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We consider different definitions of the correlation dimension and find some 
relationships between them and other characteristics of dimension type such as 
Hausdorff dimension, box dimension, etc. We also introduce different ways to 
define and study the generalized spectrum for dimensions--a one-parameter 
family of characteristics of dimension type. 
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1. I N T R O D U C T I O N  

Procaccia  and Hentschel ~1~ described a numerical  procedure to introduce a 
characteristic known now as the correlat ion dimension. It  has become one 
of the mos t  popular  characteristics of dimension type because the 
algori thm for its calculation is relatively simple and fast. Let us first recall 
this procedure.  Given a time series of points x l ,  x2, x3,.., in a "phase 
space," define 

C k ( r )  = - -  
k(k- 1) 

card{(/,  j ) :  p(xi ,  xj) <, r for i < j <  k}  

where card(A) is the number  of  elements in the set A and p denotes the 
distance between points. Let us now take the limit (assuming that it exists) 

C(r)= l im Ck(r) 
k ~ o o  
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The correlation dimension fl is defined to satisfy the asymptotic relation 

C ( r )  ~ r ~ 

for all small enough r (at this point we do not discuss whether this relation 
can hold at all). 

The correlation dimension plays a great role in the numerical 
investigation of different models, including strange attractors. ('3'16) Con- 
sider a dynamical system (f,  X) where X is a separable metric space with 
a distance p, and f :  X ~ X is a continuous map. From now on we assume 
that X has a finite topological dimension. Usually X is to be a Euclidean 
space or a smooth Riemannian manifold. Given x ~ X, we can apply the 
above procedure to the sequence of points xn = i f ( x ) .  If x is "typical" 
with respect to a measure # invariant under f (usually, # is supposed to 
be ergodic), then fl represents the correlation dimension of the system 

(X, f ,  #). 
The above procedure can be treated from a rigorous mathematical 

viewpoint in different ways. In this paper we consider three of them. The 
first one directly follows from the above "physical" description. The second 
is due to D. Ruelle (unpublished). We will show that under certain condi- 
tions they produce the same result. 

The correlation dimension defined in these ways in general does not 
coincide with other well-known characteristics of dimension type such as 
the Hausdorff dimension, box dimension (known also as capacity), infor- 
mation dimension, etc. We introduce another definition of the correlation 
dimension which is a modification of the previous ones hut is not equiv- 
alent to them. However, it can still serve in the above numerical procedure 
and has advantage of being equivalent under certain natural conditions to 
other characteristics of dimension type. 

We also consider different ways to introduce a one-parameter family 
of characteristics of dimension type called the generalized spectrum for 
dimensions. The first one was suggested by Hentschel and Proccacia (12) as 
a physical scale of dimensions generalizing the correlation dimension. We 
introduce a modification of this approach which seems to be more produc- 
tive. It is also equivalent to another approach presented in ref. 10 and 
based on a general construction due to CarathSodory. We show that 
under certain conditions the spectrum does not essentially depend on the 
parameter. 
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2. S O M E  BASIC DEF IN IT IONS A N D  RESULTS 

2.1. Hausdorf f  Dimension 

Consider a set Z ~ X and define its ~-Hausdorff measure (~ 7> 0 is a 
real number) as (2'3) 

l i m i n f ~  ~ (diamU)~: ~ UmZ,  U~<e~ m H( Z~ 
6 ~ 0  G {~UEG U~G ) 

where G is a finite or countable collection of open sets of diameter ~< e 
covering Z (it is easy to see that the above limit exists). The function 
m~c(Z,.) has the following property: there exists an overchanged value c~. 
such that m~l(Z,~)=oo for ~ < ~ v  and ma(Z,~)=O for ~ > 0 ~ .  The 
quantity 

dim~ Z = ~ .  = inf{7: rn~(Z, ~) = O} 

= sup{co m~l(Z, o~) = oo } 

is called the Hausdorff dimension of the set Z. 

