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Abstract. The paper is a non-technical survey and is aimed to
illustrate Dolgopyat’s profound contributions to smooth ergodic
theory. I will discuss some of Dolgopyat’s work on partial hyper-
bolicity and nonuniform hyperbolicity with emphasis on interac-
tion between the two – the class of dynamical systems with mixed
hyperbolicity. On the one hand, this includes uniformly partially
hyperbolic diffeomorphisms with nonzero Lyapunov exponents in
the center direction. The study of their ergodic properties has
provided an alternative approach to Pugh-Shub stable ergodicity
theory for both conservative and dissipative systems. On the other
hand, ideas of mixed hyperbolicity have been used in constructing
volume preserving diffeomorphisms with nonzero Lyapunov expo-
nents on any manifolds.

1. Introduction

Dmitry Dolgopyat, the winner of the second Brin Prize in Dynamical
System, has made many fundamental contributions to various branches
of the theory of dynamical systems. In this paper I will describe some of
Dolgopyat’s results on partial hyperbolicity and nonuniform hyperbol-
icity, which range from constructing systems with nonzero exponents
on compact smooth manifolds to studying accessibility of partially hy-
perbolic systems to constructing Sinai-Ruelle-Bowen (SRB) measures
and effecting stable ergodicity for partially hyperbolic attractors. The
common theme of the paper is a new emerging area in the theory of
dynamical systems known as mixed hyperbolicity that is an interplay of
uniform partial hyperbolicity and nonuniform complete hyperbolicity.
In this paper I briefly describe the concept of mixed hyperbolicity and
discuss some relevant results of Dolgopyat and others researches.
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2. Stable Ergodicity

The concept of stable ergodicity in the context of smooth dynamics
was introduced by Pugh and Shub (see for example, [24, 10]) and it is
a great tool in studying genericity of ergodicity for smooth dynamical
systems. Let f : M →M be a Cr diffeomorphism, r ≥ 1 of a compact
smooth connected Riemannian manifold M preserving a Borel proba-
bility measure µ. The map f is said to be stably ergodic if there exists
a neighborhood U in the space Diffk(M,µ) of all Ck diffeomorphisms,
k ≤ r, preserving the measure µ such that any Cr diffeomorphism
g ∈ U is ergodic.1

Similarly, one can define the notions of a system being stably mixing,
stably Kolmogorov, stably Bernoulli, etc.

2.1. Stable Ergodicity and Partial Hyperbolicity. Anosov diffeo-
morphisms of compact smooth manifolds preserving smooth measures
(i.e., measures that are equivalent to a volume) provide a simple exam-
ple of stably ergodic (and indeed stably Bernoulli) maps. The next class
of systems to consider is partially hyperbolic diffeomorphisms.2 Recall
that a diffeomorphism f is said to be partially hyperbolic if there is a
df -invariant decomposition of the tangent bundle:

TM = Es ⊕ Ec ⊕ Eu,

into stable Es, unstable Eu, and central Ec sub-bundles and df uni-
formly expands and contracts along these sub-bundles with rates:

λ1 < ν1 ≤ ν2 < λ2, λ1 < 1 < λ2.

More precisely, for every x ∈M and n ≥ 0 we have that

‖dfv‖ ≤ λ1‖v‖ for v ∈ Es(x), ‖dfv‖ ≥ λ2‖v‖ for v ∈ Eu(x),

ν1‖v‖ ≤ ‖dfv‖ ≤ ν2‖v‖ for v ∈ Ec(x).

The notion of partial hyperbolicity was introduced in the early 1970s
by Brin and Pesin [7] who were motivated by the study of the frame
flows. It also arose naturally from the work of Hirsch, Pugh and Shub
on normal hyperbolicity [20].

The distributions Es and Eu are (Hölder) continuous in x and are
uniquely integrable to invariant transversal continuous foliations W s

1In general the number r may be strictly bigger than k; a typical case is k = 1 <
r = 2.

2Pujals and Sambarino [24] have shown that if a diffeomorphism is stably ergodic,
it has to be hyperbolic in some weak sense; more precisely, it has to possess a
dominated splitting.
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and W u with smooth leaves.3 These foliations are called stable and
unstable respectively and they possess the absolute continuity property.
The latter means that the conditional measures generated by volume
m on local stable and unstable leaves are equivalent to the leaf volumes
ms and mu (i.e., the Riemannian volumes on leaves of the foliations
generated by the Riemannian metric).

