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Abstract.  We study the integrability of intermediate distributions for Anosov
diffeomorphisms and provide an example of a C*°-Anosov diffeomorphism on a three-
dimensional torus whose intermediate stable foliation has leaves that admit only a finite
number of derivatives. We also show that this phenomenon is quite abundant. In
dimension four or higher this can happen even if the Lyapunov exponents at periodic
orbits are constant.

1. Introduction

Let F be a C’-diffeomorphism of a compact smooth Riemannian manifold M, r =
1,2,---,00 and I'%(T M) the space of C°-vector fields on M. The map F induces an
invertible bounded linear operator on I'°(T M) by:

F.o(x) = DFv(F_l(x)), v(x) € FO(TM), xEM.

The Mather spectrum o (F) is defined to be the spectrum of the complexification of
F,. In [M], Mather showed that F is an Anosov system, if and only if 1 ¢ ¢(F), and
moreover, if the nonperiodic points of F are dense in M, then o (F) consists of a finite
number of annuli in the complex plane C. That is, there exist A;, i, i = 1,---, p,
O<h=pr <A <py < <ip <, p=<dim(M) such that

14
o(F)=|JlzeC: x <zl < .
i=1
1 Preprint available from the mathematical physics preprint archive. Send e-mail to mp_arc@math.utexas.edu
for details.
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The set {z € C: X <|z| < w;} is called a [A;, u;]-ring.

The decomposition of the spectrum just mentioned induces a splitting of the tangent
bundle TM into p subbundles {EV),i = 1,---,p, TM = @, EY called an
exponential splitting. The distribution E(Fi) is said to be a [A;, u;]-distribution and it
is invariant under DF. These distributions depend Holder continuously on the base
point and are not smooth in general.

For every sufficiently small number § > 0, one can choose a smooth Riemannian
metric, known as a Lyapunov metric, such that TM = @!_, E j;') is an almost orthogonal
splitting with respect to this metric. Moreover for any vector v(x) € Eg)(x), we have

i =) v)I < [Fv()l < (i +8llv(x)].

From now on, we fix a Lyapunov metric adequate for our map. It induces the metric
in Diff' (M) which we denote by dct.

Let W be a partition of M. It is called a continuous C"—foliation if the following
conditions hold:

(1) for any x € M, the element W(x) of W containing x is a k-dimensional C’-
injectively immersed and connected submanifold (called a C"-leaf of W passing
through x);

(2) there is an admissible atlas of C° charts of M: ¢ : D x D" * — M such that
d(DF x {y}) C W(¢(0, y)) where D* denotes the unit ball in R¥;

(3) the function ¢ (x, y) is C"-differentiable over x for any y and is continuous over y
in C"-topology.

We can consider a distribution as an infinitesimal version of a foliation in which the
subspaces of the tangent space play the role of infinitesimal leaves. Given a foliation,
we can obtain a distribution by associating with every point the tangent space to the
leaf passing through it. Not all distributions arise in this way and the problem of
finding sufficient conditions, which guarantee a given distribution to be associated with
a foliation, is usually called the problem of integrability of the distribution. For one-
dimensional distributions this amounts to the theorem of existence and uniqueness of
ordinary differential equations and, for multi-dimensional distributions, a classic solution
is given by the Frobenius theorem. These results involve hypothesis on differentiability
and cannot be applied to the distributions invariant under Anosov systems since the
distributions are, in general, only Holder continuous.

We recall the following weli-known results (cf [BP], [Fe], [HPS]). If v is a real
number satisfying yu; < v < min{Asy, 1} for some integer &, then, for each x € M,
there exists a continuous C"-foliation W} = {W/(x) : x € M} invariant under F such
that the submanifold W} (x) is characterized by

. 1
Wi (x) = {y : d(F" ), F' () > 0,n — oo}.

{W; (x)} are integral manifolds of the distribution EX’ @ --- @ EW, i,
TWix)=EX@ P - PEFx), xem.

Let i, = max{w; : u; < 1}. Then the collection of foliations {W;}’

2}, forms a filtration
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of stable foliations of M, i.e.,
Wix) C Wix) C--- C W/ (x) = W (x).

Applying these results to the inverse map F~! one can obtain analogous results for the

distributions E® @@ --- @ E where k is such that A > 1.

The following questions about the integrability and smoothness of a single

[A;, u;]-distribution E @ are of a general interest:

) Is E(F') mtegrable7 If it is, how smooth are its integral manifolds?

(2) Assume EV F 1S integrable for a diffeomorphism F and G zs C'-close to F. Does
G have a corresponding exponential splitting TM = D, Eg) which is also
integrable? If it does, how smooth are its integral manifolds ?