2.2. Box Dimension 

Let us define upper and lower a-box measures of a set Z c X  by 
setting, respectively, 

rh(Z, ~ )=  1Tin inf t 2 
~ . 0  G ~.UEG 

a a 

(diam U)~: ~ U = Z ,  diam U = e }  
UeG 

(diam U)~: ~ U~Z, diam U=e} 
UEG 

where G is a finite or countable covering of Z by balls of radius ~. 
The functions rh(Z, �9 ), _m(Z,. ) have the following property: there exist ~, g 
such that rh(Z, c~)= oo for c~ < ~ [_m(Z, ~ )=  oo for ~ < $ ]  and rh(Z, c~)= 0 
for ~ > ~ [m(Z, ~) = 0 for ~ > _~]. The quantities 

C(z)=~, C(z)=z 

are called the upper and lower box dimensions of Z, respectively (the other 
names often used are lower and upper capacities). One can prove that 

log N(Z, e) log N(Z, e) 
C(Z) = lim C(Z) = lim 

,~o log(l/e) ' - ~---5 log(l/z) 
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where N(Z, e) is the least number of balls of radius e that cover the set Z. 
It follows directly from the definitions that 

dimH Z ~< _C(Z) <~ C(Z) 

2.3. D imens ion  Character is t ics  of  a M e a s u r e  

Let # be a Borel probability measure on X. The quantities 

dim~/# = inf{dimH Z: Z ~ X, #(Z) = 1 } 

C(#) = lim inf{C(Z): Z ~ X, #( Z) >~ 1 - 5} 
, 5 ~ 0  

_C(#) = lira inf{C(Z): Z ~ X ,  #(Z)>I 1 - 5 }  
6 ~ 0  

are called, respectively, the Hausdorff measure dimension and the upper 
and lower box measure dimensions. (4) 

Given e > 0  and 5 >0 ,  we denote by N(e, 5) the least number of balls 
of radius e that are necessary to cover a set of #-measure ~> (1 - 5 ) .  The 
quantities 

- -  l o g  N(e, 6) 
CL(#) = lim lim 

6 . o ~ - o  log(l/e) 

log N(e, 5) 
_CL(#) = lira lim 

~ o ~ o  log(l/z) 

are called, respectively, the upper and lower Ledrappier measure dimen- 
sions. (4) 

Let ~ be a finite partition of X. We set 

Hu(~ ) = - ~  #(C~_)log #(Ce) 

where the sum is taken over all elements C~ of the partition 4. Then we 
define 

Hu(e) = inf {Hu(~): diam ~ ~< e} 

(here diam ~ = maxQ diam Cr Finally, we introduce quantities 

/~(#) = lim H~,(e) H~(e) 
~- 0 log(l/e) ' _R(#) = lim , +----; log0/e)  

called, respectively, the upper and lower information measure dimensions 
(or upper and lower Renyi measure dimensions). (4) 
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Given x e X, we set 

- -  log p(B(x, c5)) 
d,(x) = lira 

~ o log 6 

log p(B(x, c5)) 
_du(x) = lim 

~ o log 6 

[here B(x, 6) is the ball of radius 6 centered at x] .  They are called the 
upper and lower pointwise measure dimensions at x (or the upper and 
lower local dimensions at x). 

We formulate now the basic results establishing the connections 
between the quantities introduced above. 

Propos i t ion  1. (4) 1. dimH#-..<_CL(p)-..<C(p)-..<C(p). 

2. C_L(p) <~ CL(p) <~ C(p). 
3. g(p) < ~(p); G(x) < dAx). 

Proposition 2. (4) Assume that for p-almost every x e X  

d ~< G ( x )  ~< d~(x) ~< d (1) 

where, d, d are two constants independent of x. Then 

_d< dim H p ~< _C(p) ~< C(p) ~< d 

This statement implies the following result. 

Proposition 3. (4) Assume that for p-almost every x e X  

d,(x)  = d , (x)  = d (2) 

(d does not depend on x). Then 

dimH p = _CLOt) = CL(P) = C(p) = C(p) = _R(#) = _8(p) = d 

2.4. The relation (2) does not necessarily hold. Ledrappier and 
Misiurewicz (6) constructed an example of a smooth map on [0, 1] 
preserving an ergodic measure p for which (2) is violated on a set of points 
of a positive measure. An example of another nature was demonstrated by 
Cutler. (7) It is a one-dimensional continuous map for which d , ( x ) =  
~(x )  = d(x) for / t -a lmost  all x (p is an invariant ergodic measure), but the 
common value d(x) essentially depends on x. 