The central distribution Ec may or may not be integrable and even
if it is integrable the central foliation W c may not be absolutely con-
tinuous.

We now turn to the study of ergodicity of partially hyperbolic sys-
tems with respect to smooth invariant measures. A crucial role here is
played by the property called accessibility. Let f be a partially hyper-
bolic diffeomorphism. We say that two points x and y are accessible
if there is a path that consists of pieces of stable and unstable mani-
folds and connects these points. Clearly, accessibility is an equivalence
relation; the equivalence classes are called the accessibility classes. Fur-
ther, we say that f is accessible if any two points are accessible (i.e.,
if there is only one accessibility class) and is essentially accessible if
the partition by accessibility classes is trivial (i.e., any measurable set,
which consists of partition elements has either zero or full measure).

To illustrate the role of accessibility we consider a simple example of
a volume-preserving partially hyperbolic map that is the direct product
of an Anosov diffeomorphism of the torus T n and the identity map of
a compact manifold N . Note that for each y ∈ N the set T n × y is an
ergodic component and at the same time an accessibility class. There-
fore, one can conjecture that essential accessibility implies ergodicity –
the statement known as the Pugh-Shub ergodicity conjecture for par-
tially hyperbolic maps.4 If this conjecture were true one could conclude
that stable essential accessibility implies stable ergodicity.

At present the conjecture has been proven under an additional tech-
nical assumption on the map known as center-bunching :

λ1 < ν1ν
−1
2 and λ2 > ν2ν

−1
1 .

3A partition W of the manifold M is called a continuous foliation with smooth
leaves if there exist δ > 0 and ` > 0 such that for each x ∈M : 1) the element W (x)
of W containing x is a smooth `-dimensional injectively immersed submanifold
called the global leaf at x; the connected component V (x) of the intersection W (x)∩
B(x, δ) that contains x is called the local leaf at x; 2) there exists a continuous
map φx : B(x, δ) → C1(D,M) (where D ⊂ R` is the unit ball) such that for every
y ∈M ∩B(x, δ) the local leaf V (y) is the image of the map φx(y) : D →M .

4The use of essential accessibility instead of accessibility is important as a par-
tially hyperbolic ergodic automorphism of the torus is essential accessible but is
not accessible.
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Observe that center-bunching is an open property in the space of C1

partially hyperbolic diffeomorphisms.

Theorem 2.1 ([11]). Let f be a C2 partially hyperbolic diffeomor-
phism preserving a smooth measure µ. If f is essentially accessible and
center-bunched, then it is ergodic. If in addition, f is stably essentially
accessible, then it is stably ergodic in Diff1(M,µ).

When the center direction is 1-dimensional the center-bunched con-
dition can be dropped leading to a complete solution of the Pugh-Shub
conjecture in this case.

Theorem 2.2 ([11], [25]). Let f be a C2 partially hyperbolic diffeomor-
phism preserving a smooth measure µ. Assume that dimEc = 1 and
that f is essentially accessible. Then f is ergodic. If in addition, f is
stably essentially accessible then it is stably ergodic in Diff1(M,µ).

2.2. Accessibility. In view of the previous results it is crucial to know
if accessibility (and stable accessibility) is generic in a sense. The first
and most general result in this direction was obtained by Dolgopyat
and Wilkinson [18].

Theorem 2.3. Let f ∈ Diffq(M) (respectively, f ∈ Diffq(M,µ)), q ≥ 1
be a partially hyperbolic diffeomorphism. Then for every neighborhood
U ⊂ Diff1(M) (respectively, U ⊂ Diff1(M,µ)) of f there is a Cq dif-
feomorphism g ∈ U which is stably accessible.

It follows that stable accessibility is dense in the C1 topology.
The proof of this result uses and substantially advances quadrilat-

eral argument introduced in [5]. It goes as follows (for simplicity we
assume that the central bundle Ec is integrable to a foliation W c).
Given a point p ∈ M , consider a 4-legged path [z0, z1, z2, z3, z4] origi-
nating at z0 = p. Connecting zi−1 with zi by a geodesic γi lying in the
corresponding stable or unstable manifold (in the induces Riemannian
metric of these manifolds), we obtain the curve Γp = ∪1≤i≤4 γi and we
parameterize it by t ∈ [0, 1] with Γp(0) = p. If the distribution Es⊕Eu

were integrable (and hence, the accessibility property would fail) the
endpoint z4 = Γp(1) would lie on the leaf of the corresponding foliation
passing through p.

