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ABSTRACT. This chapter contains Anatole Katok’s works on Smooth Ergodic theory, which
includes his works on hyperbolicity, entropy and geodesic flows. I will provide some overview
of these works and describe some further developments which were stimulated by Katok’s
work.

1. INTRODUCTION

In this chapter the reader finds Anatole Katok’s works on Smooth Ergodic theory. They
cover a range of topics which I split in 5 groups:

(1) The Katok map, [2, 6]
(2) Bernoulli diffeomorphisms on compact manifolds, [2, 3, 5];
(3) General hyperbolic measures [4, 8];
(4) Entropy of dynamical systems [1, 7, 9, 12, 13, 15]
(5) Other topics [10, 11, 14].

Each group corresponds to a separated section in which I briefly discuss each paper in the
group. In the end of many sections I add a subsection discussing further developments in
the area stimulated and inspired by Katok’s work.

2. PRELIMINARIES ON NON-UNIFORM HYPERBOLICITY

Originated in the works of Lyapunov [34] and Perron [46, 47] the nonuniform hyperbol-
icity theory has emerged as an independent discipline in the works of Oseledets [45] and
Pesin [49]. Since then it has become one of the major parts of the general theory of dynam-
ical systems and one of the main tools in studying highly sophisticated behavior associated
with “deterministic chaos” – appearance of chaotic (turbulent-like) behavior in otherwise
purely deterministic dynamical systems. We refer the reader to the article [25] by Hassel-
blatt and Katok for a discussion on the role of nonuniform hyperbolicity theory, its relations
to and interactions with other areas of dynamics. See also the book by Barreira and Pesin
[18] for a detailed presentation of the core of the nonuniform hyperbolicity theory.

2.1. Lyapunov Exponents. Nonuniform hyperbolicity conditions can be expressed in terms
of the Lyapunov exponents. Let f : M → M be a C 1+α diffeomorphism of a smooth compact
Riemannian manifold M . Recall that given x ∈ M and a vector v ∈ Tx M , the Lyapunov expo-
nent of v at x is defined as

χ+(x, v) = limsup
t→+∞

1

t
log‖dx f t v‖.
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For a fixed x ∈ Tx M the function χ+(x, ·) attains only finitely many values χ+1 (x) < ·· · <
χ+p+(x)(x) each with multiplicity k+

i (x). The functions χ+i (x), p+(x), and k+
i (x) are invari-

ant under f and Borel measurable.

Assume now that f preserves a Borel probability measure ν on M . This measure is called
hyperbolic if for ν-a.e. x ∈ M there exists a number s = s(x), 1 ≤ s < p(x) such that

χ1(x) < ·· · <χs(x) < 0 <χs+1(x) < ·· · <χp(x)(x).

In the case ν is ergodic the values of the Lyapunov exponent are constant almost every-
where, i.e., ki (x) = kνi and χi (x) =χνi for i = 1, . . . , p(x) = pν.

2.2. Non-uniform Hyperbolicity. It follows from the Multiplicative Ergodic theorem that
there is a subsetΛ⊂ M of full measure ν consisting of points x ∈ M called Lyapunov-Perron
regular (or simply regular) for which there are numbers 0 < λ < 1 and a sufficiently small
ε> 0, as well as Borel functions C (x) > 0, K (x) > 0 such that

(NUH1) there is an invariant splitting Tx M = E s(x)⊕E u(x) into stable and unstable subspaces
which depend Borel measurably on x;

(NUH2) for v ∈ E s(x) and n > 0,

‖dx f n v‖ ≤C (x)λneεn‖v‖;

(NUH3) for v ∈ E u(x) and n > 0,

‖dx f −n v‖ ≤C (x)λneε|n|‖v‖;

(NUH4) the angle ∠(E1(x),E2(x)) ≥ K (x);
(NUH5) for n ∈Z,

C ( f n(x)) ≤C (x)eε|n|, K ( f n(x)) ≥ K (x)e−ε|n|.
The inequalities in (NUH5) mean that estimates in (NUH2), (NUH3), and (NUH4) may dete-
riorate along the trajectory with sub-exponential rate. We stress that the rates of contraction
along stable subspaces and expansion along unstable subspaces are exponential and hence,
prevail.

2.3. Regular Sets. Given `≥ 1, consider the regular (or level) setΛ` given by

Λ` =
{

x ∈Λ : C (x) ≤ `,K (x) ≥ 1

`

}
.

It is easy to see that the setsΛ` are nested and exhaustΛ that is

Λ1 ⊂Λ2 ⊂ ·· · ⊂Λ` ⊂ ·· · and
⋃
`≥1

Λ` =Λ.

2.4. Stable and Unstable Local Manifolds. The stable and unstable distributions can be
locally “integrated” into local stable and unstable manifolds V s(x) and V u(x) such that x ∈
V s/u(x), TxV s/u(x) = E s/u(x), and for y ∈V u/s(x) n ≥ 0,

d( f n(x), f n(y)) ≤ T (x)λneεnd(x, y), y ∈V s(x),

d( f −n(x), f −n(y)) ≤ T (x)λneεnd(x, y), y ∈V u(x),

where d is the Riemannian distance in M and T (x) is a Borel function satisfying

T ( f m(x)) ≤ T (x)e10ε|m|, m ∈Z.
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For every regular set Λ` unstable and stable local manifolds V u/s(x) depend continuously
on x and there is a number r` such that these manifolds can be constructed in such a way
that their “size” is r`. For x, y ∈Λ` let

(1) [x, y] =V u(x)∩V s(y).

There is δ` > 0 such that if d(x, y) < δ`, then the above intersection is transversal and con-
sists of a single point.

2.5. Smooth Invariant Measures. We now consider the particular case when f preserves
a smooth measure ν on M , i.e., a measure which is equivalent to volume. In this case it
is shown in [49] (see also [18]) that ν has a ergodic decomposition into countably many
ergodic components of positive volume. On each such a component f is Bernoulli up to a
rotation that is if f is weakly-mixing, then f is Bernoulli. Similar results hold if ν is a Sinai-
Ruelle-Bowen (SRB) measure on M , i.e., a measure whose conditional measures it generates
on unstable manifolds are absolutely continuous with respect to volume, see [30].