On the other hand, there is a conjecture due to Eckmann and 
Ruelle (s) claiming that if f is a diffeomorphism of class C z on a compact  
Riemannian manifold X preserving an ergodic Borel measure p with 
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nonzero Lyapunov exponents (for definition see, for example, ref. 9), then 
(2) holds for p-almost every x e X. L. S. Young proved that this is true in 
the two-dimensional case. 

P r o p o s i t i o n  4. (4) Let X be a two-dimensional, compact, smooth 
Riemannian manifold, f :  X ~  X a C2-diffeomorphism preserving a Borel 
ergodic measure/~ with nonzero Lyapunov exponents )(,1)> 0 >z,'(2). Then, 
for/~-almost every x e X, 

d.(x)= d.(x)= d=hu(f) flu1) Z 

where h.(f)  is the Kolmogorov-Sinai entropy of f .  

3. THE FIRST DEFINITION OF THE CORRELATION 
D IMENSION 

3.1. Let X be a metric space with a distance p, f : X - . X  a 
continuous map preserving a Borel normalized measure /~. Given x s X, 
define 

2 card{(/, j): p(fi(x), f f fx))  <~ r for 0 ~< i<~j< n} C(x, n, r)=-~ 

Definition 1. The quantities 

log C(x, n, r) 
fi(x) = li---m lim 

~ o  n - ~  logr  

log C(x, n, r) 
_~(x) = lim lira 

r--~O n ~ o ~  logr  

are called, respectively, the upper and lower correlation dimensions at 
point x (so far we have assumed that the limit when n ~ ao exists). 

It is easy to see that ~(x) ~< fi(x). If for/~-almost every x ~ X 

~(x) = fi(x) %f fl 

(fl does not depend on x), then it is called the correlation dimension of the 
dynamical system (X, f ,  p). Now we consider the existence of the limit 
w h e n  n --+ oo.  

T h e o r e m  1. Assume that # is an ergodic measure. There exists a 
countable set Q c ~1 such that for any r r Q and/~-almost every x e X, 

lim C(x, n, r)= f #(B(y, r)) d#(y) de=f ~p(r) 
n ~ a o  " x  
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Proof. For x~X,  A c X ,  n > 0 ,  and m~>0 denote by N ( x , A , n , m )  
the number of points f~(x), - m  <~ i<~n, for which f~ (x )~A.  We will also 
use the shorter notation N(x, A, n )=N(x ,  A, n, 0). Let us fix a countable 
number of closed balls Bk = B(yk, rk), k > 0, forming a basis of topology in 
X. Since # is ergodic, there exists a set Y c  X of full measure such that for 
any x~  Y, k > 0 ,  

N(x, Bk, n, m) 
lim - #(Bk) 

n~oo n + m  

It is easy to see that the function (p(r) is monotonic and, hence, can have 
not more than a countable set of discontinuity points. We denote this set 
by D~ and let C~=~r One can verify that for any reC~ and any 
x ~ X  

#(OB(x, r)) = 0 

Fix x ~  Y, r~C~ and choose sequences y(k 1), r(k 1) and :k"(2), r(k2) such that 
yi'-  x, ril)-  r, 42)-  r, and 

B O )  = R t  , , (I)  r(kl)) ~ B(x, r) c B(y(k z), r(k 2)) - -  B(k 2) 
k - -  ~ Y k  , 

We also can assume that #(~B~)) = 0, i =  1, 2, k~>0. This implies that 

#(B(k 1)) <<. #(B(x, r) ) <<. #(B(k 2)) 

and 

#(B(k O) ~ #(B(x, r)), i= 1, 2 

In other words, given e > 0, one can find k(~) > 0 such that for any k i> k(e), 
i =  1,2, 

I # ( B  ~  - #(O(x, r) ) ]  ~< 

Let us now fix k~> k(a). There exists - (1) n~ such that for any n t> 0, m ~> 0, and 
n + m >~n~ ~), 

#( <.. N(x, B!i_ I, n, m) ~#(B(~  + e, i= |, 2 
n -k m 

This produces, for m + n/> n~ ~), 

N(x, B(x, r )~ m )  <~ N(x, B n, m) <~ #(B(k2)) + e ~< #(B(x, r)) + 2e n~ 

n + m  n + m  

8 2 2 / 7 1 / ' 3 - 4 - 1 2  
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and 