Therefore, one can hope to achieve accessibility by arranging a 4-
legged path in such a way that Γp(1) ∈ W c(p) and Γp(1) 6= p. In this
case the path Γp can be homotoped through 4-legged paths originating
at p to the trivial path so that the endpoints stay in W c(p) during the
homotopy and form a continuous curve. Such a situation is usually
persistent under small perturbations of f and hence leads to stable
accessibility.
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If the center bundle is 1-dimensional, Theorem 2.3 can be strength-
ened: one can show that accessibility is an open dense property in the
space of diffeomorphisms of class Cr, r > 1, [25].5

2.3. Negative (positive) central exponents. A natural way to re-
lax the center-bunching condition is to consider its nonuniform version,
that is, to carefully analyze the action of the diffeomorphism along its
central direction and in particular, examine its Lyapunov exponents in
this direction, i.e., studying the case of mixed hyperbolicity. By doing
so it may be rewarding to consider the cases in which the Lyapunov
exponents in the central direction are: 1) all negative (or all positive),
2) all nonzero (i.e., some negative and some positive), 3) all zero, or 4)
not all nonzero (i.e. some zero). This approach was proposed by Burns,
Dolgopyat and Pesin in [8] and to some extend was inspired by Dolgo-
pyat’s work [12, 16] where he obtained some quantitative information
on the system in the non-uniformly hyperbolic and zero exponent cases.

More precisely, we say that a partially hyperbolic diffeomorphism
f preserving a smooth measure µ has negative (respectively, positive)
central exponents if there is a set A ⊂ M of positive µ-measure such
that for every x ∈ A and every v ∈ Ec(x) the Lyapunov exponent
χ(x, v) < 0 (respectively, χ(x, v) > 0).6

Theorem 2.4 (see [8]). Let f be a C2 essentially accessible diffeomor-
phism preserving a smooth measure µ. Assume that f has negative (or
positive) central exponents. Then f is ergodic.

We outline the proof of this theorem. It is based on a simple yet
crucial observation that since f has negative central exponents on the
set A, it is nonuniformly hyperbolic on this set and methods of nonuni-
form hyperbolicity theory apply. In particular, f has at most countably
many ergodic components of positive volume on A. On the other hand,
since f is uniformly partially hyperbolic, the “size” of local leaves of
the unstable foliation is uniformly bounded from below. This guaran-
tees that every ergodic component of positive volume contains an open
(mod 0) ball and hence is itself an open (mod 0) set. Hence, the set
A is open (mod 0). One can now use essential accessibility and the
fact that f preserves a smooth measure to conclude that almost every
trajectory of f is dense in A. In particular, A has full measure and f |A
is topologically transitive. This implies that f is ergodic.

5It shown in [19] that in the case of 1-dimensional center bundle accessibility is
an open property in the C2 topology.

6Clearly, we may assume without loss of generality that A is invariant.
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Surprisingly, under the same assumptions as in Theorem 2.4 one can
show that f is stably ergodic.

Theorem 2.5 (see [8]). Let f be a partially hyperbolic C2 diffeomor-
phism which is essentially accessible and preserves a smooth measure
µ. Assume that f has negative (or positive) central exponents. Then f
is stably ergodic in Diff1(M,µ).

We stress that unlike Theorem 2.1 only essential accessibility is re-
quired to guarantee stable ergodicity of f and whether, under the con-
dition of the theorem, f is actually stably essentially accessible is irrel-
evant (and is not known).

The proof of this theorem goes as follows. Consider a diffeomorphism
g which preserves µ and is δ-close to f in the C1 topology. Since f is
ergodic, there is α > 0 such that the Lyapunov exponent χ(x, v) ≤ −α
for almost every x ∈M and v ∈ Ec(x). It follows that

(2.1)

∫
M

ln ‖df |Ec
f (x)‖ dµ(x) < −α.