2.6. Pseudo-orbits and Shadowing. A sequence of points {xn}m<n<k (where −∞≤ m < k ≤
∞) in M is called ε-pseudo-orbit (where ε> 0 is a constant) if d( f (xn), xn+1) < ε for all m <
n < k. We say that an ε-pseudo-orbit {xn} is δ-shadowed by the orbit O (x) of a point x (where
δ> 0 is a constant), if d( f n(x), xn) < δ.

3. THE SLOW-DOWN PROCEDURE IN HYPERBOLIC DYNAMICS

3.1. The Katok Map. In his seminal paper [2] Katok constructed the first example of a C∞
area preserving diffeomorphism fT 2 of the 2-torus T 2 with nonzero Lyapunov exponents
almost everywhere, which is not an Anosov map. fT 2 is commonly known as the Katok map.
Starting with a hyperbolic toral automorphism A, Katok’s construction works to destroy the
uniform hyperbolic structure associated with A by slowing down trajectories in the disk D2

around the origin of small radius r .1 This means that the time, a trajectory of fT 2 stays in
D2, gets larger and larger the closer the trajectory passes by the origin, while the map is
unchanged outside D2. The slow-down procedure is controlled by a “slow-down function”
ψ which depends only on the distance from the point in D2 and is such that

(K1) ψ is of class C∞ everywhere but at the origin;
(K2) ψ(0) = 0 and ψ(u) = 1 for u ≥ r ;
(K3) ψ′(u) > 0 for 0 < u < r ;
(K4)

∫ 1
0

du
ψ(u) <∞.

It is easy to see that along the trajectories, starting on the stable and unstable separatrices
of the origin, the map fT 2 has zero Lyapunov exponents ensuring that it is not an Anosov
map. Although a “typical” trajectory may spend arbitrarily long periods of time in D2, the
average time it stays in D2 is proportional to the area of D2 and hence, is small. This is the
main reason the map fT 2 has non-zero Lyapunov exponents almost everywhere.

The Katok map fT 2 has some other interesting properties:

• it is topologically conjugate to A;2

1A version of a slow down procedure was used in an earlier work [48] to construct the first example of a
flow with non-zero Lyapunov exponents (except for the exponent in the flow direction) on a 3-manifold (see a
detailed presentation of this construction in Section 6.5 of the book [18].

2The conjugacy map while continuous is not Hölder continuous which is one the main obstacles in studying
hyperbolic and ergodic properties of the Katok map.
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• its stable and unstable distributions are continuous are integrable to continuous
stable and unstable foliations with smooth leaves;

• it lies on the boundary of Anosov diffeomorphisms in Diff1(T 2,m) (here m is area).

3.2. Smooth Realizations of Pseudo-Anosov Maps. Pseudo-Anosov maps were introduced
by Thurston in his work on classifying diffeomorphisms of compact C∞ surfaces up to iso-
topy (see [54]). According to this classification, a diffeomorphism of a surface M is isotopic
to a homeomorphism f satisfying one of the following properties:

(1) f is of finite order and is an isometry with respect to a Riemannian metric of con-
stant curvature on M ;

(2) f is a “reducible” diffeomorphism, that is, a diffeomorphism leaving invariant a
closed curve;

(3) f is a pseudo-Anosov map, i.e., it is a surface homeomorphism that is differentiable
except at most at finitely many points called singularities.

A pseudo-Anosov map has some interesting properties: 1) it minimizes both the number of
periodic points (of any given period) and the topological entropy in their isotopy classes; 2)
it preserves an absolutely continuous measure with C∞ density, which is positive except at
the singularities and it is Bernoulli with respect to this measure (see [24, Exposé 10]).

If M is a torus, then any pseudo-Anosov map is an Anosov diffeomorphism (see [24, Ex-
posé 1]). However, if M has genus greater than 1, then Gerber and Katok [6] show that a
pseudo-Anosov map cannot be conjugated to a diffeomorphism, which is smooth outside
the singularities or even outside a sufficiently small neighborhood of the singularities. Thus
in order to find smooth models of pseudo-Anosov maps one may have to apply some non-
trivial construction, which is global in nature. In [6], Gerber and Katok constructed, for
every pseudo-Anosov map f , a C∞ diffeomorphism g , which is topologically conjugate to
f through a homeomorphism which is isotopic to the identity, preserves a smooth measure
on M and is Bernoulli with respect to this measure.

Starting with a pseudo-Anosov map f they obtain the diffeomorphism g applying a slow-
down procedure similar to the one used in the construction of the Katok map of the 2-torus.
They modified and adopted this procedure to reflect on the structure of singularities of f
which do not admit a locally stable or unstable subspace forming a curve, but rather forming
the prongs that meet at the singularity. Furthermore, whereas the slow-down function used
in the construction of the Katok map depends only on the distance from a point in D2 to the
origin, the choice of slow-down function for a pseudo-Anosov homeomorphism depends
on the number of prongs of the singularity.3 This substantially affects the analysis of the
behavior of the trajectories near the singularities.

4. BERNOULLI DIFFEOMORPHISMS ON COMPACT MANIFOLDS

4.1. Construction of Bernoulli Diffeomorphisms I: The Two-dimensional Case. Katok’s
construction of the map fT 2 was motivated by the following problem:

3This number depends only on the genus of the surface.
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Problem 1. Does any smooth compact Riemannian manifold carry a C∞ volume preserv-
ing diffeomorphism which is Bernoulli?

In [2] this problem was solved by Katok in the two dimensional case. First, using results of
non-uniform hyperbolicity theory, one can show that the Katok map fT 2 is Bernoulli. Next
Katok used a well-known topological procedure that, given a surface M , allows one to first
map the torus T 2 onto the unit disk D2 and then “embed” D2 into M . He then proved that
if the slow-down function ψ is chosen in such a way that its inverse is sufficiently flat at the
origin,4 then fT 2 can be carried over to a C∞ area preserving Bernoulli diffeomorphism fD2

of the disk D2 which is identity on the boundary of the disk and is sufficiently flat near the
boundary. Finally, using these properties of fD2 Katok showed that this map can in turn be
carried over to a C∞ area preserving Bernoulli diffeomorphism fM of the surface M . This
diffeomorphism also has non-zero Lyapunov exponents almost everywhere. This gives a
solution of Problem 1 in the two-dimensional case.