N(x, B(x, m) >~ N(x, B n, m) >~ ,U(B~I)) _ ~ >~ gg(B(x, r)) - 2e n, 

n + rn n 

This means  that  for any x e  Y, r e C k ,  n>~O, m>>.O, and n+m>~n~ 1), 

N(x, B(x, r), n, m) 
n + m ,U(B(x, r)) <<. 2e 

Using again the fact that  ,U is ergodic, we have for ,u-almost every x e Y, 

lim N(x, Y, n) - , u ( Y )  
n ~  n 

Denote  by ~" the set of such points. We have that  ,U(~') = 1. 
Let  us fix r e  C~. Since ,U is ergodic and ,U(B(x, r)) is a bounded  Borel 

function on X, we have by virtue of the Birkhoff  ergodic theorem that  for 
,u-almost every x e X, 

l n - - 1  

lira - ~ ,U(B(Ui(x), r)) = ( ,U(B(y, r)) d,u(y) 
n ~ o ~  n i =  1 ax 

This implies the existence of a measurable  set X~ c X with ,U(X~) >/1 - e and 
a n u m b e r  rt~2)> 0 such that  for any x e X~, n ~> n~ 2), 

nl ~ & f x i)~1 ,u(B(fi(x), r ) ) -  ,u(B(y, r)) d,u(y ) <~ e 

Moreover ,  for g -a lmos t  every x e X~ 

N(x, X~, n) 
lim - ,U(X~) 

n ~ o G  n 

Deno te  by ) ~  the set of such points. O n e  can see that  #(28)  = #(X~) >~ 1 - e. 
Set now 2}1 )=  2~ c~ ~', n~ = max{n~ 1), n~2)}. We have ,U(2} 1)) ~ 1 - e. 

Let  us fix x e ~ t ) ,  n >t n~. Write  n = In~ + no with 0 ~< no < n~. Denote  
also 

Ni = N(f i (x) ,  B(f i (x) ,  r), n -- i, i), i >. 0 

One can rewrite the expression for C(x, n, r) in the form 

1 ~ N  i 
C(x, n, r) = -~ n 

t ' ~O  

= 12'Ui+ l E"Ui+ . . . .  nNi 
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where the first sum is taken over all i, 1 <~i<~ln,, with f f ( x ) ~ X  (1) the 
second one over all i, ln~ + 1 <~ i <~ n, and the third one over all other i. In 
order to estimate the second sum, let us notice that Ni ~< n. This implies 
that 

] ~ , ,  N i 

if n is big enough. Let us estimate the third sum. Taking into account that 
N j n  ~< 1, we have that 

n L  . . . .  Ni < ~ in [ n - U ( x ,  ~(1)8 , n)] ~<2e 

if n is large enough. 
Now consider the first sum. It  follows from what was said above that 

for all sufficiently big n 

1 , N i 
n Z  --~-- f x# (B(y ,  r) ) d#(y) 

1E, N, 1"-2 r)) 
- E #(B(f f(x) ,  + 
/7 F/ F / i =  1 

1 Z' I Ni r)) <<. - - -  -- #(B(f~(x), + 2e <~ 3~ 
n 1l 

The desired result follows now from the Borel-Cantelli  lemma. | 

Remark. The arguments in the proof  of Theorem 1 show that the 
exceptional set Q = D~o. 

3.2. Now we can obtain formulas for upper and lower correlation 
dimensions. We shall do this under an additional assumption. The general 
case is considered in ref. 17. 

Theorem 2. Assume that # is an ergodic Borel measure satisfying 
the following property: 

(A) The function q~(r) is continuous on an interval [0, ro], r0 > 0. 