Since the central bundle Ec
g depends continuously on g in the C1 topol-

ogy, we can choose δ so small that∫
M

ln ‖dg|Ec
g(x)‖ dµ(x) < −α/2

and then conclude that χg(x, v) ≤ −α/2 for v ∈ Ec
g(x) and x in a set Ag

of positive measure. In other words g has negative central exponents.
Although g may not be essentially accessible, one can show that it is ε-
essentially accessible (i.e., every accessibility class enters every ε-ball)
where ε = ε(δ) → 0 as δ → 0. This and the fact that g preserves a
smooth measure implies that almost every trajectory of g is ε/2-dense
(i.e., it enters every ε/2-ball). Since the Lyapunov exponent of g|Ag
is uniformly away from zero, ideas from [1] about hyperbolic times
can be used to obtain that every ergodic component of g|Ag of positive
measure contains a ball whose radius is at least ε. Repeating the above
argument one can show that the set Ag has full measure and that g is
ergodic.

3. The Dissipative Case

In the previous section we discussed the conservative case, i.e., dif-
feomorphisms that preserve smooth measures. We now turn to the
dissipative case where one of the main problems is to construct “natu-
ral” invariant measures with “good” ergodic properties.
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Let M be a compact smooth Riemannian manifold, V ⊂ M an
open set and f : V → M a C2 diffeomorphism of V onto its image.
A compact invariant set Λ ⊂ V is said to be an attractor if there
exists an open neighborhood U ⊂ V of Λ such that f(U) ⊂ U and
Λ =

⋂
n≥0 f

n(U). The set U is called the topological basin of attraction.
An attractor Λ is called partially hyperbolic if f |Λ is partially hy-

perbolic that is the tangent bundle TΛM admits an invariant splitting
TΛM = Es ⊕ Ec ⊕ Eu into stable, center, and unstable sub-bundles.

The unstable distribution Eu is integrable to an unstable lamination
W u so that the attractor Λ is the union of the global unstable manifolds
of its points, i.e., W u(x) ⊂ Λ for every x ∈ Λ.

An f -invariant measure µ on Λ is called a u-measure if for almost
every x ∈ Λ the conditional measure µu(x) generated by µ on the
leaf W u(x) is equivalent to the leaf volume mu(x) on W u(x). In what
follows we will address the following problems related to u-measures:

(1) existence of u-measures;
(2) relations between u-measures and Sinai-Ruelle-Bowen (SRB)

measures; in particular, between the basins of u-measures and
the topological basin of attraction;

(3) (non)uniqueness of u-measures;
(4) u-measures with negative central exponents.

3.1. Existence of u-measures. Starting with the Riemannian vol-
ume m in a neighborhood U of Λ,7 consider its evolution under the
dynamics, i.e., the sequence of measures

(3.1) µn =
1

n

n−1∑
i=0

f i∗m.

Any limit measure µ of this sequence of measures is concentrated on Λ.

Theorem 3.1 ([23]). Any limit measure µ is a u-measure.

Fix x ∈ Λ and consider a local unstable leaf V u(x) through x. We
can view the leaf volume mu(x) on V u(x) as a measure on the whole
of Λ. Consider its evolution, i.e., the sequence of measures

(3.2) νn =
1

n

n−1∑
i=0

f i∗m
u(x).

Any limit measure ν of this sequence of measures is concentrated on Λ.

7One can also start with any measure which is absolutely continuous with respect
to volume.
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Theorem 3.2 ([23]). Any limit measure of the sequence (3.2) is a
u-measure.

For any ergodic u-measure ν and ν-almost every x ∈ Λ the se-
quence of measures (3.2) converges to ν. Therefore, the class of all
limit measures for sequences of type (3.2) coincides with the class of
all u-measures, while the class of limit measures for sequences of type
(3.1) may be smaller.8

3.2. The basin of the measure. Given an invariant measure µ on Λ,
define its basin B(µ) as the set of points x ∈M for which the Birkhoff
averages

Sn(ϕ)(x) =
1

n

n−1∑
k=0

ϕ(fk(x))

converge to
∫
M
ϕdµ as n→∞ for all continuous functions ϕ.

If Λ is a hyperbolic attractor then µ is an SRB measure if and only if
its basin has positive measure. If Λ is a hyperbolic attractor then by a
result in [3] any measure with basin of positive volume is a u-measure.

While any partially hyperbolic attractor has a u-measure, measures
with basins of positive volume need not exist: just consider the product
of the identity map and a diffeomorphism with a hyperbolic attractor.
That is why the following result by Dolgopyat [13] is of great impor-
tance.

Theorem 3.3. If there is a unique u-measure for f in Λ, then its basin
has full volume in the topological basin of Λ.