4.2. Construction of Bernoulli Diffeomorphisms II: The Multi-dimensional Case. Turn-
ing to higher dimensions, in [5] Katok (jointly with Brin and Feldman) showed that any
smooth compact Riemannian manifold of dimension ≥ 5 carries a C∞ volume preserving
Bernoulli diffeomorphism.

Starting with the Katok map fD2 of the unit disk D2, one can construct a skew-product
diffeomorphism F : D2×T m−2 → D2×T m−2 (here T m−2 is the torus of dimension m−2 and
m is the dimension of the manifold M) given by F (x, y) = ( fD2 (x),h(x)(y)), where h : D2 →
T m−2 is a C∞ map, which is the identity in a small neighborhood of the boundary of D2. The
map F is a T m−2-extension of the base map fD2 which is a Bernoulli diffeomorphism. To
prove that F is Bernoulli the authors first show that it is weakly mixing and then use a result
of Rudolph that claims that a weakly mixing compact group extension over a Bernoulli shift
is metrically isomorphic to a Bernoulli shift.

To obtain the desired map on the manifold M they used the standard topological proce-
dure which allows one to first move D2 ×T m−2 to the unit ball Dm in Rm and then “embed”
Dm into M . Since the Katok map is infinitely flat near the boundary of D2 and the map h is
the identity near this boundary, one can show that the map F is carried over to a map on M
which has all the desired properties. Note that F has 2 non-zero Lyapunov exponents while
other m −2 exponents are all zero.

4.3. Smooth Non-Bernoulli K -automorphisms. Examples of measurable non-Bernoulli but
K -transformations preserving some “natural” measures have long been known in ergodic
theory (see for for example [44]), but a first smooth example of this kind was constructed
by Katok in [3]. More precisely, he presented an example of a C∞ volume preserving K -
diffeomorphism, which is not Bernoulli. The desired map f is a skew-product map F :
M×N → M×N given by F (x, y) = ( f (x), gϕ(x)(y)) where f is a volume preserving C∞ Anosov
diffeomorphism of a compact smooth manifold M , g t a volume preserving ergodic C∞ flow
on a compact smooth manifold N , and ϕ is a C∞ function on M . The map F can be ar-
ranged to be: 1) partially hyperbolic with stable and unstable foliations to be lifts of stable
and unstable foliations of f respectively, and 2) accessible with respect to these foliations.
Using ergodicity of the flow g t , one can show that F is a K -diffeomorphism. On the other

4The level of flatness depends on the surface M .
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hand, if the flow g t is chosen to be not loosely Bernoulli, then one can verify that so is the
map F . Hence, F is not Bernoulli.

4.4. Further Developments. The construction of Bernoulli diffeomorphisms described above
left two questions unanswered whether: 1) this construction can be modified to obtain a
volume preserving Bernoulli diffeomorphism with all Lyapunov exponents non-zero almost
everywhere, and 2) dimensions 3 and 4 can be covered.

In [19] Brin used a different construction than presented above to obtain a C∞ volume
preserving Bernoulli diffeomorphism. The map he constructed has all but one non-zero
Lyapunov exponents almost everywhere on any compact smooth Riemannian manifold of
dimension ≥ 5. Later Dolgopyat and Pesin [22] have shown that the map in Brin’s construc-
tion can be modified in such a way that it has all Lyapunov exponents non-zero. They also
constructed C∞ volume preserving Bernoulli diffeomorphism with n on-zero Lyapunov ex-
ponents on any manifold of dimension 3 or 4, thus obtaining a complete affirmative solu-
tion of Problem 1.

In another direction, note that a Bernoulli map is mixing, and one would naturally won-
der what is the rate of mixing, i.e., the rate of decay of correlations. Katok has long conjec-
tured that the map fT 2 described above has polynomial decay of correlations (with respect
to area). This was proved in a recent paper [51], in which following footsteps of Katok’s
construction, the authors showed that any surface M admits an area preserving diffeomor-
phism fM with non-zero Lyapunov exponents almost everywhere, which is Bernoulli and
has polynomial decay of correlations 5 (it also satisfies the Central Limit Theorem and has
Large Deviations). It should be mentioned that while Katok’s construction requires that the
inverse of the slow-down function ψ should be arbitrary flat at zero to ensure that the map
fT 2 is of class C∞, to achieve polynomial decay of correlations, one needs to choose the
function ψ to be polynomial at zero.6 As a result the map fM turns out to be only of class
C 1+β for some β = β(α) > 0. It is still an open problem to construct a C∞ area preserving
Bernoulli diffeomorphism fM on a given surface M which has non-zero Lyapunov expo-
nents almost everywhere and has polynomial decay of correlations.

5. GENERAL HYPERBOLIC MEASURES

Here we discuss Katok’s work on topological properties of general hyperbolic measures,
which are subject of his seminal paper [4] and his talk at ICM [8].7 In the paper he discussed
two topics: 1) existence and asymptotic growth of the number of periodic hyperbolic points;
and 2) approximations of hyperbolic measures by horseshoe-type hyperbolic invariant sets.
At his ICM talk he stated more results on periodic hyperbolic points as well as briefly men-
tioned some other topological properties of hyperbolic measures.

5More precisely, fM admits a polynomial upper bound for the class of Hölder continuous observables and
a polynomial lower bound for the class of Hölder continuous observables each of which vanishes in a small
neighborhood of a compact set on which the map is identity.

6This means that the requirement (K4) above on the function ψ should be replaced with the requirement
that ψ(u) = (u/r )α for 0 ≤ u ≤ r

2 .
7I would like also to mention Katok’s other paper [27] which contains a brief overview of some results in

non-uniform hyperbolicity.
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5.1. Hyperbolic Periodic Points and Approximations by Horseshoes I. Let f be a C 1+α
diffeomorphism of a compact smooth manifold M preserving a hyperbolic Borel measure
ν. Denote by Per( f ) the set of all periodic points of f , by Pn( f ) the set of periodic points of
period n,8 and by P h

n ( f ) the set of hyperbolic periodic points of period n. The main result of
[4] claims that

(2) p( f ) := limsup
n→∞

logPn( f )

n
≥ limsup

n→∞
logP h

n ( f )

n
≥ hν( f ),

where hν( f ) is the entropy of ν.
In the two dimensional case any measure of positive entropy must be hyperbolic and (2)

yields

(3) p( f ) ≥ h( f ),

where h( f ) is the topological entropy of f . This result is remarkable, since it bounds below
the asymptotic growth rate of the number of periodic points of f of period n by its topologi-
cal entropy without explicitly using any invariant measure. It also gives negative answer to a
question by Herman on whether positive topological entropy is compatible with minimality
or unique ergodicity of f .