Then for #-almost every x E X, 

fl(x) = li---m log ~x lt(B(y, r)) d#(y) 
r ~ 0 log r 

log ~x/~(B(y, r)) d#(y) 
fl(x) = lim 

r-~ o log r 
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Proof. Let us fix e > 0. Assumption (A) implies that there exists 6 > 0 
such that I~0(ra)-fp(r2)l ~<e for any r l ,  r2e [0, r0) with I r l - r21  <6.  It 
follows from Theorem 1 that given r > 0 ,  there is a set Y r c X  of full 
measure such that for any x ~ Yr the limit exists 

lim C(x, n, r) = q~(r) 
n ~ o o  

Let us fix a countable, everywhere dense set T ~  ~1 and put Y= Nr~r  Yr. 
It is easy to see that # ( Y ) = I .  Given r ~  1, one can find rl, rz6T 
satisfying r~ < r < r2, r2 - r~ ~< 6. It is easy to see that for any n > 0, 

C(x, n, r l)  ~< C(x, n, r) <~ C(x, n, r2) 

If n is big enough, we also have that 

C(x, n, r l )>~o(r l ) -e>~tp(r) -  2e 

C(x, n, r2) <~ r + ~ ~< r - 2e 

The above inequalities imply that IC(x, n, r ) -  r ~< 2e if n is sufficiently 
large, which leads to the desired result. | 

4. RUELLE'S  A P P R O A C H  

4.1. We give another definition of the correlation dimension using 
an approach suggested by D. Ruelle. 

Let X be a metric space with a distance p and # a Borel 
normalized measure on X. Consider Y = X •  with the metric /~ 
[/~((xl, Yl), (x2, Y2))= p(xl ,  x2)+  P(Yl, Y2)], the measure v = #  x #, and 
let A be the diagonal, A = {yE Y: y =  (x, x), x E X } .  Given r > 0 ,  denote by 
U(A, r) = {y  ~ Y: fi(y, A) <~ r}. 

D e f i n i t i o n  2. The quantities 

9= ~(#)= li---~ log v(U(A, r)) 
r ~ o log r 

7 = ~(#) = lira log v(U(A, r)) 
- - r ~---% log r 

are called, respectively, the upper and lower correlation dimensions of 
measure #. 

It is easy to see that _7(#) ~< 9(#). If they are equal to each other, the 
common value 7 =_7(#)= Y(#) is called the correlation dimension. 

It is not difficult to verify, using the definition of the metric •, that 

~(A, r)= U (x, B(x, r)) 
X 
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We have also that (Xl, B(xl, r))r~ (x2, B(x2, r ) ) = ~  if xl ~x2.  Since v is 
the direct product measure, the above arguments imply that 

v(U(A, r)) = fx #(B(x, r)) dt~(x) 

Now one can rewrite the definition of the correlation dimension in the 
following form: 

r~o lOg r 

y(#) = lira 1 log ~p(B(x ,  r)) dp(x) 
- r~0 log r Jx 

4.2. The definitions of the upper and lower correlation dimensions 9, 
_~ do not involve any dynamics. However, they also can be interpreted from 
a "dynamical" point of view. Namely, let f :  X ~  X be a continuous map 
preserving a Borel normalized ergodic measure #. Given x, y e X-, define 

C(x, y, n, r ) = -  
n(n - 1) 

card{(/, j): p(fi(x), fJ(y)) <~ r for 0 ~< i < j ~< n} 

Consider the space Y = X x X with the metric ~5 
[~((xl,  Yl), (x2, y2))=p(xl,  x2)+p(yl ,  Y2)], the measure v = p x # ,  and 
the Z 2 action given by 

f(i, Ax ,  y) = (fi(x), fJ(y)) 

One can verify that v is invariant and ergodic for this action. This implies 
that for v-almost every pair (x, y) there exists the limit 

lim C(x, y, n, r) = v(U(A, r)) 
t l - - *  oo  

This justifies that for v-almost every pair (x, y), 

7 = lira lim log C(x, y, n, r) 
r~o n - ~  logr  

y = lim lim log C(x, y, n, r) 
r ~ 0 n ~ o o  log r 
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Assume in addition that # satisfies condition (A). Theorem 2 implies that 
for #-almost every x ~ X, 

y(#) = g(x), y(#)  = ~(x) 

This gives another "dynamical" interpretation of ~, y and also shows that 
the two definitions of the correlation dimension coincide. 

5. L IMIT  C O R R E L A T I O N  D I M E N S I O N  

The correlation dimension defined above recently has been the subject 
of intensive study (see, for example, refs. 13, 15, and 16). Although it is con- 
venient to use it for the numerical analysis of systems, more careful 
investigation shows that it cannot be completely considered a characteristic 
of dimension type. We suggest here a modification of the definition of 
the correlation dimension. It can still serve in the numerical procedure 
described above, but it is more dimensionlike. 