In the case of a hyperbolic attractor, topological transitivity of f |Λ
guarantees that there is a unique u-measure for f on Λ (which is the
unique SRB measure). In contrast, in the partially hyperbolic situa-
tion, even topological mixing may not guarantee that there is a unique
u-measure. Indeed, consider F = f1 × f2, where f1 is a topologically
transitive Anosov diffeomorphism and f2 a diffeomorphism close to the
identity. Then any measure µ = µ1 × µ2, where µ1 is the unique SRB
measure for f1 and µ2 any f2-invariant measure, is a u-measure for
F . Thus, F has a unique u-measure if and only if f2 is uniquely er-
godic. On the other hand, F is topologically mixing if and only if f2 is
topologically mixing.

8We note that in the case of (completely) hyperbolic attractors the classes of
limit measures for sequences of types (3.1) and (3.2) coincide.
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3.3. u-measures with negative central exponents. We describe
a special class of u-measures with “good” ergodic properties, which is
an extension of the class of SRB measures for hyperbolic attractors to
partially hyperbolic attractors. Consider a u-measure µ for f . We say
that f has negative central exponents if there is a subset A ⊂ Λ with
µ(A) > 0 such that the Lyapunov exponents χ(x, v) < 0 for any x ∈ A
and v ∈ Ec(x).9

The study of ergodic properties of u measures with negative central
exponents was conducted by Bonatti and Viana in [4] and indepen-
dently (in a somewhat different way) by Burns, Dolgopyat, Pesin and
Pollicott in [9]. It addresses the problems of uniqueness, ergodic prop-
erties of u-measures with negative central exponents and their relations
to SRB measures. Let us point out that the role of the accessibility
condition in the dissipative case is played by the requirement that every
global unstable manifold is dense in the attractor.10

Theorem 3.4 ([9]). Let f be a C2 diffeomorphism with a partially
hyperbolic attractor Λ. Assume that

(1) there exists a u-measure µ for f with negative central exponents;
(2) for every x ∈ Λ the global unstable manifold W u(x) is dense

in Λ.

Then the following statements hold:

(1) µ is the only u-measure for f and hence, the unique SRB mea-
sure;

(2) f has negative central exponents at µ-almost every x ∈ Λ and
the map f is ergodic and indeed, is Bernoulli;

(3) the basin of µ has full volume in the topological basin of Λ.

The proof of this theorem follows the line of arguments in the proof
of Theorem 2.4 but is appropriately modified to the dissipative case.

3.4. Constructing measures with negative central exponents.
There are partially hyperbolic attractors for which any u-measure has
zero central exponents (e.g., the product of an Anosov map and the
identity map of any manifold).

There are partially hyperbolic attractors which allow u-measures
with negative central exponents but not every global manifold W u(x)
is dense in the attractor (e.g., the product of an Anosov map and the
map of the circle leaving north and south poles fixed).

9As before, without loss of generality we may assume that A is invariant.
10In particular, density of every global unstable manifold implies that for any

u-measure µ almost every trajectory is dense in suppµ.
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Shub and Wilkinson [28] considered small perturbations F of the
direct product map F0 = f × Id, where f is a linear Anosov diffeo-
morphism of the 2-torus and the identity acts on the circle. They
constructed F in such a way that it preserves volume, has negative
central exponents on the whole of M and its central foliation is not
absolutely continuous.11 Barraveira and Bonatti [2] obtained a multi-
dimensional version of the above result by showing that if all the Lya-
punov exponents in the central directions are zero then by an arbitrary
small perturbation one can obtain that their sum can be made negative
on a set of positive measure. Ruelle [26] extended the result of Shub
and Wilkinson in another direction by showing that for an open set of
one-parameter families of (not necessarily volume preserving) maps Fε
through F0, each map Fε possesses a u-measure with negative central
exponent.

Dolgopyat obtain a number of remarkable results on existence of
measures with negative central exponents in various situations. They
are corollaries of his principal work [14] on stability of stochastic be-
havior. In this paper he considers a one-parameter family fε of C∞

partially hyperbolic diffeomorphisms where f0 is an Anosov element in
a standard abelian Anosov action with sufficiently strong mixing prop-
erties. If µ is a unique SRB measure for f0 and µε a u-measure for fε,
Dolgopyat shows that for any C∞ function ϕ the map

ϕ→
∫
ϕdµε

is differentiable at ε = 0 and he obtained a formula for the derivative of
this map. This result is an extension to the case of partially hyperbolic
systems of a similar result by Ruelle for Anosov maps [27].12 This result
has many applications to studying some delicate stochastic properties
of dynamical systems such as group extensions over Anosov maps and
small perturbations of the time-1 map of Anosov flows. Other applica-
tions include:

(1) One-parameter families fε of maps where f0 is the time-1 map of
the geodesic flow on the unit tangent bundle over a negatively curved
surface. Dolgopyat proved that in the conservative case (i.e., the maps
fε are volume preserving) generically, either fε or f−1

ε has negative

11This is an interesting “pathological” phenomenon known as Fubini’s night-
mare; one can show that this phenomenon is persistent under small perturbations
of the map F .