There are few related results in the literature. The basic properties of the splittings
are considered in the following two statements:

THEOREM A. ([P].) For every € > 0, there exists a 8-neighborhood n of F in Diff' (M)
such that the Mather spectrum of any diffeomorphism G € n is contained in [A], pu;]-
rings with0 < X; — A, < ¢ and 0 < ;4 —ui<ei=12,.--, pand the corresponding
exponential splitting TM = @7_, Eg) satisfies o(EY, Eg)) < €, where p is a metric on
the space of subbundles induced by the Riemannian metric on M.

Remark. This result is not trivial at least for the following reason. Although the maps F
and G are close in C l-topology, the linear operators F, and G, may not be close, i.e.,
the norm
IF. = Gull = sup [DF(F'(0))w(F~' (1)) = DG(G™ () (G~ ()|
i1

may not be small. To see this we notice that in the difference just considered the vector
field v is considered at two different points and one can find a continuous vector field
of norm 1 for which the two values are completely different. Indeed, if we fix F, it is
possible to find § > 0 such that ||F, — G,|| < & implies F = G.

THEOREM B. ([BK], [BP).) Let F be a C'-diffeomorphism with an exponential splitting
T = EBI.":] Eg). Then, Eg)(x) is Holder continuous for each i.

We improve Theorem A in the following way that displays the precise relation between
€ and & and gives an upper bound for the angles between Eg) and Eg) in terms of §.

THEOREM 1. There exist positive constants L, T, and &1, depending only on F, such that
p(EW, ES) < LT ifdei(F,G) <8 < 8y

Remark. We will show that one can take 7 to be equal to the Holder exponent of the
distribution E © This implies that if E © is Lipschitz continuous then 7 = 1. One cannot
in general, obtam a better estimation in Theorem 1 than the one given by the Holder
exponent of the bundle. To see this let F be a map of a torus and G = Tp o Fo 7.4
where 7, is the translation by an amount A, then dei(F,G) = ||Flic:|A] and
EQ(x) = EQ(Tax).
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THEOREM C. ([P).) Assume that F is a C"-diffeomorphismon M and TM = @{;l El(,i) is
the exponential splitting associated with F. For a fixed k, suppose that (Ay, i) satisfies
one of the following non-resonance conditions:

D

r>ro= [11:2(] +1 and (W), (o)1 A, il =8, 1 <i <k (L)

forevery j=1,---,rg;

)

r2r1=[llzl::]+l and [Ou), (o1 Ao il =8, p2i>k (12)

forevery j=1,---,r.

Then, for every x € M, there exists a local C"-submanifold V;k)(x) tangential to E®
at x (e, TV (x) = E®(x)) and invariant under F (ie, F(V®(x)) ¢ VE(F(x))).
Moreover, for any point x the collection of local manifolds {Vék)(F TN is the only
collection that satisfies Triy VO (Fix) = EX(Fix), F(V®(Fix)) c VE(F*(x)),

and sup; <, sup; ez Id' V;k)(F"x)ll < constant.

Remark. In [P], the author claimed that the local manifold V}k) (x) can be glued together
to make up a continuous foliation with smooth enough leaves. As we will see later this
is not true in general. We also point out that the statement about uniqueness of VF(k)(x) in
Theorem C is stronger than the corresponding statement in [P] but can be easily proved
by arguments presented there.

In the case when M is an n-dimensional torus T" (or any manifold whose universal
cover is R” ) and F is a small perturbation of a linear hyperbolic automorphism A of T",
one can say more about the global integrability of intermediate distributions E g) . First of
all, the Mather spectrum for a linear automorphism of the torus, o (A) consists of a finite
number of circles with radii A;,i =1,---,p 0 <Xy <--- <A, Let TT" =P/, Eg)
be the corresponding exponential splitting. It is easy to see that each subbundle E;")
is C®-integrable and the corresponding foliation W® = {W®(x)|x € T"} is a smooth
C>-foliation of T".

A combination of Theorem A and an adaptation of the pseudo-stable and pseudo-
unstable manifold theorem (see [I]) gives us the following result about small perturbations
of A.

For a fixed k, 2 <k <n — 1, and A4 < Axy < 1, we denote

In A.k : In )\k . . s
N [ ?)‘i“] , if ln ))\\k+l is not an integer;
nAig _ R ni, - .
[ n)»k+1] 1, if aest 1S an integer.
If 1 < Ap_y < Ay, we set

InA . In A.k : : .
N = [—"—ln pv. ] , if A IS not an integer;

B [M—] 1, if B 5 an integer

Indi_y ! InAi_y ger.