The proof of (2) is an extension to the non-uniformly hyperbolic case of an argument
(due to Anosov, see [16]), which allows one to construct periodic points for Anosov diffeo-
morphisms. To outline this argument recall that a point x is said to be recurrent if for every
δ> 0, there is n > 0 such that d( f n(x), x) < δ.

Closing Argument. Let x be a recurrent point for an Anosov diffeomorphism f . Then for
every ε> 0 there is a periodic point p such that d(x, p) < ε.

To see this fix ε> 0, δ> 0 and choose n > 0 such that d( f n(x), x) < δ. If δ is small enough,
z = [ f n(x), x] is well defined (see (1)) and d(z, x) < C1δ for some universal constant C1 > 0.
The point f n(z) lies on the stable manifold through f n(x) and d( f n(x), f n(z)) < λnd(x, z)
for some 0 < λ < 1. Consider the point z(s)

1 = [ f n(z), x] ∈ V s(x). Applying this argument

repeatedly, we obtain a sequence of points z(s)
m ∈ V s(x) such that z(s)

m = [ f n(z(s)
m−1), x]. One

can show that this sequence converges to a point z(s)
0 ∈ V s(x) and that d(x, z(s)

0 ) < C2δ for
some universal constant C2 > 0.

Now let us consider the point f −n(z). It lies on the unstable manifold through x and
d(x, f −n(z)) < λnd( f n(x), z). Let z(u)

1 = [ f −n(z), x] ∈ V u(x). Applying the above argument

repeatedly, we obtain a sequence of points z(u)
m ∈V u(x) such that z(u)

m = [ f −n(z(u)
m−1), x]. One

can show that this sequence converges to a point z(u)
0 ∈ V u(x) and that d(x, z(u)

0 ) < C3δ for

some universal constant C3 > 0. It is easy to see that the point p = [z(u)
0 , z(s)

0 ] is periodic of
period n, and, if δ is chosen sufficiently small, d(x, p) < ε.

This simple argument is a driving idea behind proofs of many sophisticated results on
topological properties of uniformly hyperbolic diffeomorphisms.

8That is the set of fixed points of f n .
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Moving to the non-uniformly hyperbolic case consider a regular set Λ` of positive ν-
measure. Then almost every point x ∈ Λ` is recurrent, so one can try to use the above ar-
gument to obtain a periodic point p near x. However, in doing so one faces the following
obstacle: the point z(s)

m for some m, while in Λ, may no longer lie in Λ`, and hence, its local
unstable manifold may not a priori, be long enough to intersect the stable manifold through
x. While this obstacle may seem technical, it reveals a principle difference between uniform
and non-uniform types of hyperbolicity and overcoming this obstacle requires some special
and sophisticated argument which is one of the main achievements of Katok’s work [4] (see
the Main Lemma).

Furthermore, Katok shows that periodic points are dense in Λ` and hence, there are at
least two distinct periodic points p and q which are homoclinically related.9 By the clas-
sical Smale-Birkhoff theorem, there is a horseshoe that contains both p and q , i.e., a set A
satisfying

(H1) A is a locally maximal hyperbolic set which is totally disconnected;
(H2) f |A is topologically transitive and is topologically conjugate to a subshift of finite

type.

5.2. Hyperbolic Periodic Points and Approximations by Horseshoes II. In [7] Katok states
a stronger than (2) property of periodic points which describes their distribution in suppν.
Namely, he shows that for any δ > 0, any x ∈ suppν, any neighborhoods V of x and W
of suppν, and any collection of continuous functions ϕ1, . . . ,ϕm there exists a hyperbolic
periodic point z ∈V of period n such that the orbit of z is contained in W and for i = 1, . . . ,m,∣∣∣ 1

n

n−1∑
k=1

ϕi ( f k (z))−
∫

M
ϕi dν

∣∣∣< δ.

Furthermore, Katok claims that the horseshoes that he constructed in [4] have the following
“approximation” property:

(H3) for every ε> 0, the horseshoe A = Aε can be constructed in such a way that h( f |A) >
hν( f )−ε.

5.3. Entropy and growth of expanding periodic points for one-dimensional maps, [42].
This paper (written jointly with Mezhirov) was inspired by the seminal work of Misiurewicz
and Szlenk [41, 42] where they proved that for any continuous, piecewise monotone map f
of the circle or an interval into itself one has h( f ) ≤ p( f ) (recall that h( f ) is the topological
entropy of f and p( f ) is the exponential growth rate of the number of periodic orbits, see
(2); compare to (3) which holds in the two-dimensional case).

In their paper Katok and Mezhirov showed that for smooth or piecewise smooth maps
a large number of periodic orbits are expanding with exponent at least almost as large as
entropy.

(1) Let f : S1 → S1 be a monotone C 1 map without critical points and |deg f | = k for k > 1
(and hence, h( f ) = logk). Then for each ε> 0 and any large enough n one can find at
least (1−ε)kn periodic points xn

i of period n for which

|( f n)′(xn
i )| ≥ (k −ε)n.

9This means that there are numbers k > 0 and ` > 0 such that the stable manifold of f k (p) intersects the
unstable manifold of f `(q) transversally.
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(2) Let f be a continuous, piecewise C 1 map of S1 or I into itself with finitely many critical
points and with entropy h( f ) = h > 0. Then for each ε> 0 one can find a subsequence
{nk } such that for each nk the function f has at least e(h−ε)nk periodic points xnk

i of
period nk for which

|( f nk )′(xnk

i )| > e(h−ε)nk .