Def in i t ion  3. The quantities 

= c~(#) = lim sup lira log #(B(x, r)) d#(x)/log r 
6 ~ 0  r--*0 

g = -~(#) - ~01im sup r~01i--mm log Iz #(B(x, r)) d#(x)/log r 

are called, respectively, the upper and lower limit correlation dimensions of 
measure # [here sup is taken over all sets Z c X  with #(Z)>~ 1 - 6 ;  it is 
also easy to see that the limit exists when 6 ~ 0]. 

Obviously, _~(#)~< ~(#). If they are equal to each other, the common 
value is called the limit correlation dimension. It follows directly from the 
definitions that 

-~>~7, 8~>~] 

In general, one cannot expect better relationships between these charac- 
teristics even under certain "natural" assumptions (see below and ref. 14). 
However, the limit correlation dimension has close relationships to the 
other characteristics of dimension type. We formulate this in the following 
statements; the proof will be given later (Theorems 4-6). 

Theorem 3. If # satisfies condition (2), then ~ = ~ = ~ =- d = C(#) -- 
C(#) = _CL(#) = CL(#) = _R(#) =/2(#)  = dimt/#. 
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6. G E N E R A L I Z E D  S P E C T R U M  FOR D I M E N S I O N S  

6.1, Following Hentschel and Procaccia, ~ one can generalize the 
definition of the correlation dimension by introducing a one-parameter 
family of characteristics called the generalized spectrum for dimensions. 
Namely, given q > 0, define 

1 ~ _~i log fx#(B(x, r)) q dp(x) 
~q(P) = q r ~ 0 log r 

1 lim l _ ~ l o g  fxkt(B(x' r))q d#(x) 
-?e(/~) = q r ~  log r 

If ~q(J~)=~q(]~) for any q>O, the common value ~q(/A) is called the 
generalized spectrum for dimensions. It is easy to see that _71(#) =_7(#) and 

~ 1 ( ~ )  = ~(~). 
We consider a modification of the above definition and also extend it 

to q s u c h t h a t  - l ~ < q < O .  Let 

Xo = { x c X: It( B( x, r ) )>O for any r>O }  

One can see that /~(X0)=l.  Given 6 > 0 ,  take Z c X o  such that 
#(Z)  ~> 1 - 6. For  q, - 1 ~< q < 0, q > 0, define 

1 ( .  
C~q(#) = -  lira sup lim log I kt(B(x, r)) q d#(x)/log r 

q6~o  r~O Jz 

-%(#) =-1 lim 
q 6 ~ 0  

sup r~oli--m-m log fz #(B(x, r)) q d#(x)/log r 

where the sup is taken over all sets Z cXo  with #(Z)~> 1 - 6  [for q, 
- 1  ~< q < 0, we do not exclude the case when ~q(/~) and gq(p) are infinite]. 
We have that ~q(p) ~< ~q(#) if q > 0 and gq(/t) ~> c~q(Ct) if - 1 ~< q < 0. If 
_%(p) =~q(/~) for any q>~ - 1 ,  q # 0 ,  the common value %(#) is called the 
limit generalized spectrum for dimensions. In general, gq(#))Yq(#) and 
~2q(kt)>>.~q(l~ ) if q > 0 ,  and _~q(/~)<7q(p) and gq(l~)<~fq(#) if - l ~ < q < 0 ,  
and we do not expect equalities. It is also easy to see that _~1(#)=_~, 

~l(t~) = c~. 

6.2. In ref. 10 we suggested another definition of the limit 
generalized spectrum for dimensions based on a general construction 
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essentially due to Carath6odory. We given here a brief description of this 
approach. 

Let X be a metric space and # a normalized Borel measure on X. Fix 
2, q~N, q~> -1 ,  q=~0, consider a set ZcX,  and define its (2, q)-measure 
as 

mq(Z, 2)=liminf~ Z P ( u ) q + ' ( d i a m v )  ;~: ~ U ~ Z ,  diamU<~e} 
8~0 G ~UaG UeG 

where G is a finite or countable collection of open sets of diameter ~.<8 
covering Z. The function m q ( Z , . )  has the following property: there exists 
an overchanged value 2q= 2q(Z )  such that m q ( Z ,  2 ) = 0  for 2 > 2 q  and 
m q ( Z ,  2) = oo for 2 < 2q. The value - (I/q) 2q is called the q-dimension of 
Z and is denoted by dimq Z. It is easy to see that dim_l  Z =  dimH Z. 