THEOREM D. ([LW).) Let A be a linear automorphism of torus T". Then, for every € > 0,
there exists a neighborhood n of A in Diff'(T") such that any C’-diffeomorphism G € n
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has an exponential splitting TT" = @!_, EL. where p(EQ,E{) < ¢. Ifr > N, then
the subbundle Eg), i=1,.--, pisintegrable and the corresponding integral manifolds
form a continuous C" -foliation of T", Wg ) = {Wg )(x)lx € T"}. Moreover, for any two
numbers v_, v, with Ay < v_ < vy < g, we have y € Wg)(x) if and only if

1 = - 1 - .
lim —|G"(5) ~ G"(®)| =0 and lim —|G"(5) - G*(H)| =0 (1.3)
U+ n——00 \)_

n— 00
where” denotes objects in R" lifted from the torus.

If a continuous C'-foliation W has the property that T, W(x) = Eg) (x) for any
x € T", then one can show that the characterization (1.3) implies W = W((;i). In fact,
if W((;i) is of class CN*!, then it is as smooth as V((;i) (see Theorem C), i.e., of class C”
and V) ¢ W . In this case the local invariant manifolds V((;i ) can be glued together to
form a continuous C"-foliation.

We note that Theorem D is complementary to the well known theorem on existence of
strong stable and unstable foliations (see [BP}) and it claims the existence of foliations
for intermediate annuli of the Mather spectrum that are bounded from both sides by other
annuli. Let us also point out that Theorem D is proved on manifolds whose universal
cover is R". The foliations in Theorem D are invariant under topological coordinate
change whereas the strong stable and unstable foliations are not. The leaves of the strong
stable and unstable foliations are as smooth as the map is, whereas the smoothness of
Wg ), claimed in the Theorem D, depends on the gaps between the eigenvalues and cannot
be substantially improved.

THEOREM 2. Let A be a linear automorphism of T3 with eigenvalues A;,i = 1,2,3

0 <Aj <Az <1 < k3. Assume that InA;/1Ink, is not an integer. Let N = [In L/ In X;].

Then, in any neighborhood n of A in Diff' (T), there exists G € n such that:

(1) the map G is a C*™-diffeomorphism and topologically conjugate to A;

(2) the map G induces an exponential splitting of T*, TT? = EBL] Eg) with Eg) close
to Eg) and integrable. The integral manifold Wg)(x) passing through x is of class
CN but not CN*! for some point x € T?;

(3) the set of points S = {x : Wg) (x) & CN*')is a residual set in T

In fact, we show that diffeomorphisms with the properties stated in Theorem 2 are
dense in a small neighborhood of A.

THEOREM 3. There exists a neighborhood n of A in Diff'(T®) such that in any
neighborhood of a C*®-diffeomorphism F € n, there is a C®-diffeomorphism G satisfying
statements (1), (2) and (3) in Theorem 2.

Remark. If x € T is a periodic point for F of period p than the map DF”(x) : R* — R?
is a linear automorphism of T, T?. Its eigenvalues are called the eigenvalues at the
periodic point x. If G is a small perturbation of F then G is conjugate to F by a
homeomorphism h. The map G is said to have the same eigenvalues at periodic points if
for any F-periodic point x € T the eigenvalues at x for F are the same as the eigenvalues
at h(x) for G. From the point of view of rigidity theory it would be interesting to know
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whether one can modify the construction used in the proof of theorems 2 and 3, so that
the resulting diffeomorphism of T* would have the same eigenvalues at periodic points.

For tori of dimension 4 and higher one can construct examples where the perturbed
map G has the same eigenvalues at periodic points as F but the leaves of the appropriate
foliation Wg) are not as smooth as the map G is and, hence, satisfy statements 2 and 3
of Theorem 2. This answers a question posed to us by A. Katok.

THEOREM 4. For any n > 4 there exists a linear Anosov automorphism A of T" with the
following properties:
(1) there exists a Xj-ring where Ay < X; < | is an eigenvalue of A that satisfies the
non-resonance condition (1.1);
(2) in any C*®-neighborhood of A one can find a diffeomorphism G of T" such that
(a) for any x € T" and for any € > 0, there exists y € Vp(f)(x), d(x,y) < € such
that T,V (x) # ES (y);
(b) the maps G and A have same eigenvalues at periodic points; the Mather spectra
of G and A coincide.

Remark. We will show that the examples can be constructed in infinite-dimensional (and
infinite-codimensional) manifolds whose boundary includes the linear automorphism.