12Dolgopyat approach is substantially different from [27] and can be used to
study differentiability for even more general classes of systems.
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central exponent for small ε and there is an open set of non-conservative
families where the central exponent is negative for any u-measure.

(2) Systems with zero central exponents subjected to rare kicks.
Given diffeomorphisms f and g, let Fn = fn ◦ g. Dolgopyat proved
that if f is either a T 1-extension of an Anosov diffeomorphism or the
time-1 map of an Anosov flow and g is close to Id, then, for a typical
g and any sufficiently large n, either Fn or F−1

n has negative central
exponent with respect to any u-measure.

In addition let us mention another result of Dolgopyat [15], where he
showed that in the class of skew products negative central exponents
appear for generic perturbations and that there is an open set of one-
parameter families of skew products near F0 = f × Id (f is an Anosov
diffeomorphism and Id is the identity map of any manifold) where the
central exponents are negative with respect to any u-measure.

4. Stable ergodicity for dissipative systems

Let f be a C2 diffeomorphism with a partially hyperbolic attractor
Λf . Any C1 diffeomorphism g, which is sufficiently close to f in the
C1 topology, has a hyperbolic attractor Λg which lies in a small neigh-
borhood of Λf . The stable ergodicity problem for partially hyperbolic
attractors utilizes the notion of u-measures and can be stated as fol-
lows. We say that a Cr partially hyperbolic diffeomorphism f is stably
ergodic if there is a neighborhood U of f in the Ck topology, 1 ≤ k ≤ r
such that any Cr diffeomorphism g ∈ U possesses a unique u-measure
µg, which is supported on the attractor Λg, and g is ergodic with re-
spect to µg.

13 Similarly, one can define the notion of stably mixing,
stably K and stably Bernoulli.

The approach that utilizes measures with negative central exponents
turns out to be quite successful (and at present is the only available)
in establishing stable ergodicity for maps with partially hyperbolic at-
tractors. It was developed in the work of Burns, Dolgopyat, Pesin and
Pollicott [9].

Theorem 4.1. Let f be a C2 diffeomorphism with a partially hyperbolic
attractor Λf . Assume that

(1) there is a u-measure µ for f with negative central exponents on
a subset A ⊂ Λf of positive measure;

(2) for every x ∈ Λf the global strongly unstable manifold W u(x) is
dense in Λf .

13Of course, this implies that the unperturbed map f is ergodic with respect to
its unique u-measure µf .
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Then f is stably ergodic (indeed, stably Bernoulli). More precisely,
for any C2 diffeomorphism g, which is sufficiently close to f in the
C1+α-topology (for some α > 0), the following statements hold:

(1) g has negative central exponents on a set of positive measure
with respect to a u-measure µg;

(2) the measure µg is the unique u-measure (and hence the unique
SRB measure) for g;

(3) the map g|Λg is ergodic with respect to µg (indeed is Bernoulli);
(4) the basin B(µg) has full volume in the topological basin of Λg.

We stress that (similarly to the conservative case) the condition that
every leaf of the unstable foliation is dense in the attractor is required
only for the unperturbed map f and the stable ergodicity result holds
regardless whether the perturbation map g satisfies this condition or
not.14

4.1. Attractors with positive central exponents. For partially
hyperbolic systems preserving smooth measures the case of u-measures
with positive central exponents can be trivially reduced to the case
of u-measures with negative central exponents by reversing the time.
This is not true for dissipative partially hyperbolic systems and the
study of u-measures with positive central exponents is more challeng-
ing. The first ergodicity result in this direction was obtained in [1]
under the stronger assumption that there is a set of positive volume in
a neighborhood of the attractor with positive central exponents.

Stable ergodicity of partially hyperbolic attractors with positive cen-
tral exponents was studied in [29] where a result similar to Theorem 4.1
is proven.