We now change the above definition in order to introduce the q-box 
dimension. Set 

rhq(Z, 2)=l iminaf  { ~ #(u)q+l (diam U);: ~ U~Z, diam U=@ 
8~0 UeG U~G 

( 
m q(Z,  2)=  lim inf { ~ #(u)q+l  (diam U);~: U U~ Z, diam U---8~ 

~Z~) a Iu~o  V~G ) 

Here G is a finite or countable covering of Z by balls of radius e. The 
functions rhq(Z, .) and m_q(Z, .) have the following property: there exist 
~q:  ~q(Z) and ~q : _~q(Z) such that n~q_(Z, 2 )=  0 for 2 > ~q [mq(Z, 2)~. 0 
for 2 >_2q] and rhq(Z, 2) = oo for 2 < 2q [mq(Z, 2) = 0(3 for 2 <_2q]. The 
values --(1/q)~q and -(1/q)~q are called, respectively, the upper and 
lower q-box dimensions of Z and are denoted by Cq(Z) and C q(Z). One 
can prove (1~ that 

Cq(Z) = li---~ 1 log A(Z, 8) C_q(Z) = lira 1 log A(Z, 8) 
- o q log 8 ' ~ -~ o q log 8 

where 

A(Z,e)=inf{ ~ ~(B(xi, 8)) q+l } 
B(xi, e ) e G 

and G has the above sense. It is easy to see that C I ( Z ) = C ( Z )  and 
C_,(Z) = C(Z). 
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Finally, let us introduce 

1 
dimq/~ = - - inf{2q(Z): #(Z)  = 1 } 

q 

the q-dimension of measure 

Cq(/~) = _ 1  lim inf{2q(Z): #(Z)/> 1 - 6} 
q ~ o  (11) 

the upper q-box dimension of measure 

_Cq(#) = _ l  lim inf{2q(Z): #(Z)/> 1 - 6} 
q6~o  

the lower q-box dimension of measure 

The limit generalized spectrum for dimensions arises when the above three 
characteristics coincide for all q ~> - 1 ,  q ~ 0 as their common value. The 
main result in ref. 10 claims the following. 

T h e o r e m  4. Assume that # satisfies condition (2). Then 

dimq#=C_q(#)=Cq(p)=d, q>~ -1,  q#O 

6.3. We show that the above two definitions of the generalized 
spectrum for dimensions are equivalent. 

T h e o r e m  5. If # is a Borel probability measure on a metric space 
X of a finite topological dimension, then for any q >~ 1 and Z c X, p(Z) > 0, 

Cq(Z) = 1 ~ log [ ft(B(x, r)) q d#(x)/log r 
q r~O J z  

C_q(Z) =-1 lim log [ ll(B(x, r)) q dt~(x)/log r 
q r ~ o  o z  

Proof. Given r > 0, let #r be the measure on X such that dpr(x)= 
tl(B(x, r)) q-I d#(x). Consider the space Y = X x  X with the metric # and 
the measure v =/~ x #r. Let us take any measurable set Z c X and let G be 
a covering of Z by balls B(xi, r), i =  1, 2,.... The sets {B(xi, 2r) x B(xi, 2r)} 
make up the covering of the set 

= U (x, = y 
x e Z  
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It is easy to see that 

f z # ( B ( x ,  r ) )  q d # ( x )  = f z  #(B(x,  r)) #(B(x, r)) q - I  d # ( x )  

= V ( Z r )  

<- E 
B(xi, r) e G 

-< E 
B(xi, r) ~ G 

v(B(xi, 2r) x B(xi, 2r)) 

#(B(x,, 2r)) f~ #(B(y, 2r)) q-1 d#(y) 
(x,, 2r) 

Obviously B(y, 2r) ~ B(x~, 4r) for y ~ B(x~, 2r). Therefore 

fz # ( B ( x , r ) ) q d # ( x )  ~ E #(B(x~,4r)) q+l 
B(xi, r) e G 

Since the above estimation holds for any covering G of Z by balls B(x~, r), 
x~ e Z, this implies that 