2. Proofs

Proof of Theorem 1. Let T®(TM) = H, @ H, be a splitting of I'(TM) where H,
and H, are F,-invariant. With respect to such a splitting, one can write G, in the
form G, = (Gyj), where G;; : H; — Hj,i,j = 1,2, are bounded linear operators,
Gl < A, ||G{2]H < u, and Ap < 1 for some A, . In [P], the author proved the
following result (see Lemma 1): for any € > O there is &' > 0 such that if ||G ]| < &
and ||Gy;|| < &', then there exists a splitting (T M) = H| @ H, relative to which

G 0
G, = 1 ’ ) s
( 0 GZZ

where [|G};1| < A, HG’2_21|| < p and p(H;, H) < €. In fact, H| is the graph of a
transformation A : H; — H,, where A is the unique fixed point of the map Q:

QA = G5} AG1 + G5, (—Gy + AGA).

The map Q is contracting and transforms the unit ball of the space of all bounded and
continuous maps from H; to H, into itself.

To prove Theorem 1 it suffices to show that ||Aj| < L&°. We first show that there
exist 8y and a constant L’ such that for any §' < & and ||G2|| < &, |G|l < &', we
have ||A]| < L'§'.

Since Q is a contracting map, for any map P with || P|] < 1 we have ||@"P—A]| — 0.
We consider P = 0. Then Q0 = —G2‘21621 and ||QO}] < u-8'. We wish to have
[1OQ"0|l < L’§ for some constant L’. Let us assume that this is true forn =k — 1, ie,,
[|Q*-10|| < L'8'. Then,

Q%0 < 1G5, @*F'0G 111+ 1G5 (—Gar + Q410G 1,041 0)]|
< ApL'S + u(s + L28%).
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Thus, if we choose

+1 1
a and 8= ———

1—ap 2SR

we obtain 1
HQ*0l| < AuL'8' + us' + Z‘S/ <L'§.
By induction ||Q"0|| < L8’ for all n =1, 2, .. .. Therefore,
141l < lim |1Q"0 — Al| + ll@"0]| < L'§"

Now, Theorem B implies that 8 < L” - 8% where § = de(F,G), L” > 0 is a
constant and t is the Holder exponent. Then ||A|| < L’L”8". This finishes the proof of
Theorem 1.

Proof of Theorem 2. We define the perturbation G in the form G = 7 - (A+h), where 7
is the usual covering map from R3 onto T and 4 : R* — R? is a map. We describe & in
{ég), éff), éf)}-coordinate system. Let py = (0, By, 0) € R? be given in this coordinate
system with 0 < By < 1 sufficiently small and B,(p) be an open ball centered at p € R?
of radius € > 0. We choose py close to the origin and 0 < € < 1 to be small enough such
that the sets (B (0)), Am(Be(po)), m(Be(po)), A™'m(Bc(po)), -+, A Km(Bc(po))

are all disjoint. Moreover, if € and Sy are sufficiently small, K can be arbitrarily large

and we can assume that
K
ah N @2.1)
— - > L. .
A.] 8)»1

We can also require A(Be (po)) and (B.(pp)) to be contained in the same fundamental
domain D. Define a smooth function f: D — R such that:

(1) |f(a,B,y) <68 and ||Df(a, B, ¥)|| <8, where § is a constant satisfying

)\16 1

0<$
< <max<4,4

(X2 — )»1)) ;

@ I%(“’ Bo. 0)] = % for o| < %;

(3) fla,B,y)=0 for (o, B, y) & Be(po)-
Let us set for all (o, B8, y) € R3

h(e, B,y) = (f(e, B,¥),0,0) (mod 1)

and then
G=A+h, G=mn-(A+h).

If & is sufficiently small, it is clear that G is a C*®-diffeomorphism of T*. Moreover, for

any 0 < ¢ < 1, the function tf satisfies conditions 1-3 with the constant ¢4 instead of §.

Thus, for any neighborhood 1 of A in Diff' (T?), we can choose § so small that G € 7

and the following two statements are true:

(a) the map G is an Anosov diffeomorphism, topologically conjugate to A;

(b) the map G possesses an exponential splitting of TT? = @?:1 E((;i) (we also have
the corresponding splitting of TR? : TR? = @?:1 I::g), where Eg) is G invariant
and Dn(l':“g)) = Eg) ) and the Mather spectrum of G satisfies the non-resonance
conditions (1.1) and (1.2).
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We will verify the following properties of diffeomorphisms G and G:

I G() = A®) if x & 7(Be(po));

I G"(Be(po)) = A"(Bc(po)) for any |n| < K:

u E2©0) = {te? .t e R);

IV the map G has a local smooth manifold VG )(0) at p = 0 such that Vg) 0) = {ze}, ¢ .
t € (—a, a) for some a > 0};

V  EQ(A(po) # EQ(A(po)) = (18] it € R);

VI Eg)(A"(Po)) # E‘ Y(A"(po)), forn > 1.

