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EQUILIBRIUM STATES IN DYNAMICAL SYSTEMS

VIA GEOMETRIC MEASURE THEORY

VAUGHN CLIMENHAGA, YAKOV PESIN, AND AGNIESZKA ZELEROWICZ

Abstract. Given a dynamical system with a uniformly hyperbolic (chaotic)
attractor, the physically relevant Sinăı–Ruelle–Bowen (SRB) measure can be
obtained as the limit of the dynamical evolution of the leaf volume along local
unstable manifolds. We extend this geometric construction to the substan-
tially broader class of equilibrium states corresponding to Hölder continuous
potentials; these states arise naturally in statistical physics and play a crucial
role in studying stochastic behavior of dynamical systems. The key step in our
construction is to replace leaf volume with a reference measure that is obtained
from a Carathéodory dimension structure via an analogue of the construction
of Hausdorff measure. In particular, we give a new proof of existence and
uniqueness of equilibrium states that does not use standard techniques based

on Markov partitions or the specification property; our approach can be ap-
plied to systems that do not have Markov partitions and do not satisfy the
specification property.
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1. Introduction

1.1. Systems with hyperbolic behavior. A smooth dynamical system with dis-
crete time consists of a smooth manifold M—the phase space—and a diffeomor-
phism f : M → M . Each state of the system is represented by a point x ∈ M ,
whose orbit (fn(x))n∈Z gives the time evolution of that state. We are interested in
the case where the dynamics of f exhibit hyperbolic behavior. Roughly speaking,
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this means that orbits of nearby points separate exponentially quickly in either for-
ward or backward time; if the phase space is compact, this leads to the phenomenon
popularly known as chaos.

Hyperbolic behavior turns out to be quite common, and for such systems it is not
feasible to make specific forecasts of a single trajectory far into the future, because
small initial errors quickly grow large enough to spoil the prediction. On the other
hand, one may hope to make statistical predictions about the asymptotic behavior
of orbits of f . A measurement of the system corresponds to a function ϕ : M → R;
the sequence ϕ, ϕ◦f , ϕ◦f2, . . . represents the same observation made at successive
times. When specific forecasts of ϕ ◦ fn are impossible, we can treat this sequence
as a stochastic process and make predictions about its asymptotic behavior. For
a more complete discussion of this point of view, see [ER85], [Mañ87, Chapter 1],
and [Via97].

1.2. Physical measures and equilibrium states. To fully describe the stochas-
tic process (ϕ ◦ fn)n∈Z, we need a probability measure μ on M that represents the
likelihood of finding the system in a given state at the present time. The measure
f∗μ defined by

∫
ϕd(f∗μ) =

∫
ϕ ◦ f dμ represents the distribution one unit of time

into the future. An invariant measure has μ = f∗μ, and hence μ = fn
∗ μ for all n,

so the sequence of observations becomes a stationary stochastic process.
In this paper we will consider uniformly hyperbolic systems, for which the tangent

bundle admits an invariant splitting TM = Eu ⊕ Es such that Eu is uniformly
expanded and Es uniformly contracted by Df ; see §2 for examples and §3.1 for a
precise definition. Such systems have an extremely large set of invariant measures;
for example, standard results show that there are infinitely many periodic orbits,
each supporting an atomic invariant measure. Thus one is led to the problem of
selecting a distinguished measure, or class of measures, that is most dynamically
significant.

Since we work on a smooth manifold, it would be natural to consider an invariant
volume form on M , or at least an invariant measure that is absolutely continuous
with respect to volume. However, for dissipative systems such as the solenoid
described in §2.2, no such invariant measure exists, and one must instead look
for a Sinăı–Ruelle–Bowen (SRB) measure, which we describe in §§3.2–3.3. Such
a measure is absolutely continuous “in the unstable direction”, which is enough
to guarantee that it is physically relevant ; it describes the asymptotic statistical
behavior of volume-typical trajectories.

SRB measures can be constructed via the following geometric approach: let m
be a normalized Lebesgue measure (volume) for some Riemannian metric on M ,
consider its forward iterates fn

∗ m, then average the first N of these and take a limit
measure as N → ∞.