(3) fz#(B(x , r)) q d~(x) <. A(Z, 4r) 

On the other hand, let Z = X0 be a set with # ( Z ) >  0. Since X has a finite 
topological dimension, there exists a covering G of Z by balls B(xe, r/2), 
xi ~ Z, of a finite multiplicity. We have now that 

v(B(xi, r)• r))<<. Clv( ~) B(xi, r)• r)) 
B(xi,r/2) ~ G B(xi,r/2) ~ G 

C2 v ( Z 2 r )  

where C1 > 0, C2 > 0 are constants. This implies that 

( r) (( 
~ z,-~ ~ T, ~ B x~, 

B(xi,r/2 ) ~ G 
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[we use here the fact that B(xi, r/2) c B(y, r) for any y ~ B(xi, r/2)] 

~- 2 Y(B(xi,  r) X n(x i ,  r)) ~ C2v(Z2r ) 
B(xi, r/2) ~ G 

= C2 f z / t (O(x ,  2r)) q d~(x) 

The desired result follows now from (4) and (3). | 

The immediate consequences of Theorem 5 are as follows. 

(1) The upper and lower correlation dimensions satisfy 

f ( / t )  = C~(x ) ,  y( / t )  = c l ( x )  

(2) For  q ~> 1 the generalized spectrum for dimensions satisfies 

'~Tq(/t) = Cq(X), •/q(/t) = C q(X) 

(3) The upper and lower limit correlation dimensions satisfy 

a(/ t)  = Cl( / t ) ,  _~(/t) = Cl ( / t )  

(4) 

(4) 

For  q ~> 1 the limit generalized spectrum for dimensions satisfies 

~q(/t) = Cq(/t),  ~q(/t) = cq( / t )  

Now we consider the case - 1 ~< q < 1. 

T h e o r e m  6. If  # is a Borel probability measure on a metric space 
X of a finite topological dimension satisfying (1), then for any q/> - 1 ,  
q r  

Cq(/t) = ~q(/t), C q(/t) = ~_q(/t) 

Proof. By virtue of (2), one can write for / t -a lmost  every x e X and 
any small enough r that 

Cl(x) r a+ ~ ~ /t(B(x, r)) <~ C2(x) r 4 ~ 

where ~ > 0 is a given small number, and Cl(x )>  0 and C2(x)>  0 are two 
Borel functions on X. Given & > 0, one can find a set Xa with/t(Xa)/> 1 - & 
and two constants c~(6)> 0 and c2(6)> 0 such that for any x e Xa, 

Cl(X) ~ c1(~), C2(x) ~ c2(~) 

Given r > 0 ,  let /tr be the measure on Xa such that d/ t r (x)= 
/t(B(x, r)) q- ~ d/t(x) (it is easy to see that this measure is correctly defined). 
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Let now v = # x # r  be the measure  on X ~ x X c X x X .  We extend it to 
a measure  on X x X  by setting ~ ( A ) - = v ( A c ~ X a x X ) .  Given  6 > 0 ,  take 
any measurab le  set Z c X ~  with #(Z)>~ 1 - 6 .  Repeat ing a rguments  in 
T h e o r e m  5, one can show that  (3) and (4) hold. This implies the desired 
result. | 

T h e o r e m  7. Assume that  # satisfies condi t ion (2). Then 

d =  gq(/l) = ~q(Iz) = cr162 

= _Cq(#) = Cq(/Z) = dimq/~ 

= d i m a  # = _C(#) = C(#)  = _CL(/~) = CL(#) = _R(/~) =/~(/~) 

Remark.  For  q = - 1 ,  Theo rem 6 produces  another  definition of the 
lower and upper  box measure  dimensions.  Namely ,  if # satisfies condi t ion 
(1), then 

C(~)=_c 1(~) =_~_1(#) 

f z  d#(x) / ,  = - lira sup lim log - - -  log 
~ o r ~---o #(B(x,  r ) ) /  r 

C(~)  = C_  l( / t  ) ~--- ~ -  1(#) 

fz d#(x) /, = - lim sup lim log - - -  log 
~-~o ~-~o #(B(x,  r ) ) /  r 

where sup is t aken  over  all sets Z wi th / z (Z) />  1 - 3. 
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