The properties I and II are obvious. To show III and IV, it is sufficient to observe
that p = 0 is a fixed point of A and G = A near p = 0. Property VI follows
from V. In fact, G = A near fi"(po), n>1 E"(Gz)(/i”(po)) are G-invariant and
EP (A" (po)) are A-invariant for all n € Z. Therefore, if EX (A(po)) # EP (A(po))
then EX (A" (po)) # EQ (A"(po)) forall n > 1,

Let us now prove property V. We show that if V is not true, the angle between Eg (p)
and E"f)( p) will exceed the upper bound given in Theorem 1 at some point.

To estimate the angle, we assume that

EQ (p) = t(p)e? + &2 + w(p)e) : 1 € R},

where u(p) and w(p) are two continuous functions in R* and u?(p) + w?(p) < 1. The
differential of G is given by:
g+ Y

- ad P
DG = 0 Af (3/
0 0 A3
Since E"g)(p) is invariant under DG we have
wp)\ M+ af G FG e LGN (wG-1p)
C 1 = Aa 0 : 1
w(p) 0 0 X3 w(G—1(p))
This implies that
Aau(p) = [Al + L6 (p))] WG )+ TG )+ LG @ o
_ (2.2)
raw(p) = tw (G~ (p)). 2.3)
From equation (2.3) we have that w(p) = O for all p € RY. Thus, we obtain that
EQ (p) = (t(p)éy) +&0) 11 € R,
where {u(p)| <1 and
Aau(p) = [M + —f(G (p))] w(G7'(p)) + ;(G (p)). (2.4)

Assume that V is not true, i.e., E(G)(/i(po)) = Eﬁf)(/i(po)). There exists g € B.(po)
such that G(g) = A(po) = (0, A2f,,0). We estimate |u(g)| which gives the angle
between E(G?‘)(q) and l:?f)(q). Suppose that g = (¢, 8, ¥’). Then,

G(@) = e’ + f(@, B, ¥), LB hay).
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Thus, y' = 0, ' = By and M’ + f(@,f,y) = 0. It follows that o' =
=27 f(o', B', ¥'). Therefore,

_1f@ B, v

o
[ »

é €
< — < -,
“ A T4

This implies that ¢ € B.;3(po). The assumption E"(GZ )(A~(p0)) = E"f,z)(fi(po)) means that
u(A(pg)) = 0. We have by equation (2.4) that

3 3
[M + —af (q)] u(g) + b (9)=0
04

ap
and, hence
3
@
ap
A+ 5——(4)
o
According to the definition of the function f
)
|55@) §
lu(g)l = a5 e VR IYE
it L)~ P B
o

We consider the angles between Eg) and E‘E‘Z) at points G~1(q), G2(q), ---, GX(q).
Since all these points are outside of B.(po), 3f /8« = 3f/38 = 0 at all of them. It follows

Au(G7(g)) = Mu(G 7 (g))
and

WG () = (%) u(Gi(g)), for j=0,1,---, K 1.
1

~ A K-1 - A K
w(GK(g) = (ﬁ) w(G\(g)) = (f) u(q).

= (22 EANNCE
lu(G (q))l_<x—,) Iu(q)lz(h) o 2.5

Comparing (2.5) with what we have in Remark to Theorem 1, we obtain

LY 1
—) -— < L.
Al 841

This contradicts (2.1).

We conclude the proof of Theorem 2. The first statement is obvious. Since
A"po = (0, A2B0,0) — 0 when n — 400, we have A"po € V,(0) for all sufficiently
large n. Property VI means that Eg)(fi" (po)) is never tangential to the local smooth
manifold V(0. Thus W (0) and V?(0) do not coincide near the origin. This implies
that Wg)(O) is not of class C¥*+!. This proves the second statement.

To prove the third statement let Wéz)(n(O)) be the integral manifold of Eg). It
is not of class CN*! at x = 7(0). Denote S = {x € T* : WP(x) ¢ C¥*'} and

Thus,
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I ={x € T*: the negative semi-trajectory {G™"(x) : n > 0} is dense in T?}. Since G
is conjugate to a linear Anosov diffeomorphism of T?, G is transitive. Therefore I is a
Baire set [S]. We will show that I C S. Assume that x € I but x ¢ S. Then W (x)
is of class CN*!, which implies VG(Z) (x) C Wéz)(x). Thus, by the invariance of Wéz)
and V2 we have VZ(G™(x)) € WP (G™(x)) and the size of VP (G™"(x)) grows
as n increases. Since {G"(x)} is dense in T>, there exists a subsequence n; such that
G (x) — m(0). In [P], the author showed that V((;Z) (x) depends continuously on x
in C’-topology. It follows that V((;z)(G‘"" x)) —» VG(Z) ((0)). On the other hand, since
WC(;Z) is a continuous foliation, VG(Z)(n(O)) C Wg)(rr(O)) by the uniqueness of the limit.
This implies that WS (77 (0)) is also of class CV*+! as V? (7 (0)) is. This contradicts the
assumption that x & S.