Another approach to SRB measures, which we recall in §3.4, is via thermody-
namic formalism, which imports mathematical tools from equilibrium statistical
physics in order to describe the behavior of large ensembles of trajectories. This
program began in the late 1950s, when Kolmogorov and Sinăı introduced the con-
cept of entropy into dynamical systems; see [Kat07] for a historical overview. Given
a potential function ϕ : M → R, one studies the equilibrium states associated to ϕ,
which are invariant measures that maximize the quantity hμ(f)+

∫
ϕdμ, where hμ
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denotes the Kolmogorov–Sinăı entropy.1 The maximum value is called the topolog-
ical pressure of ϕ and is denoted P (ϕ).

In the 1960s and 1970s, it was shown by Sinăı, Ruelle, and Bowen that for uni-
formly hyperbolic systems, every Hölder continuous potential has a unique equilib-
rium state (see §3.1). Applying this result to the particular case of the geometric
potential2 ϕgeo(x) = − log | detDf |Eu(x)|, one has P (ϕgeo) = 0 and the equilibrium
state is the SRB measure described above; see §3.4.

1.3. Different approaches to constructing equilibrium states. There are two
main classical approaches to thermodynamic formalism. The first uses Markov par-
titions of the manifold M ; we recall the general idea in §3.5. The second approach
uses the specification property, which we review in §3.6.

The purpose of this paper is to describe a third geometric approach, which
was outlined above for SRB measures: produce an equilibrium state as a limiting
measure of the averaged pushforwards of some reference measure, which need not
be invariant. For the physical SRB measure, this reference measure was Lebesgue;
to extend this approach to other equilibrium states, one must start by choosing a
new reference measure. The definition of this reference measure, and its motivation
and consequences, is the primary goal of this paper, and our main result can be
roughly stated as follows.

For every Hölder continuous potential ϕ, one can use the tools of geometric
measure theory to define a reference measure mϕ for which the averages of the
pushforwards fn

∗ mϕ converge to the unique equilibrium state for ϕ.

A precise statement of the result is given in §4. An important motivation for
this work is that the geometric approach can be applied to more general situations
beyond the uniformly hyperbolic systems studied in this paper. For example, the
geometric approach was used in [CDP16] to construct SRB measures for some
nonuniformly hyperbolic systems, and in [CPZ18] we use it to construct equilibrium
states for some partially hyperbolic systems. The first two approaches—Markov
partitions and specification—have also been extended beyond uniform hyperbolicity
(see [CP17] for a survey of the literature), but the overall theory in this generality
is still very far from being complete, so it seems worthwhile to add another tool by
developing the geometric approach as well.

1.4. Reference measures for general potentials. In the geometric construction
of the physical SRB measure, one can take the reference measure to be either a
Lebesgue measure m on M or a Lebesgue measure mW on any local unstable leaf
W = V u

loc(x). These leaves are du-dimensional submanifolds of M that are tangent
at each point to the unstable distribution Eu(x) ⊂ TxM ; they are expanded by the
dynamics of f and have the property that f(V u

loc(x)) ⊃ V u
loc(f(x)); see §3.1 for more

details. Given a local unstable leaf W = V u
loc(x), we will write mW or mu

x for the

1From the statistical physics point of view, the quantity Eμ := −(hμ(f) +
∫
ϕdμ) is the free

energy of the system, so that an equilibrium state minimizes the free energy; see [Sar15, §1.6] for
more details.

2Here the determinant is taken with respect to any orthonormal bases for Eu(x) and Eu(f(x)).
If the map f is of the class of smoothness C1+α for some α > 0, then one can show that ϕgeo(x)
is Hölder continuous.
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leaf volume determined by the induced Riemannian metric. This has the following
key properties.

(1) mW = mu
x is a finite nonzero Borel measure on W .

(2) If W1 and W2 are local unstable leaves with nontrivial intersection, then
mW1

and mW2
agree on the overlap.

(3) Under the dynamics of f , the leaf volumes scale by the rule

(1.1) mu
f(x)(A) =

∫
f−1A

| detDf |Eu(y)| dmu
x(y).

As mentioned in §1.2, the geometric potential ϕgeo(x) = − log | detDf |Eu(x)| has
P (ϕgeo) = 0, so the integrand in (1.1) can be written as eP (ϕgeo)−ϕgeo(y). In §4.3,
given a continuous potential ϕ, we will construct on every local unstable leaf W =
V u
loc(x) a reference measure mC

x satisfying similar properties to mu
x, but with the

scaling rule3

(1.2) mC
f(x)(A) =

∫
f−1A

eP (ϕ)−ϕ(y) dmC
x(y).