After stating their results the authors made a crucial comment on the low regularity of the
map f in the above results (I omitted references to the papers cited in this quote):

“Our results can be viewed as a simple model case for the still unknown C 1 versions of
results connecting entropy and the growth of periodic orbits for C 1+ε diffeomorphisms in di-
mension two and flows in dimension three, specifically. For the proofs of those results the C 1+ε
assumption is crucial since they heavily rely on Pesin theory essential elements of which fail
in the C 1 case.”

Indeed, for C 1+ε maps the first result becomes a simpler version of the results for the
two-dimensional invertible case and the proof uses existence of orbits, which are Lyapunov-
Perron regular with respect to a measure with high metric entropy, and having the property
that they return very close to the initial condition; then one applies a non-uniform version
of the Anosov closing lemma for hyperbolic systems.

To deal with the case when the map f is only of class C 1 the authors used Markov approx-
imations for orbits which avoid a neighborhood of the critical set.

5.4. Further Developments. About the time of his ICM talk, Katok drafted proofs of the re-
sults on topological properties of hyperbolic measures, which he discussed at the talk. At
some point these proofs were included in a joint work of Katok and Mendoza published as a
supplement to the book [28].10 This supplement contains a description of some core results
in nonuniform hyperbolicity including some topological properties of hyperbolic measures.
To state them consider a C 1+α diffeomorphism f of a compact smooth Riemannian mani-
fold M preserving a Borel measure ν.

(1) Oseledets-Pesin ε-reduction theorem: Let A : X → GL(n,R) be a measurable cocycle
over a measure preserving transformation of the Lebesgue space (X ,ν). If log+ ‖A±1(x)‖ ∈
L1(X ,ν), then there exist a measurable f -invariant function k(x) and measurable
functions χi (x) and `i (x), i = 1, . . . ,k(x) with

∑
`i (x) = n such that for every ε > 0

there is a tempered map Cε : X → GL(n,R)11 satisfying: for almost every x ∈ X the
cocycle

Aε(x) =C−1
ε ( f (x))A(x)Cε(x)

is block-diagonal with diagonal blocks Ai
ε(x) to be `i (x)×`i (x)-matrix for which

eχi (x)−ε ≤ ‖Ai
ε(x)−1‖−1, ‖Ai

ε(x)‖ ≤ eχi (x)+ε.

(2) Closing Lemma: For every d > 0 and `> 1 there exists β=β(d ,`) such that if x ∈Λ`,
f n(x) ∈ Λ` for some n > 0 and d(x, f n(x)) < β, then there is a hyperbolic periodic
point p of period n such that d(x, z) < d and

d( f i (x)), f i (p)) <C d max
1≤i≤n

{eε(i−n),eεi }.

10More details of this story can be found in the article by Boris Hasselblatt in ”Anatole Katok’s works” in these
Works.

11This means that limn→±∞ 1
n ‖Cε(x)‖ = 0 for almost every x ∈ X .
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(3) Shadowing Lemma: For every sufficiently small β> 0 and any `≥ 1, there exists ε=
ε(β,`) such that given an ε-pseudo-orbit {xn}m<n<k located in a sufficiently small
neighborhood ofΛ`, there exists a point y ∈ M such that its orbit β-shadows {xn}.

(4) The Livshitz Theorem: Let ϕ be a Hölder continuous function on M such that for
each periodic point p with f m(p) = p, we have that

m−1∑
i=0

ϕ( f i (p) = 0.

Then there exists a Borel measurable function ψ such that for almost every x,

ϕ(x) =ψ( f (x))−ψ(x).

Some stronger versions of the shadowing property were established by Hirayama [26] and,
in the two-dimensional case, by Climenhaga, Luzzatto, and Pesin [20]. These versions pro-
vide a powerful tool in studying some intricate problems in non-uniform hyperbolicity, e.g.,
constructions of Sinai-Ruelle-Bowen measure or more general equilibrium measures.

On another direction, Avila, Crovisier, and Wilkinson [17] substantially generalized Ka-
tok’s construction of approximating horseshoes (see Statements (H1)-(H3)) by proving the
following result:

Let f be a C r diffeomorphism preserving an ergodic hyperbolic probability measure µ.
Then given δ > 0 and a neighborhood V of µ in the space of f -invariant probability mea-
sures on M (endowed with the weak∗-topology), there exists a horseshoe A ⊂ M such that

(1) A is δ-close to the support of µ in the Hausdorff distance;
(2) htop(A, f ) > h(µ, f )−δ;
(3) if χ1 > ·· ·χ` are the distinct Lyapunov exponents of µ, with multiplicities n1, . . . ,n`,

then there exists a dominated splitting TA M = E1 ⊕·· ·⊕E`, with dim(Ei ) = ni ;
(4) there exists n ≥ 1 such that for each i = 1, . . . ,`, each x ∈ A and each unit vector v ∈

Ei (x),

exp((χi −δ)n) ≤ ‖D f n(v)‖ ≤ exp((χi +δ)n).

A similar statement for multidimensional expanding maps was proved by Cao, Pesin, and
Zhao [21], who used a different approach in which the horseshoe A was constructed via a
Cantor-like procedure.

6. ENTROPY OF DYNAMICAL SYSTEMS

In this section we discuss some of Katok’s work on topological and metric entropies of
smooth dynamical systems.

6.1. Shub’s Entropy Conjecture. In the paper [1] Katok discusses the entropy conjecture
proposed by Shub in [53] as well as several results related to this conjecture which had been
obtained during the short period of 3 years since publication of Shub’s paper in 1974 and
Katok’s paper in 1977. This is a survey-like paper on a topic that attracted many experts in
topology and dynamics but, in addition to known results, this paper contains many inter-
esting observations as well as some new results.

Let f be a smooth map of a compact smooth manifold M of dimension p. Shub conjec-
tured that the topological entropy of h( f ) ≥ log s( f∗) where f∗ is the linear map induced by
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f on the total homology group of M

H∗(M ,R) =
p⊕

i=0
Hi (M ,R)

and s( f∗) is the spectral radius of f∗. Observe that s( f∗) = max1≤i≤p s( f∗i ), where f∗i =
f∗|Hi (M ,R) and hence, the conjecture is equivalent to the systems of inequalities h( f ) ≥
log s( f∗i ) for i = 1, . . . , p.