Theorem 4.2. Let f be a C2 diffeomorphism with a partially hyperbolic
attractor Λf . Assume that

(1) there is a unique u-measure µ for f and µ has positive central
exponents on a subset A ⊂ Λf of full µ-measure;

(2) for every x ∈ Λf the global strongly unstable manifold W u(x) is
dense in Λf .

Then f is stably ergodic.

14One can show that for every ε > 0 there is a neighborhood of f in the C1

topology such that every diffeomorphism g in this neighborhood has the property
that every unstable global leaf is ε-dense in the attractor. This property along with
the fact that χ(x, v) < −α (for almost every x ∈ Λg, every v ∈ Ec

g(x) and some
α > 0) is sufficient to establish ergodicity of g.
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5. Existence of nonuniformly hyperbolic dynamical
systems on any manifold

It has been a long-standing problem in hyperbolic dynamics to show
that any compact smooth Riemannian manifold carries a volume pre-
serving Bernoulli diffeomorphism with nonzero Lyapunov exponents.
In the 2-dimensional case this problem was solved by Katok [22]. For
any manifold of dimension greater than 4, Brin [6] has later constructed
a volume preserving Bernoulli diffeomorphism whose Lyapunov expo-
nents all but one are nonzero. The final solution – that is to remove
the remaining zero exponent in Brin’s example and to also solve the
problem in the 3- and 4-dimensional cases – was obtained by Dolgopyat
and Pesin [17] using some techniques in mixed hyperbolicity that we
mentioned above. 15

Theorem 5.1. Given a compact smooth Riemannian manifold M 6= S1

there exists a C∞ diffeomorphism f of M such that

(1) f preserves the Riemannian volume m;
(2) f has nonzero Lyapunov exponents almost everywhere;
(3) f is a Bernoulli diffeomorphism.

5.1. Katok’s Example. The main step in Katok’s proof of this the-
orem in the 2-dimensional case is a construction of an area preserving
C∞ Bernoulli diffeomorphism g of the unit disk D2 in the plane that
has the following properties:

(K1) g has nonzero Lyapunov exponents almost everywhere.
(K2) g has three fixed points p1, p2 and p3 and is uniformly hyperbolic

outside a small neighborhood U of the singularity set S = ∂D2∪
{p1, p2, p3}, i.e., there exists λ < 1, such that for every x /∈ U ,

‖dg|Es
g(x)‖ ≤ λ, ‖dg−1|Eu

g (x)‖ ≤ λ.

(K3) g has two invariant stable and unstable foliations, W s
g , W u

g of

D2 \ S with smooth leaves. These foliations are continuous
and indeed are absolutely continuous. Furthermore they are
transversal everywhere except for points in the singularity set.

(K4) g|∂D2 = Id and partial derivatives of g(x) approach zero suffi-
ciently fast as x approaches the boundary ∂D2.

15A solution of a similar problem of existence of continuous-time dynamical sys-
tems on every compact smooth Riemannian manifold of dimension ≥ 3 is obtained
in [21].
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5.2. Brin’s Example. Consider a compact smooth Riemannian man-
ifold of dimension n ≥ 5. Brin’s construction consists of three steps.

Step 1. Starting from a volume preserving hyperbolic automorphism
A of the torus Tn−3 consider the suspension flow T̃ t over A with a
constant roof function. This flow is Anosov but does not have the
accessibility property. However, one can perturb the roof function such
that the new flow T t (which is still Anosov) does have the accessibility
property. The phase space Y n−2 of T t is diffeomorphic to the product
Tn−3× [0, 1], where the tori Tn−3×0 and Tn−3×1 are identified by the
action of A.

Step 2. Consider the skew product map R on K = D2×Y n−2 given
by

R(x, y) = (g(x), Tα(x)(y)),

where α is a non-negative function on D2, which is equal to zero in
the neighborhood U of the singularity set S and is strictly positive
otherwise. Denote by Γ = S × Y n−2 the singularity set for R and set
Ω = (D2 \ U)× Y n−2. The map R has the following properties:

(B1) R is nonuniformly partially hyperbolic on K \ Γ, i.e.,

TzK = Es
R(z)⊕ Ec

R(z)⊕ Eu
R(z), z ∈ K \ Γ.

(B2) R is uniformly partially hyperbolic on Ω, i.e., for some µ < 1
and every z ∈ Ω,

‖dR|Es
R(z)‖ ≤ µ, ‖dR−1|Eu

R(z)‖ ≤ µ.