Proof of Theorem 3. We will follow the same construction used in the proof of Theorem
2. Choose §p < %61 so small that for any F e Diff!(T?) with d(F, A) < 28y the map
F is topologically conjugate to A and

Ai—o <|IDFEQ|| <pi+o

for £ € E® with |1gP]] = 1, where ¢ > 0 is small. We know that E% is integrable
and its integral manifolds form a continuous C"-foliation W}z). If it is not of class
CN*1 at least at some point x € M, then we can choose G = F. Let us assume now
that W is of class CN*1. Then it is a C®-foliation on M. In any neighborhood of
F, we will construct a smooth map G € Diff'(T?) such that G induces a splitting of
TT = @)_, E® with EY integrable but not of class CV*1,

Construction of the map G. Let z € TT? be the unique fixed point of F and Wﬁi)(z)
be the integral manifold of Eg) passing through z, i = 1,2,3. We define G by
constructing a diffeomorphism G of the universal cover R*. Let p, € R® be the
fixed point of the lift F. We will use ™ to denote the objects in the covering space.
Choose a point py € W}Tz)(pz) close to p, and ¢ > 0 small enough such that the
set F(B. (po)), Bc(po), F~1(B. po)),---, F_K(Bé(po)) are located in the interior of a
fundamental domain D and all disjoint. The constant K will be determined later. If we
choose € sufficiently small and pg close to p,, K can be taken arbitrarily large. We can
also require that B.(p,) () IEj(Be(po)) =0, j=10-1,.---,—K. When € is small,
for any p € R?, the basis {Eg)(p), é(Fz)(p), ES)(p)} can serve as a local coordinate system
in B.(p) such that B.(p) is identified with an open ball in R? centered at the origin. We
use («,(q), Bp(q), ¥p(q)) to denote a point ¢ € B.(p) in this local coordinate system. In
particular o, (p) = B,(p) = ¥, (p) = 0. Letus fix §, 0 <8 < 8, K = K(8) a positive
integer and € = €(K, §) which we will determine later. Let f: D — R be a smooth
function satisfying

(1) f=0if p ¢ B(po);

@) |fl<he; IDf]} < %6, where [; is a constant;

(3) l%fpn(p)l > % if p € Bes3(po).

Define  G(p) = F(p) if p ¢ B(po), p € D and G(p) = F(p) +
(f(@p(P), Bpo(P), ¥po(P)), 0,0) if p € Bc(po). The map G is well defined in D and
weset G=m-G .
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We claim that if €, /; and K are chosen in an appropriate way then G and G have the
following properties:

I G € Diffl(T?%), C*® and dcx(F G) < 8. Thus, G induces a splzttmg of TT? =
@, ) EY and respectively, G induces a splitting of TR? @, . EY and
DrnED(p) = EQ (n(p));

L EDF (o) £ ED(F (po))

L EZ(F"(po)) # EX (F"(po)), for all n > 1.

We only need to prove II and we will follow closely the proof of property V in Theorem 2.

Proof of Property II. Suppose that II is not true, i.e., E(Gz)(ﬁ(po)) = E(Fz)(f(po)). Let
q = (@p(9), Bpy(@): ¥py(q)) € Be(po) be a point such that G(q) = F(po). Then,
G(g) = (0,0,0) in (af(p”), ﬂﬁ(po)' yi(m)) coordinate system in B¢(F(pp)). This implies
that F(@p,(9), B (@), ¥ (@) + (f (@p,(@). Bpo (@), ¥ (@), 0,0) = 0. By assumption 2
NEF (@p,(g), Bpy (@), ¥p, (@))]] < l1€. Then there exist a constant [ depending only on the
map F such that |{(ap,(q), Bp,(q). ¥p,(@Ni] < Irlie. If 11 is chosen to be small enough

we can assume that

1
l[:l] < 5 (26)

Thus, g € B.;3(po). We estimate the angle between E(GZ)(q) and E(Fz)(q). For any p € R?
we write

&5 (p) = m(PEY (p) + u2(P)EP (p) + w3 (PIER ().
Applying DG, we have

uy(p)
DG@EZ (p)) = (DF + DhYEP (p) 82 (p) e (p)) | ua(p)
uz(p)