Katok proceeds by considering first some general results about Shub’s entropy conjec-
ture. For example, he gives a relatively simple proof of Manning’s result [35], which claims
that h( f ) ≥ s( f∗1), and discusses its various versions. He also proves the result of Misi-
urewicz and Przytycki [40] that for a C 1 map of a smooth compact manifold one has h( f ) ≥
log |deg f |. Katok then goes on to consider some particular cases where the conjecture holds.
For example, manifolds of dimension ≤ 3, n-dimensional spheres and tori. Finally, he dis-
cusses the conjecture for maps which are structurally stable.

6.2. Entropy and Closed Geodesics, [7]. In this paper Katok studied asymptotic growth of
closed geodesies for various Riemannian metrics on a compact smooth manifold M , which
carries a metric of negative sectional curvature. His two main results are as follows.

Let σ be a Riemannian metric on M . Given T > 0, let Pσ(T ) be the number of closed
geodesics γ of length lσ(γ) ≤ T and let P s

σ(T ) be the number of non-zero free homotopy
classes Γ of closed curves on M whose length Lσ(Γ) ≤ T .12 We set

Pσ = liminf
T→∞

logPσ(T )

T
, P s

σ = liminf
T→∞

logP s
σ(T )

T
.

We denote by g t
σ the geodesic flow that acts on the unit tangent bundle SσM and preserves

the Liouville measure λσ on SσM .
Katok proved the following main result:
Let σ1 be a Riemannian metric of negative curvature. Then for every Riemannian metric

σ2 on M one has
P s
σ2

≥ ([σ1;σ2])−1hλσ1
(g t
σ1

),

where hλσ(g t
σ) is the metric entropy of the geodesic flow in the Riemannian metric σ and

[σ1;σ2] =
∫

Sσ1 M
‖v‖σ2 dλσ1 .

Katok also proved a version of this result for a more general class of Riemannian metrics
without focal points. His approach is based on both variational and dynamical descriptions
of geodesics. From the variational point of view geodesics are the shortest (locally or glob-
ally) curves in various classes of curves on the manifold. It is considered one of the main
methods in differential geometry. From the dynamical point of view the geodesies are con-
sidered as orbits of the geodesic flow and the geometric characteristics of the metric are
reflected in asymptotic properties of this flow; e.g. the negativity of the curvature leads to
exponential divergence of the orbits. It is considered one of the main methods in modern
theory of smooth dynamical systems.

As corollaries of the above result Katok obtained various inequalities between topologi-
cal and metric entropies of the geodesic flows for different metrics on M . For example, he
showed that

12Recall that Lσ(Γ) = infα∈Γ lσ(α).
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(1) for any two Riemannian metrics σ1 and σ2 on M

hσ2 (g t
σ2

) ≥ [σ1;σ2]−1hσ1 (g t
σ1

);

(2) for any Riemannian metric σ on M of non-constant negative curvature

(4) hλσ(g t
σ) <

(4π(g −1)

Vσ

) 1
2 < hσ(g t

σ),

where Vσ is the total volume (area if dim M = 2) of M .

The above results have some special corollaries for Riemannian metrics, which are confor-
mally equivalent to a metric of constant negative curvature. In this case one can show for
example, that every metric of non-constant curvature has strictly more close geodesies of
length at most T for sufficiently large T than any metric of constant curvature of the same
total area; in addition, the common value of topological and metric entropies for metrics
of constant negative curvature with the fixed area separates the values of two entropies for
other metrics with the same area. This applies to the particular case of surfaces of negative
Euler characteristics for which every Riemannian metric is conformally equivalent to a met-
ric of constant negative curvature due to the classical regularization theorem. Moreover, in
this case one can show that for every Riemannian metric σ of negative Euler characteristic E

Pσ ≥ hσ(g t
σ) ≥ P s

σ ≥ (−2πE/Vσ)
1
2

and the last inequality is strict for every metric of non-constant curvature. This result was
the first step to what is now know as the Katok Entropy-Rigidity Conjecture, see articles
by Boris Hasselblatt ”Anatole Katok’s works” and by Ralf Spatzier “Anatole Katok’s work on
cohomology and geometric rigidity” in these Works.

Many years later Katok and Erchenko [23]13 showed that the relation (4) between the
topological and metric entropies of geodesic flows gives the only possible restrictions on
these invariants. More precisely, they proved the following result:

Let M be a closed orientable surface of genus g ≥ 2 and V > 0 be a number. Then for any

numbers a,b such that a >
(

4π(g−1)
Vσ

) 1
2 > b > 0, there exists a smooth metric σ of negative

curvature such that a = hσ(g t
σ), b = hλσ(g t

σ) and Vσ =V .

6.3. Differentiability and Analyticity of Topological Entropy. The study of the dependence
of topological entropy of maps and flows under small perturbations has a long history. One
of the first results in this direction was obtained by Misiurewicz [37] who for every n ≥ 4 con-
structed an example of C∞ diffeomorphism ϕ of an n-dimensional manifold M for which
the topological entropy is not continuous at ϕ in the C∞ topology. More precisely, this
means that the function htop : Diff∞(M) → R (given by ϕ→ htop(ϕ)) is not continuous at
ϕ. On the other hand, by Yomdin [55, 56] and Newhouse [43], the function htop is upper-
semi-continuous on every manifold of dimension≥ 3 and by Katok [4, 8, 28], it is continuous
in dimension 2.

For flows Misiurewicz [38] showed that for general C k , flows, k <∞, on manifold of di-
mension n ≥ 3 htop need not be continuous.

13Katok passed away while the paper was in its final stage of preparation.
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Moving to a particular but important case of Anosov systems we first note that structural
stability of Anosov diffeomorphisms implies that the function htop is locally constant and
structural stability of Anosov flows implies that this function is continuous.

In the paper [12] (written jointly with Knieper, Pollicott and Weiss), Katok studied the
dependence of the topological entropy of an Anosov flow on small perturbations of the flow.
More precisely, letϕt be a C k+1 Anosov flow for 1 ≤ k ≤ω of a compact smooth Riemannian
manifold and let {ϕt

λ
}, −ε ≤ λ ≤ ε be a one-parameter family of perturbations of ϕt = ϕt

0 (ε
is assumed to be sufficiently small). The authors proved that

(1) λ→ htop(ϕ1
λ

) is a C k function of λ.

