first consider the case when t < 1.

Then one can choose 0 < ε< min{(1− t ) logλ1, logλ1} and 0 < δ< logλ1−ε
logλ3

where
λ1 =λ1(a) is the constant from Condition (H4) and λ3 =λ3(a) is such that λ(ν) ≤
logλ3 for every fa-invariant measure ν (such a constant exists, since f is C 1 on
a compact set). Young’s formula for the dimension of the measure (see [44]) and
Lemma 6.2 yield for the ǫ and δ above

dimH ν=
hν( fa )

λ(ν)
≥ t +

Pt ,a −ε

λ(ν)
≥ t +

(1− t ) logλ1 −ε

logλ3
≥ δ> 0

for every t satisfying

t ′0 :=
(

δ−
logλ1 −ε

logλ3

)(

1−
logλ1

logλ3

)−1
≤ t ≤ 1.

Note that t ′0 is negative.
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We now consider the case when t ≥ 1. Recall that for any Collet–Eckmann
parameter all probability measures have a strictly positive Lyapunov exponent
λ(ν) ≥ λinf > 0, where λinf is a constant depending on the parameter a. Choose
0 < ε<λinf and 0 <δ< 1− ε

λinf
. By Lemma 6.2, we have that 0 ≥ Pt ,a ≥ (1−t ) logλ3

and hence

dimH ν≥ t (1−
logλ3

λinf
)+

logλ3 −ε

λinf
≥ δ> 0

for every t satisfying

1 ≤ t ≤
(

δ−
logλ3 −ε

λinf

)(

1−
logλ3

λinf

)−1
:= t ′1.

Observe that t ′1 > 1. To conclude note that one can choose the set of parame-
ters of positive Lebesgue measure such that N0 is arbitrarily large and hence the
dimension of ν (see (20)) is less than δ. This leads to a contradiction.

One can strengthen the above result and show that it holds with t ′0 =−∞ (see
[39]).

7.5. Equilibrium measures for unimodal maps. We now summarize our results
on unimodal maps, observing that they extend the results of [7] for the parame-
ters under consideration. The proof follows from Theorems 6.3, 6.4, 7.2, 7.3, 7.4
and 7.6.

THEOREM 7.7. Let { fa } be a transverse one-parameter family of S-unimodal maps

with nonflat critical point in a neighborhood of a preperiodic parameter a∗. Then

for every A (N ) of positive measure and every a ∈A (N )

1. one can find numbers t0 = t0(a) < 0 and t1 = t1(a) > 1 such that for every

t0 < t < t1 there exists a unique equilibrium measure µt ,a for the function

ϕt ,a(x) =−t log |d fa(x)|, x ∈ I , i.e.,

(21) sup{hµ( fa )− t

∫

I
log |d fa (x)|dµ} =hµt ,a ( fa )− t

∫

I
log |d fa (x)|dµt ,a ,

where the supremum is taken over all fa -invariant Borel probability mea-

sures.

2. the measure µt ,a is ergodic, has exponential decay of correlations, and satis-

fies the CLT for the class of functions whose induced functions are bounded

Hölder-continuous. In particular, there exists a unique measureµ0,a of max-

imal entropy and a unique absolutely continuous invariant measure µ1,a .

For the purpose of obtaining the largest class of functions admitting a unique
equilibrium measure for ϕt ,a(x), we can consider the families of maps studied
by Avila and Moreira in [4, 3]. Let us call a smooth (at least C 3) unimodal map
hyperbolic if it has a quadratic critical point, has a hyperbolic periodic attractor,
and its critical point is neither periodic nor preperiodic. A family of unimodal
maps is called nontrivial if the set of parameters for which the corresponding
map is hyperbolic is dense. One can also consider families of maps that depend
on any number of parameters. We then obtain the following result. A parameter
is called regular if the corresponding unimodal map has a hyperbolic periodic
attractor.

THEOREM 7.8. Let { fa } be a nontrivial analytic family of S-unimodal maps. Then

for almost every nonhyperbolic parameter the corresponding map fa admits a

unique equilibrium measure (with respect to the class M ( fa , X )) for the potential
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ϕt ,a(x) for all t0 < t < t1 with some 0 < t0 = t0(a) and t1 = t1(a) > 1. The same re-

sult holds for any nonregular parameters in any generic smooth (C k ,k = 2, . . . ,∞)

family of unimodal maps.