(B3) The distributions Es
R(z) and Eu

R(z) generate two continuous
foliations W s

R and W u
R on K \ Γ with smooth leaves. These

foliations are absolutely continuous. Furthermore, they are
transversal everywhere except for the points in the singular-
ity set.

(B4) R has the essential accessibility property with respect to the
foliations W s

R and W u
R.

Step 3. There is a smooth embedding

χ1 : K = D2 × Y n−2 → Bn,

which is a diffeomorphism except for the boundary ∂K (Bn is the unit
ball in Rn). There is a smooth embedding χ2 : Bn → M which is a
diffeomorphism except for the boundary ∂Bn. Since the map R is the
identity map on the boundary ∂K, the map

h = (χ1 ◦ χ2) ◦R ◦ (χ1 ◦ χ2)−1 : M →M

has the following properties:

(1) h preserves the Riemannian volume;
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(2) h is a Bernoulli diffeomorphism;
(3) h has only one zero Lyapunov exponent in the central direction

for R.

We now outline the approach developed by Dolgopyat and Pesin
[17] that allows one to remove the zero exponent in Brin’s example by
making a sufficiently small perturbation of the map R creating negative
Lyapunov exponent in this direction.

To this end one can show that given r > 0 and ε > 0, there is a
Cr diffeomorphism P : K → K which preserves volume m and is such
that

(DP1) dCr(P,R) ≤ ε and P is gentle, i.e., P is concentrated outside
the singularity set Γ (in other words, P (x) = R(x) for x outside
a small neighborhood of Γ);

(DP2) almost every orbit of P is dense in K;
(DP3) for almost every z ∈ K there exists a decomposition

TzK = Es
P (z)⊕ Ec

P (z)⊕ Eu
P (z)

such that dimEc
P (z) = 1 and∫

K

χcP (z) dm < 0,

where

χcP (z) = lim
n→∞

1

n
log ‖dfn|Ec

P (z)‖

is the Lyapunov exponent at z ∈ K in the central direction.

The desired map P can be constructed in the form P = ϕ ◦ R where
the perturbation ϕ is given as follows. Fix a point z0 ∈ K \ Γ and
choose a coordinate system {x, ξ} in a small ball B(z0, r) around z0 of
radius r > 016 such that z0 = (x0, ξ0), dm = ρ(x, ξ)dx dξ and

Ec
R(y0) =

∂

∂ξ1

, Es
R(y0) = 〈 ∂

∂ξ2

, . . . ,
∂

∂ξk
〉,

Eu
R(y0) = 〈 ∂

∂ξk+1

, . . . ,
∂

∂ξn−2

〉

for some k, 2 ≤ k < n − 2. Let ψ(t) be a C∞ function with compact
support and let τ = 1

r2
(‖x‖2 + ‖ξ‖2). Define

ϕ(x, ξ) = (x, ξ1 cos (εψ(τ)) + ξ2 sin (εψ(τ)),

− ξ1 sin (εψ(τ)) + ξ2 cos (εψ(τ)), ξ3, . . . , ξn−2).

16The radius r should be chosen so small that the ball does not intersect the
singularity set Γ.



16 YAKOV PESIN

Now the map

h = (χ1 ◦ χ2) ◦ P ◦ (χ1 ◦ χ2)−1 : M →M

(see Step 3 in Brin’s construction described above) has all the desired
properties.

In the three- and four-dimensional cases we consider the manifold
D2 × T ` where ` = 1 in the three dimensional case and ` = 2 in the
four dimensional case. Further we define the skew product map R by

R(z) = R(x, y) = (g(x), Rα(x)(y)), z = (x, y),

where Rα(x) is the translation by α(x), and α is a nonnegative C∞ func-
tion which is equal to zero in a small neighborhood of the singularity
set S and is strictly positive otherwise. The map R is nonuniformly
partially hyperbolic and its central direction is one-dimensional in the
case n = 3 and it is two-dimensional in the case n = 4. One can now
use a modification of the above argument to construct a C∞ volume
preserving Bernoulli perturbation P of R such that: 1) if n = 3, the
central exponent for P is negative and thus P is the desired map; 2)
if n = 4 the sum of the two central exponents for P is negative. This
of course does not exclude the case that one of the central Lyapunov
exponent is positive and thus requires further perturbation to ensure
that each of the two exponents is negative; this is quite a challenging
problem that requires some sophisticated techniques.
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