This result is a stronger version of results by Ruelle in [52].
In the particular case k = 1 Claim (1) yields C 1 dependence of topological entropy on

C 2 perturbations of a C 1 Anosov diffeomorphism. In [13] Katok (jointly with Knieper and
Weiss) improved this result by allowing perturbations of class C 1. Moreover, in this setting
they obtained a formula for the derivative of the topological entropy:

(2) the following formula holds

(5)
∂

∂λ

∣∣∣
λ=λ0

h(ϕt
λ) =−h(ϕt

0)
∫

M

∂

∂λ

∣∣∣
λ=λ0

aλ(p)dµ0,

where µ0 = µ0,0 is the unique measure of maximal entropy for the Anosov flow ϕt =ϕt
0 and

aλ(p) is an infinitesimal time change. In addition the authors presented a version of formula
(5) for the particular case of geodesic flows on compact Riemannian manifolds of negative
sectional curvature.

In the paper [12] the authors also showed that a result similar to Claim (1) holds when
topological entropy is replaced with topological pressure P (ϕt , f ) where f : M → R is a po-
tential function. More precisely, let µ f ,λ be the unique equilibrium measure for f .14

(3) The map C k+1(M)× (−ε,ε) →R given by ( f ,λ) → P (ϕ1
λ

, f ) is of class C k .

(4) For a fixed ρ ∈C k+1(M) the map C k+1(M)× (−ε,ε) → R given by ( f ,λ) → ∫
M ρdµ f ,λ

is of class C k−1.
(5) For a fixed f ∈C k+1(M) the map λ→ hµ f ,λ(ϕ1

λ
) is of class C k−1.

6.4. The Brin-Katok Local Entropy Formula. In a short paper written jointly with Brin [9]
they introduced the notion of local entropy and obtained a formula that connects the local
entropy with the metric entropy of the system.

Let f be a continuous map of a compact metric space X preserving a Borel probability
non-atomic (not necessarily ergodic) measure m. Assuming that the metric entropy hm( f )
is finite, they proved that

lim
δ→0

liminf
n→∞

− logm(Bn(x,δ))

n
= lim
δ→0

limsup
n→∞

− logm(Bn(x,δ))

n
=: hm( f , x)

and that ∫
X

hm( f , x)dm = hm( f ).

Here

Bn(x,δ) := {y ∈ X : d( f k (x), f k (y) < δ,k = 0,1, . . . ,n}

14Recall that this means that P ( f ,λ) = hµ f ,λ (ϕ1
λ

)+∫
M f dµ f ,λ.
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is (n,δ)-Bowen’s ball at x and d is the metric in X . The quantity hm( f , x) is known as Brin-
Katok local entropy of f and it is clearly invariant under f .

If the measure m is ergodic, then hm( f , x) = hm( f ) and hence, one obtains another “lo-
cal” definition of metric entropy. In this ergodic case Katok [4] obtained another somewhat
simpler proof of the above result.

As Brin and Katok pointed out their work was inspired by the discussion they had with
Ledrappier and Young during the International Symposium on Dynamical Systems (Rio de
Janeiro, 1981) about relations between dimension, entropy and Lyapunov exponents. By
this time few results had been obtained in this direction: in the two dimensional case both
Manning [36] and Young [57] found some explicit relations between Hausdorff dimension,
metric entropy and Lyapunov exponents and Ledrappier [29] had some more general state-
ment (but not an explicit formula). According to Ledrappier there were some discussions
between him, Young and Mañé on this topic that led to some version of the local entropy
formula. They then asked Brin and Katok to look into this who later had come up with the
final result.

Another “dimension-like” interpretation of the local entropy formula involving a “dy-
namical” Carathéodory-like construction in geometric measure theory can be found in [50].

7. OTHER PAPERS

7.1. Lyapunov Functions and Invariant Cone Families. One of the most effective ways of
verifying the conditions of nonuniform hyperbolicity for a diffeomorphism preserving a
Borel measure is to show that the Lyapunov exponents are nonzero almost everywhere. To
establish this one do not need to know the exact values of the Lyapunov exponent which
may be difficult to compute. Here the so-called cone techniques come handy to help verify
that the exponents are nonzero.

Recall that the cone of size γ > 0 centered around Rn−k in the product space Rn = Rk ×
Rn−k is defined by

Cγ =
{
(v, w) ∈Rk ×Rn−k : ‖v‖ < γ‖w‖}∪ {(0,0)}.

Let A be a cocycle over an invertible measurable transformation f : X → X preserving a
Borel probability measure ν and let A : X → GL(n,R) be its generator. The main idea un-
derlining the cone techniques is the following. Let Y ⊂ X be an f -invariant subset. Assume
that there exist γ> 0 and a > 1 such that for every x ∈ Y :

(1) invariance : A(x)Cγ ⊂Cγ;
(2) expansion : ‖A(x)v‖ ≥ a‖v‖ for every v ∈Cγ.

It is easy to show that the Lyapunov exponent of v is positive for every x ∈ Y and v ∈Cγ \{0}.
In other words, the n −k largest values of the Lyapunov exponent are all positive.

We stress that positivity of Lyapunov exponents holds regardless of whether the set Y has
positive ν-measure or not. Wojtkowski [58] made the following crucial observation. We say
that the cone Cγ is eventually strict if there is a Borel measurable function n(x) ≥ 0 such that
for every x ∈ Y the inclusion

A (x,n(x))Cγ ⊂C (γ)

is strict. One can show that if ν is a smooth measure and Cγ is eventually strict, then Lya-
punov exponents are positive almost everywhere in Y and no estimate on the growth of
vectors inside the cone is necessary. Another version of the cone techniques based on the
notion of Lyapunov function was developed by Burns and Katok in [14].
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Consider a measurable family of cones C = {Cx : x ∈ X } in Rn and the complementary
cones

Ĉx =
(
Rn \C x

)
∪ {0}.

The rank of a cone Cx is the maximal dimension of a linear subspace L ⊂ Rn which is con-
tained in Cx . We denote it by r (Cx ) and we have that r (Cx )+ r (Ĉx ) ≤ n.