The superscript C is shorthand for a Carathéodory dimension structure determined
by the potential ϕ and a scale r > 0; see §5 for the essential facts about such struc-
tures, and see [Pes97] for a complete description. Roughly speaking, the definitions
of P (ϕ) and mC

x are analogous to the definitions of Hausdorff dimension and Haus-
dorff measure, respectively, but they take the dynamics into account. Recall that
the latter definitions involve covers by balls of decreasing radius; the modification
to obtain our quantities involves covering by dynamically defined balls, as explained
in §4.3.
1.5. Some history. The idea of constructing dynamically significant measures for
uniformly hyperbolic maps by first finding measures on unstable leaves with certain
scaling properties goes at least as far back as work of Sinăı [Sin68], which relies on
Markov partitions. For uniformly hyperbolic dynamical systems with continuous
time (flows) and the potential ϕ = 0, the corresponding equilibrium state, which
is the measure of maximal entropy, was obtained by Margulis [Mar70]. He used a
different construction of leaf measures via functional analysis of a special operator
(induced by the dynamics) acting on the Banach space of continuous functions with
compact support on unstable leaves. These leaf measures were studied further in
[RS75,BM77].

Hasselblatt gave a description of the Margulis measure in terms of Hausdorff
dimension [Has89], generalizing a result obtained by Hamenstädt for geodesic flows
on negatively curved compact manifolds [Ham89]. In this geometric setting, where
stable and unstable leaves are naturally identified with the ideal boundary of the
universal cover, Kaimanovich observed in [Kai90,Kai91] that these leaf measures
could be identified with the measures on the ideal boundary introduced by Patterson
[Pat76] and Sullivan [Sul79]. For geodesic flows in negative curvature, this approach
was recently extended to nonzero potentials by Paulin, Pollicott, and Schapira
[PPS15].

For general hyperbolic systems and nonzero potential functions, families of leaf
measures with the appropriate scaling properties were constructed by Haydn [Hay94]
and Leplaideur [Lep00], both using Markov partitions. The key innovation in the

3Note that in general P (ϕ) �= 0.
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present paper is that we can construct these leaf measures directly, without us-
ing Markov partitions, by an approach reminiscent of Hasselblatt’s from [Has89].
This requires us to interpret quantities in thermodynamic formalism by analogy
with Hausdorff dimension, an idea which was introduced by Bowen for entropy in
[Bow73], developed by Pesin and Pitskel′ for pressure in [PP84], and generalized
further by Pesin in [Pes88,Pes97].

1.6. Plan of the paper. We describe some motivating examples in §2, and give
general background definitions in §3. These sections are addressed to a general
mathematical audience, and the reader who is already familiar with thermodynamic
formalism for hyperbolic dynamical systems can safely skip to §4, where we give
the new definition of the reference measures mC

x and formulate our main results.
In §5 we recall the necessary results on Carathéodory dimension characteristics
and describe some applications of our results to dimension theory. For well-known
general results, we omit the proofs and give references to the literature where proofs
can be found. For the new results stated here, we give an outline of the proofs in
§6 and refer to [CPZ18] for complete details.

2. Motivating examples

Before recalling general definitions about uniformly hyperbolic systems and their
invariant measures in §3, we describe three examples to motivate the idea of a
physical measure. Our discussion here is meant to convey the overall picture and
omits many details.

2.1. Hyperbolic toral automorphisms. Our first example is the diffeomorphism
f on the torus T

2 = R
2/Z2 induced by the linear action of the matrix L =

(
2 1
1 1

)
on R

2, as shown in Figure 2.1.

2 1
1 1 (mod Z2)

E u

E s

Figure 2.1. Lebesgue measure is preserved by f

This system is uniformly hyperbolic: The matrix L has two positive real eigen-
values λs < 1 < λu, whose associated eigenspaces Es and Eu give a Df -invariant
splitting of the tangent bundle TT2. The lines in R

2 parallel to these subspaces
project to f -invariant foliations W s and Wu of the torus.