Proof. By [3, 4, Theorem A], almost every nonregular parameter of a family of
unimodal maps satisfying our hypothesis also satisfies the Collet–Eckmann con-
dition. By [8], any unimodal map, satisfying the Collet–Eckmann condition, ad-
mits an inducing scheme satisfying Conditions (H1)–(H5). The result now fol-
lows from Theorem 6.3. By [7, Proposition 3.1], any invariant measure has uni-
formly positive Lyapunov exponent. Theorems 6.4 and 7.4 then imply that the
equilibrium measure can be taken with respect to the class of all measures in
M (X , fa).

Under slightly stronger regularity conditions (satisfied, for instance, if f is a
polynomial map) Bruin and Keller show [7] that µ ∈M (I , fa)àM (X , fa) cannot
be equilibrium measures for the potential functions ϕt ,a(x) with t close to 1.

8. MORE INTERVAL MAPS

8.1. Multimodal maps. We follow [8]. Consider a C 3 interval or circle map f

with a finite set C of critical points and no stable or neutral periodic point. Also
assume that all critical points have the same order ℓ, i.e., for each c ∈ C there
exists a diffeomorphism ψ : R→R fixing 0 such that for x close to c we have

f (x) =±|ψ(x −c)|ℓ+ f (c)

where ± may depend on the sign of x −c . Assume (as in [8]) that

(22)
∑

n∈N
|d f n( f (c))|

−1
2ℓ−1 (c) <∞ for each c ∈C

and that there exists a sequence {γn}n∈N, γn ∈ (0, 1
2 ) satisfying

∑

n∈N
γn <∞

and for some β> 0, each c ∈C and n ≥ 1,

(23)
(

γℓ−1
n |d f n( f (c))|

)− 1
ℓ ≤C e−βn.

Let X be the biggest closed f -invariant set of positive Lebesgue measure. This
set can be decomposed into finitely many invariant subsets Xi on which f is
topologically transitive. The following result is an easy corollary of [8, Proposi-
tion 4.1].

THEOREM 8.1. Let f be a multimodal map satisfying Conditions (22) and (23).

Then for each i , the map f |Xi admits an inducing scheme {Si ,τi } satisfying Con-

ditions (H1)–(H5). The corresponding inducing domain Wi lies in a small neigh-

borhood of a critical point and the basic elements of the inducing scheme accu-

mulate to the critical point.

We thus obtain the following result.

THEOREM 8.2. Let f be a multimodal map satisfying Conditions (22) and (23).

Then for every Xi there exist t0 < 1 < t1 such that for every t0 < t < t1 one can find

a unique equilibrium measure µt ,i on Xi for the function ϕt = −t log |d f | with

respect to the class of measures ML( f , Xi ). The measure µt ,i is ergodic, has expo-

nential decay of correlations, and satisfies the CLT for the class of functions whose
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induced functions are bounded Hölder-continuous. Additionally, if f satisfies the

Collet–Eckmann condition (for multimodal maps), then µt ,i is the unique equi-

librium measure with respect to the class of measures M ( f , Xi ).

Proof. The first part is a direct corollary of Theorem 8.1. To prove that the equi-
librium measure is unique with respect to all invariant measures in M ( f , Xi ), we
remark that Theorem 7.4 holds for any piecewise continuous piecewise mono-
tone interval map provided the basic elements of the inducing scheme accumu-
late to the critical point (see [27, Section 7] for details and more general results).
This implies that the class ML( f , Xi ) includes all f -invariant measures on Xi of
positive entropy ([17]). By [8, Theorem 1.2], every invariant measure has Lya-
punov exponent bounded away from 0 and hence no invariant measure of zero
entropy can be an equilibrium measure for the function ϕt .