Let L; and L; be matrices representing the linear maps which transform the basis
{e )(F(po))} to the basis {e(')(F(q))} and {~(')(p0)} to {~(')(q)} respectively. i.e.,

@V (F(g)) éP(F (@) éP(F(g))) = @ (F(po)) 2 (F(po)) & (F(po))Lu,

@ (9) & (@) & @) = @ (po) & (po) &7 (po))La.
By virtue of the invariance of E~G under the map G, we have

11 (F(po))
C | ua(F(po))
u3(F(po))

M@ 00 oL S u1(g)

=1L 0 ra(q) 0 + 0 0 0 L, us(q)

0 0 Aslg) 0 0 0 us(q)

The Holder continuity of E~g) (x) implies

W =Lil| <I'-€" and || —Lp|| <1 €
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for some constant I’,!”. Since the equality Eg)(ﬁ(po)) = Eg)(l?(po)) implies
u1(F(po)) = 0, we have

] a a
(M(q) + lu) ui (@) + (——f— + 112) ur(q) + (—f— + 113) us(@) =0,
3 Po aﬂpo ay

P
where |l};| <[, - €* for some constant ;. By Theorem 1 we obtain

(1 = 2L87) (38 — Le™) — L™ (8 + Lo€")

lur(q)| = > Moé,

r(g) + %% +ln}

where My is a constant depending only on the diffeomorphism A and € satisfies

Le™ < 18. Q.7
Consider the angles between E(Gz) and Eg) at points F~'(q), F~2(g),---, F"X(q). By
the construction, G = F in the neighborhoods of these points. This implies DG = DF.

Using {e(F~/(q))} as a basis in B.(F~i(g)), j =0,1,2,---, K we obtain
g1€p

ui(F~7=(q)) MEI@) 0 0 ur(F(q))
CluF'g) | = 0 X (F~(q)) o uz(F~/(q))
us(F~i=1(q)) 0 0 M(F~(q)) us(F~7(q))
Therefore,
Cuy(F71(q)) = M(F~(@))-u1(F(q)), Cus(F771(q)) = Ma(F ™ (g))-u2(F(q))
Hence, . _
- M(FTi(g))  ua(F(q) ~ i
(F(q) = —=— s ~u(F77(q)),
Y= F) w )y
- (A2 —0) (1—2L8Y) -
7 ) . 7
luy (F~/(g))] = o to) AT2080 luy (F~/ 7 (@) .
We may choose ¢ and § such that
P (A, —0) (1—2L3§Y)
Tl 40) (14+2L8Y)
Then, we have ;
luy (F~5(@))| = t¥Mos . (2.8)
Comparing (2.8) with Theorem 1 we obtain
tXMos < L§°. 2.9)
Choose K such that
XMy > L8 (2.10)

This is possible because § is fixed and ¢+ > 1. Then we choose € satisfying (2.7) and
also so small such that F(B.(po)), Be(po), F ™ (Be(po)), - - -+ F X (B.(po)) are located
in the interior of a fundamental domain D and disjoint. Choose now [/, according to
(2.6). Since (2.10) contradicts (2.9), the map G constructed above with respect to these
parameters &, €, /;, and K satisfies all the desired properties. This claim is proved and
the rest of the proof of Theorem 3 is obvious and omitted.
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Proof of Theorem 4. We write T" as T? x T"*~? and denote by x;, x, the components in
the first and second factor respectively.

Consider a linear Anosov diffeomorphism in the form A(xy, x2) = (Ajx;, Ayx;) where
Ay : T?> - T? and A, : T"2 — T" 2 are linear Anosov automorphisms. Let A, u,
Al < 1 be eigenvalues of the matrix A;. Since det A; = 1, we have that & = 1/A. We
also assume that {A| < %. One can choose the matrix A, such that: 1) it has the only
simple eigenvalue y with |y| < A; 2) the numbers y and A satisfy the non-resonance

condition (1.1). Consider the map G such that
G(xy, x3) = (A1(x1), Axxy + W (x1))

where W is a function with values on the line generated by the eigenvector corresponding
to y. This map was introduced in [L1] in order to show that there is no complete set
of invariants for smooth conjugacy depending on germs around periodic orbits. In this
paper we will show that the same map provides also an example of Anosov map with
intermediate distributions not as smooth as the map and whose periodic points have the
same eigenvalues. Namely we will show that it is possible to choose W such that all the
statements of Theorem 4 are satisfied.

First we note that any G in the above form has the same eigenvalues as A has.