What about invariant measures? If p ∈ T
2 has fn(p) = p, then the measure

μ = 1
n (δp+δf(p)+ · · ·+δfn−1(p)) is invariant. Every point with rational coordinates

is periodic for f , so this gives infinitely many f -invariant measures. Lebesgue
measure is also invariant since detDf = detL = 1. (This is far from a complete
list, as we will see.)

A measure μ is ergodic if every f -invariant function (every ϕ ∈ L1(μ) with
ϕ = ϕ ◦ f) is constant μ-almost everywhere. One can check easily that the periodic
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Figure 2.2. No absolutely continuous invariant measure

orbit measures from above are ergodic and, with a little more work, that Lebesgue
measure is ergodic too.4 Birkhoff’s ergodic theorem says that if μ is ergodic, then
μ-almost everywhere orbit has asymptotic behavior controlled by μ. More precisely,
we say that the basin of attraction for μ is the set of initial conditions satisfying a
law of large numbers governed by μ for continuous observables:

(2.1) Bμ =

{
x ∈ T

2 :
1

n

n−1∑
k=0

ϕ(fkx)
n→∞−−−−→

∫
ϕdμ for all ϕ ∈ C(T2,R)

}
.

The ergodic theorem says that if μ is ergodic, then μ(Bμ) = 1.
For periodic orbit measures, this says very little, since it leaves open the pos-

sibility that the measure μ only controls the asymptotic behavior of finitely many
orbits.5 For Lebesgue measure m, however, this says quite a lot: m governs the sta-
tistical behavior of Lebesgue-almost every orbit, and in particular, a point chosen
at random with respect to any volume form on T

2 has a trajectory whose asymp-
totic behavior is controlled by m. This is the sense in which Lebesgue measure is
the physically relevant invariant measure, and we make the following definition.

Definition 2.1. An invariant measure μ for a diffeomorphism f is a physical mea-
sure if its basin Bμ has positive volume.

2.2. Smale–Williams solenoid. From Birkhoff’s ergodic theorem, we see that if
μ is an ergodic invariant measure that is equivalent to a volume form,6 then that
volume form gives full weight to the basin Bμ, and so a volume-typical trajectory
has asymptotic behavior controlled by μ.

The problem now is that there are many examples for which no such μ exists.
One such is the Smale–Williams solenoid studied in [Sma67, §I.9] and [Wil67]; see
also [PC09, Lecture 29] for a gentle introduction and further discussion. This is a
map from the open solid torus U into itself. Abstractly, the solid torus is the direct
product of a disc and a circle, so that one may use coordinates (x, y, θ) on U , where
x and y give coordinates on the disc and θ is the angular coordinate on the circle.
Define a map f : U → U by

(2.2) f(x, y, θ) := ( 14x+ 1
2 cos θ,

1
4y +

1
2 sin θ, 2θ).

Figure 2.2 shows two iterates of f , with half of the original torus for reference.
Every invariant measure is supported on the attractor Λ =

⋂
n≥0 f

n(U), which
has zero volume. In particular, there is no invariant measure that is absolutely

4This can be proved either by Fourier analysis or by the more geometric Hopf argument ; see
§4.2.2.

5In fact Bμ is infinite, being a union of leaves of the stable foliation W s.
6Recall that two measures μ and ν are equivalent if μ � ν and ν � μ, in which case we write

μ ∼ ν.
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Figure 2.3. A cross-section of the attractor

continuous with respect to volume. Nevertheless, it is still possible to find an
invariant measure that is physically relevant in the sense given above. To do this,
first observe that since the solenoid map f contracts distances along each cross-
section D

2 × {θ0}, any two points in the same cross-section have orbits with the
same (forward) asymptotic behavior: given an invariant measure μ, the basin Bμ

is a union of such cross-sections.
This fact suggests that we should look for an invariant measure that is absolutely

continuous in the direction of the circle coordinate θ, which is expanded by f . To
construct such a measure, observe that each cross-section intersects the images
fn(U) in a nested sequence of unions of discs (as shown in Figure 2.3) so the
attractor Λ intersects this cross-section in a Cantor set. Thus Λ is locally the direct
product of an interval in the expanding direction and a Cantor set in the contracting
directions. Let mu be the Lebesgue measure on the circle, and let μ be the measure
on Λ that projects to mu and gives equal weight to each of the 2n pieces at the nth
level of the Cantor set construction in Figure 2.3. One can show without too much
difficulty that μ is invariant and ergodic and that, moreover, Bμ has full volume in
the solid torus U . Thus even though μ is singular, it is still the physically relevant
invariant measure due to its absolute continuity in the expanding direction.