8.2. Cusp maps. A cusp map of a finite interval I is a map f :
⋃

j I j → I of an at
most countable family {I j } j of disjoint open subintervals of I such that

◦ f is a C 1 diffeomorphism on each interval I j := (p j , q j ), extendible to the
closure Ī j (the extension is denoted by f j );

◦ the limits limǫ→0+ D f (p j + ǫ) and limǫ→0+ D f (q j − ǫ) exist and are equal to
either 0 or ±∞;

◦ there exist constants K1 > K2 > 0 and C > 0, δ> 0 such that for every j ∈N

and every x, x ′ ∈ Ī j ,

|D f j (x)−D f j (x ′)| <C |x −x ′|δ if |D f j (x)| , |D f j (x ′)| ≤ K1,

|D f −1
j (x)−D f −1

j (x ′)| <C |x −x ′|δ if |D f j (x)| , |D f j (x ′)| ≥ K2.

In [14], it is shown that certain cusp maps admit inducing schemes.

THEOREM 8.3. Let f be a cusp map with finitely many intervals of monotonicity

I j . Suppose f has an ergodic absolutely continuous invariant probability measure

m with strictly positive Lyapunov exponent. Then f admits an inducing scheme

{S,τ} which satisfies Conditions (H1)–(H3) and (H5).

Proof. Conditions (H1), (H2), (H5) are satisfied by the definition of the Markov
maps from [14, Theorem 1.9.10]. To prove Condition (H3) observe that any point
of SNàh−1(W ) is eventually mapped onto an endpoint of one of the domains of
the Markov map. Since these domains are intervals, the set of all endpoints is
a countable set, and so the set SNàh−1(W ) cannot support a measure which is
positive on open sets, proving Condition (H3).

By definition, for cusp maps one cannot expect to obtain upper bounds on
the derivatives of the induced map and of the Lyapunov exponent of liftable
measures using compactness arguments as in Corollary 5.1 and Theorem 5.3.
However, since this upper bound is only used to extend the range of values of t

for which our theorems hold, one can nonetheless obtain statements on the ex-
istence of a unique equilibrium measure associated to the potential −t log |d f |,
albeit for a smaller range of values t . Theorem 6.1 now becomes:

THEOREM 8.4. Assume that the cusp map f admits an inducing scheme {S,τ}
satisfying Conditions (H1)–(H5). Then the following statements hold:

1. For every c , t ∈R the function ξc ,t satisfies Condition (P1);

2. For every t ≥ 0 there exists ct such that for every c < ct the potential ξc ,t sat-

isfies Condition (P2) and the function ξ+c ,t satisfies Condition (11); moreover,

Pt := PL(ϕt ) is finite for all t ≥ 0;
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3. There exist t∗0 = t∗0 (λ1) < 1 and t∗1 = t∗1 (λ1) > 1 such that ξc ,t satisfies Condi-

tion (P3) for every t∗0 < t < t∗1 and every c ∈R;

Proof. The proofs of parts 1 and 2 follow as in Theorem 6.1 (although Statement
2 now only holds for nonnegative values of t ). To prove Statement 3, observe that
P1 ≥ 0 by [14, Theorem 1.9.12], and so by continuity, there exist t∗0 = t∗0 (λ1) < 1
and t∗1 = t∗1 (λ1) > 1 such that (P3) holds for every t∗0 < t < t∗1 .

For the inducing scheme constructed in Theorem 8.3 the liftability problem
is solved in [27, Corollary 7.5]: for cusp maps every measure of positive entropy
which gives positive weight to the base of the inducing scheme is liftable.

Also, one should note that while applying our results to cusp maps Condi-
tion (H4) may not hold in general and so we must assume it. Combining this
result with Theorems 6.3 and 8.4 yield the following statement.

THEOREM 8.5. Let f be a cusp map with finitely many intervals of monotonic-

ity, which admits an ergodic absolutely continuous invariant probability mea-

sure m with strictly positive Lyapunov exponent. Additionally assume that Con-

dition (H4) is satisfied for the associated inducing schemes {S,τ}. Then there ex-

ist t0 < 1 < t1 such that there is a unique equilibrium measure µ (with respect

to the class of all invariant measures) with µ(W ) > 0 (where W is the domain

of the inducing scheme) associated to the potential function −t log |d f | for all

t0 < t < t1. This measure is ergodic, has exponential decay of correlations, and

satisfies the Central Limit Theorem for the class of functions whose induced func-

tions are bounded Hölder-continuous.
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