A pair of complementary cones Cx and Ĉx is called complete if r (Cx )+ r (Ĉx ) = n.
We say that the family of cones C is A -invariant if for ν-almost every x ∈ X ,

A(x)Cx ⊂C f (x) and A( f −1(x))−1Ĉx ⊂ Ĉ f −1(x).

Let now Q : Rn → R be a continuous function that is homogeneous of degree one (i.e.,
Q(av) = aQ(v) for every v ∈Rn) and takes both positive and negative values. The set

C u(Q) := {0}∪Q−1(0,+∞) ⊂Rn

is called the positive cone of Q and the set

C s(Q) := {0}∪Q−1(−∞,0) ⊂Rn

is called the negative cone of Q. The rank of C u(Q) (respectively, C s(Q)) is called the posi-
tive (respectively, negative) rank of Q and is denoted by r u(Q) (respectively, r s(Q)). Clearly,
r u(Q)+ r s(Q) ≤ n and since Q takes both positive and negative values, we have r u(Q) ≥ 1
and r s(Q) ≥ 1. The function Q is said to be complete if the cones C u(Q) and C s(Q) form a
complete pair of complimentary cones, i.e., if

r u(Q)+ r s(Q) = n.

A measurable function Q : X ×Rn → R is said to be a Lyapunov function for the cocycle A

(with respect to ν) if there exist positive integers r u and r s such that for ν-almost every
x ∈ X :

(1) the function Qx =Q(x, ·) is continuous, homogeneous of degree one and takes both
positive and negative values;

(2) Qx is complete, r u(Qx ) = r u and r s(Qx ) = r s ;
(3) for every x ∈Rn we have Q f (x)(A(x)v) ≥Qx (v).

The numbers r u and r s are called respectively the positive and negative ranks of Q.
One can show that if Q is a Lyapunov function, then the two families of cones

C u(Qx ) = {v ∈Rn : Qx (v) > 0}∪ {0}, C s(Qx ) = {v ∈Rn : Qx (v) < 0}∪ {0}

are A -invariant.
A Lyapunov function is said to be eventually strict if for ν-almost every x ∈ X there exists

m = m(x) depending measurably on x such that for every v ∈Rn \ {0} we have

(6) Q f m (x)(A (x,m)v) >Qx (v), Q f −m (x)(A (x,−m)v) <Qx (v).

The main result in [14] claims that

Assume that

max{log‖A‖, log‖A−1‖ ∈ L1(X ,ν)

and that there exists an eventually strict Lyapunov function for the cocycle A . Then for ν-
almost every x ∈ X the cocycle has r u positive and r s negative values of the Lyapunov expo-
nent, counted with their multiplicities.
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Similar results were obtained for: 1) cocycles over measure preserving flows on Lebesgue
spaces; 2) 2m-dimensional symplectic cocycles over measure preserving transformations
and flows (and the corresponding m-dimensional symplectic cones; in this case the cocycle
has exactly m positive and m negative Lyapunov exponents); 3) C 1+ε diffeomorphisms and
flows on compact Riemannian manifolds (in this case the Lyapunov function is assumed to
be continuous).

7.2. Random Perturbations of Transformation of an Interval, [10]. In this paper written
jointly with Kifer, they introduced a class of ε-small random perturbations fε of a smooth
map f of the interval [0,1] into itself satisfying Misiurewicz’s conditions (i.e., f has non-
positive Schwarzian derivative, no sinks and trajectories of critical points of f stay away
from critical points, see [39]). The main result of the paper claims that

Under some natural assumptions on the family of random perturbations and the map f
each map fε has an invariant probability measure µε which converges as ε→ 0 to the unique
absolutely continuous invariant measure µ for f .

This can be expressed by saying that µ is stable under small random perturbations of f . A
famous example, which fits into the above setting, is a unimodal map f satisfying the Collet-
Eckmann condition. One can show that f satisfies Misiurewicz’s conditions and possesses
a unique absolutely continuous invariant measure. As a corollary of the above result one
has that this measure is stable with respect to small random perturbations of f .

7.3. Four Applications of Conformal Equivalence to Geometry and Dynamics, [11]. Let M
be a compact surface with negative Euler characteristic E and σ a C∞ Riemannian metric
on M . The conformal equivalence theorem from complex analysis claims that there exists
a scalar positive C∞ function ρσ on M , uniquely defined up to a positive constant, such
that the Riemannian metric σ′ = ρσσ has constant negative curvature. In other words the
metrics σ and σ′ are conformally equivalent.15

Given a Riemannian metric σ on M , let ϕσ = {ϕσt }t∈R be the geodesic flow associated to
σ. Let also hσ = hσ(ϕσ) be the topological entropy of the geodesic flow and hσ

λ
= hσ

λ
(ϕσ)

the metric entropy of the geodesic flow with respect to the Liouville measure λσ on the unit
tangent bundle SσM .

In this paper Katok presented the following four applications of the conformal equiva-
lence theorem:

(1) To obtain estimates for the topological and metric entropies , i.e.,

hσλ ≤ ρσ(−2πEVσ)1/2, hσ ≥ ρ−1
σ (−2πEVσ)1/2,

where Vσ is the total area of the surface M , E the energy level, and the function ρσ
comes from the conformal equivalence theorem (the first inequality requires that σ
is a metric without focal points).

(2) To show that different conformally equivalent metricsσ andσ′ of negative curvature
on M have different geodesic length spectra, i.e., Lσ(γ) 6= Lσ′(γ) for every non-zero
free homotopy class γ (here Lσ(γ) is the length of the unique closed geodesic in γ).

15The term comes from the fact that two conformally equivalent metrics determine the same complex struc-
ture on M .
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(3) To prove that for metrics of negative curvature the geodesic and harmonic measure
classes at infinity are mutually singular.

(4) To establish an upper bound for the asymptotic Cheeger isoperimetric constant

Cσ ≤ ρσ(−2πEVσ)1/2,

where Cσ is the lower limit of the ratios of the length of a rectifiable closed Jordan
curve on the universal bundle M̃ of M to the area bounded by the curve as the area
goes to infinity.
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