2.3. Smale’s horseshoe. Finally, we recall an example for which no physical mea-
sure exists—the horseshoe introduced by Smale in the early 1960s; see [Sma67, §I.5]
and [PC09, Lecture 31] for more details, see also [Sma98] for more history. Con-
sider a map f : R → R

2 which acts on the square R := [0, 1]2 as shown in Figure
2.4: first the square is contracted vertically by a factor of α < 1/2 and stretched
horizontally by a factor of β > 2, then it is bent and positioned so that f(R) ∩ R
consists of two rectangles of height α and length 1.

Observe that a part of the square R is mapped to the complement of R. Con-
sequently, f2 is not defined on the whole square R but only on the union of two
vertical strips in R. The set where f3 is defined is the union of four vertical strips,
two inside each of the previous ones, and so on; there is a Cantor set Cu ⊂ [0, 1]

β

αR

f(R11) f(R12)

f(R22)f(R21)

R11

R12

R22

R21

f(R)

Figure 2.4. No physical measure
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such that every point outside Cu × [0, 1] can be iterated only finitely many times
before leaving R. In particular, every f -invariant measure has Bμ ⊂ Cu × [0, 1]
and, hence, Bμ is Lebesgue-null, so there is no physical measure.

Note that the argument in the previous paragraph did not consider the stable
(vertical) direction at all. For completeness, observe that there is a Cantor set
Cs ⊂ [0, 1] such that

⋂
n≥0 f

n(R) = [0, 1] × Cs and that the maximal f -invariant

set Λ :=
⋂

n∈Z
fn(R) is a direct product Cu × Cs.

2.4. Main ideas. The three examples discussed so far have certain features in
common, which are representative of uniformly hyperbolic systems.

First, every invariant measure lives on a compact invariant set Λ that is locally
the direct product of two sets, one contracted by the dynamics and one expanded.
For the hyperbolic toral automorphism

(
2 1
1 1

)
, Λ = T

2, and both of these sets were
intervals; for the solenoid, there was an interval in the expanding direction and a
Cantor set in the contracting direction; for the horseshoe, both were Cantor sets.

Second, the physically relevant invariant measure (when it existed) could also
be expressed as a direct product. For the hyperbolic toral automorphism, it was
a product of Lebesgue measure on the two intervals. For the solenoid, it was a
product of Lebesgue measure on the interval (the expanding circle coordinate) and
a ( 12 ,

1
2 )-Bernoulli measure on the contracting Cantor set.

Third, and most crucially for our purposes, in identifying the physical measure, it
is enough to look at how invariant measures behave along the expanding (unstable)
direction. We will make this precise in §3.2 when we discuss conditional measures,
and this idea will motivate our main construction in §4.3 of reference measures
associated to different potential functions.

Note that there is an asymmetry in the previous paragraph, because we privilege
the unstable direction over the stable one. This is because our notion of physical
measure has to do with asymptotic time averages as n → +∞. If we would instead
consider the asymptotics as n → −∞, then the roles of stable and unstable objects
would be reversed. We should also stress an important difference between the case
when the invariant set Λ is an attractor (as in the second example) and the case
when it is a Cantor set (as in the third example). In the former case the trajectories
that start near Λ exhibit chaotic behavior for all time t > 0 (the phenomenon known
as persistent chaos), while in the latter case the chaotic behavior occurs for a limited
period of time whenever the trajectory passes by in a vicinity of Λ (the phenomenon
known as intermittent chaos).

3. Equilibrium states and their relatives

3.1. Hyperbolic sets. Now we make our discussion more precise and more gen-
eral. We consider a smooth Riemannian manifold M and a C1+α diffeomorphism
f : M → M and restrict our attention to the dynamics of f on a locally maximal
hyperbolic set. We recall here the basic definition and most relevant properties,
referring the reader to the book of Katok and Hasselblatt [KH95, Chapter 6] for
a more complete account. In what follows it is useful to keep in mind the three
examples discussed above.