Observe that
A7 R (m))
0 Al
and the eigenvalues of DG"(x) are the same as those of the diagonal blocks. The
statement about the Mather spectrum follows since G can also be written as a block
upper triangular operator in a way similar to (2.11).

We now prove Theorem 4(2)(a). Assume the contrary, given two sufficiently close
points x, y, one can find a C*®-curve £,, connecting them and being contained in V(’;‘ x)
such that T,¢, , € EL(z) for all z in the curve. Since DG(x)E}(x) = EL(G(x)) we
have that T,G"({, ;) € E’C\; (2) for all z € G"(£, ). Then, by the mean value theorem, it
follows that:

DG"(x) = ( 2.11)

[G™(x) ~ G ()| < Ce(IA| — €)™ forany n >0

- - 2.12
|G"(x) — G"(¥)] =00 0. ( )

To complete the proof of Theorem 4 we will give a rather explicit description of the
set W () of points y that satisfy (2.12). We will show that for certain choice of W this
set does not contain any C®-curves, This contradiction establishes the theorem.

We observe that Wﬁ(x) = {x + t(e;, 0)|t € R} where ¢, is an eigenvector of A,
corresponding to A. If k is a conjugating homeomorphism between A and G which is
homologous to the identity, i.e.,

hoA=Goh (2.13)

then
R(W}(x)) = Wh(h(x)).

Moreover, the sequence of matrices A”(x) — A™(y) converges to zero if and only if
hoA"(x)—hoA"(y) converges to zero. By (2.13) this is equivalent to the convergence of
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G"oh(x)—G"oh(y) to zero. Using a lift to the universal cover, we have A(x) = x+h(x)
with A uniformly bounded so that |10 A" (x)—hoA™"(x)| < |A™"(x)—= A" (y)|+2||A|| 1~
Again using (2.13), we conclude that G™"(h(x)) — G™"(h(y) grows with an exponent
less than A~! if and only if A="(x) — A~"(y) does. This finishes the proof of the claim.

A simple calculation shows that if we define h(x;, x2) = (x1, x + ['(x1)) it satisfies
(2.13) if and only if the function I" satisfies

T(x) = WA (0) + y (AT (). (2.14)

In that case, using the remark before, we obtain that the manifold W(’\;(x) is given
parametrically by
(x1+1ex, x0+T(x) +ten)).

Theorem 4 will be established as soon as we construct a function ¥ such that the
function T, satisfying (2.13), is not C* in any open interval in the direction of e,. We
observe that the sum

T =y y" WA " () (2.15)
=0

defines a continuous function since W is uniformly bounded and, hence, the series
converges uniformly. The uniform convergence implies also that the function I'(x;)
solves (2.14). One can prove this by substituting (2.15) into (2.14) and rearranging the
terms in the resulting series. If we take W to be a trigonometric polynomial, the fact
that the function I" given by (2.15) is not differentiable on any interval is the celebrated
analysis of the Riemann—Weirstrass examples of nowhere differentiable functions.

In our case we can choose W in such a way that this analysis becomes completely
elementary. Since |A| < 1/4 one can easily construct two disjoint closed stripes €2, 2,
in a direction transversal (and close to perpendicular) to the vector e, in such a way
that any interval I of length V2 along the direction of e, intersects both 2, and €25 in
intervals I;, I, of length at least +/2/4. Denote by N the largest integer smaller than
Iny/InA. We can arrange that Dg'\lf(xl) =1if x; € ©; and = 0 if x; € ;. We claim
that W satisfies all the statements in Theorem 4.

Given any sequence 0 = (g, -+, 0, ---) € {1,2}N and any interval of length one
along e, we can find a point x, such that A~~'x, € Q,,. The point is unique on each
interval along ey. Since A~y < 1 the series

o0
DYT(xy) =) y"a VDI WA+ (x)))
n=0
converges uniformly and is indeed the derivative of the function I.

Let o™ be the sequence with all components equal to one except for the nth. In any
interval I of length one along the direction e,, there exists a point x; - We have that
Ix!w — xLon| < KA. On the other hand, |[DYT (x/,,) = DYT(xl..)1 = K(yA~Y)".

This shows that the function I’ cannot be C* in any interval of length 1 in the
direction e,. If T" is not C® on any interval of length 1, then I" o A; is not C* on any
interval of length A along the direction e,. Using (2.14), we obtain that I' cannot be
C® in any interval of length A along e;. We can repeat the argument to conclude that
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I" is not C* on any interval of strictly positive length in the direction e,. This shows
that Wé does not contain any C*™-curves and, hence, the leaves of Vé\ cannot contain
segments in which they are tangential to the intermediate distribution.
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