A hyperbolic set for f is a compact set Λ ⊂ M with f(Λ) = Λ such that for every
x ∈ Λ, the tangent space admits a decomposition TxM = Es(x)⊕ Eu(x) with the
following properties.
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(1) The splitting is Df -invariant: Dfx(E
σ(x)) = Eσ(fx) for σ = s, u.

(2) The stable subspace Es(x) is uniformly contracting and the unstable sub-
space Eu(x) is uniformly expanding: there are constants C ≥ 1 and 0 <
χ < 1 such that for every n ≥ 0 and vs,u ∈ Es,u(x), we have

‖Dfnvs‖ ≤ Cχn‖vs‖ and ‖Df−nvu‖ ≤ Cχn‖vu‖.
Replacing the original Riemannian metric with an adapted metric,7 we can
(and will) take C = 1.

In the case where Λ = M , the map f is called an Anosov diffeomorphism.
Of course there are some diffeomorphisms that do not have any hyperbolic sets

(think of isometries), but it turns out that a very large class of diffeomorphisms
do, including the examples from the previous section. These examples also have
the property that Λ is locally maximal, meaning that there is an open set U ⊃
Λ for which any invariant set Λ′ ⊂ U is contained in Λ; in other words, Λ =⋂

n∈Z
fn(U). In this case every C1-perturbation of f also has a locally maximal

hyperbolic set contained in U . In particular, the set of diffeomorphisms possessing
a locally maximal hyperbolic set is open in the C1-topology.

A number of properties follow from the definition of a hyperbolic set. First, the
subspaces Es,u(x) depend continuously on x ∈ Λ. In particular, the angle between
them is uniformly away from zero. In fact, since f is C1+α, the dependence on x is
Hölder continuous:

(3.1) ρ(Es,u(x), Es,u(y)) ≤ Kd(x, y)β,

where ρ is the Grassmannian distance between the subspaces, d is the distance in
M generated by the (adapted) Riemannian metric, and K,β > 0.

Proposition 3.1 ([KH95, Theorem 6.2.3]). The subspaces Es,u can be integrated
locally: for every x ∈ Λ, there exist local stable and unstable submanifolds V s,u

loc (x)
given via the graphs of C1+α functions ψs,u

x : Bs,u
x (0, τ ) → Eu,s(x),8 for which we

have the following:

(1) V s,u
loc (x) = expx{v + ψs,u

x (v) : v ∈ Bs,u
x (0, τ )};

(2) x ∈ V s,u
loc (x) and TxV

s,u
loc (x) = Es,u(x);

(3) f(V u
loc(x)) ⊃ V u

loc(f(x)) and f(V s
loc(x)) ⊂ V s

loc(f(x));
(4) there is λ ∈ (χ, 1) such that d(f(y), f(z)) ≤ λd(y, z) for all y, z ∈ V s

loc(x)
and d(f−1(y), f−1(z)) ≤ λd(y, z) for all y, z ∈ V u

loc(x);
9

(5) there is C > 0 such that the Hölder seminorm satisfies |Dψs,u
x |α ≤ C for

all x ∈ Λ.

The number τ is the size of the local manifolds, and it will be fixed at a suffi-
ciently small value to guarantee various estimates (such as the last item in the list
above). Note that the properties listed above remain true if τ is decreased. The
manifolds V s,u

loc (x) depend continuously on x ∈ Λ.
Given a hyperbolic set Λ, there is ε > 0 such that for every x, y ∈ Λ with

d(x, y) < ε, the intersection V s
loc(x) ∩ V u

loc(y) consists of a single point, denoted
by [x, y] and called the Smale bracket of x and y. One can show that Λ is locally

7This metric may not be smooth but will be at least C1+γ for some γ > 0, which is sufficient
for our purposes.

8Here Bs,u
x (0, τ) is the ball in Es,u(x) ⊂ TxM of radius τ centered at 0.

9This means that the local unstable manifold for f is the local stable manifold for f−1.
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R
x

y
[x, y]

V s
R(x)

V u
R (y)

Figure 3.1. A rectangle in the case when Λ = M .

maximal if and only if [x, y] ∈ Λ for all such x, y; this is the local product structure
referred to in §2.4.

Definition 3.2. A closed set R ⊂ Λ is called a rectangle if [x, y] is defined and lies
in R for all x, y ∈ R. Given p ∈ R, we write V s,u

R (p) = V s,u
loc (p) ∩R for the parts of

the local manifolds that lie in R; see Figure 3.1.

Given a rectangle R and a point p ∈ R, let A = V u
R (p) ⊂ V u

loc(p) and B =
V s
R(p) ⊂ V s

loc(p). Then [x, y] is defined for all x ∈ A and y ∈ B, and

(3.2) R = [A,B] := {[x, y] : x ∈ A, y ∈ B}.
Conversely, it is not hard to show that (3.2) defines a rectangle whenever p ∈ Λ and
the closed sets A ⊂ V u

loc(p) ∩ Λ and B ⊂ V s
loc(p) ∩ Λ are contained in a sufficiently

small neighborhood of p.
For the hyperbolic toral automorphism from §2.1, we can take A and B to be

intervals around p in the stable and unstable directions, respectively. Then [A,B] is
the direct product of two intervals, consistent with our usual picture of a rectangle.
However, in general, we could just as easily let A and B be Cantor sets and, thus,
obtain a dynamical rectangle that does not look like the picture we are familiar
with. For the solenoid and horseshoe, this is the only option; in these examples the
hyperbolic set Λ has zero volume and empty interior, and we see that rectangles
are not even connected.

Indeed, there is a general dichotomy: given a C1+α diffeomorphism f and a
locally maximal hyperbolic set Λ, we either have Λ = M (in which case f is an
Anosov diffeomorphism) or Λ has zero volume.10 Even when m(Λ) = 0, the dy-
namics on Λ still influences the behavior of nearby trajectories, as is most apparent
when Λ is an attractor, meaning that there is an open set U ⊃ Λ (called a trapping

region) such that f(U) ⊂ U and Λ =
⋂

n∈N
fn(U), as was the case for the solenoid.

In this case every trajectory that enters U is shadowed by some trajectory in Λ,
and Λ is a union of unstable manifolds: V u

loc(x) ⊂ Λ for every x ∈ Λ.
One final comment on the topological dynamics of hyperbolic sets is in order.

Recall that if X is a compact metric space and f : X → X is continuous, then
the system (X, f) is called topologically transitive if for every open set U, V ⊂ X
there is n ∈ N such that U ∩ f−n(V ) 
= ∅ and is called topologically mixing if for
every such U, V there is N ∈ N such that U ∩ f−n(V ) 
= ∅ for all n ≥ N . Every
locally maximal hyperbolic set Λ admits a spectral decomposition [Sma67]. It can
be written as a union of disjoint closed invariant subsets Λ1, . . . ,Λk ⊂ Λ such that
each f |Λi

is topologically transitive, and moreover each Λi is a union of disjoint

10This dichotomy can fail if f is only C1; see [Bow75b].
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closed invariant subsets Λi,1, . . . ,Λi,ni
such that f(Λi,j) = Λi,j+1 for 1 ≤ j < ni,

f(Λi,ni
) = Λi,1, and each fni |Λi,j

is topologically mixing. For this reason there is
no real loss of generality in restricting our attention to topologically mixing locally
maximal hyperbolic sets.

3.2. Conditional measures. Now we consider measures on Λ, writing M(Λ) for
the set of all Borel probability measures on Λ, and M(f,Λ) for the set of all
such measures that are f -invariant. We briefly mention several basic facts that
play an important role in the proofs (see [EW11, Chapter 4] for details): the set
M(f,Λ) is convex, and its extreme points are precisely the ergodic measures; every
μ ∈ M(f,Λ) has a unique ergodic decomposition μ =

∫
Me(f,Λ)

ν dζ(ν), where ζ

is a probability measure on the space of ergodic measures Me(f,Λ); and finally,
M(f,Λ) is compact in the weak* topology.

As suggested by the discussion in §2.4, in order to understand how an invariant
measure μ governs the forward asymptotic behavior of trajectories, we should study
how μ behaves along the unstable direction. To make this precise, we now recall
the notion of conditional measures ; for more details, see [Roh52] or [EW11, §5.3].

Given μ ∈ M(f,Λ), consider a rectangle R ⊂ Λ with μ(R) > 0. Let ξ be the
partition of R by local unstable sets V u

R (x) = V u
loc(x) ∩ R, x ∈ R. These depend

continuously on the point x, so the partition ξ is measurable. This implies that the
measure μ can be disintegrated with respect to ξ: for μ-almost every x ∈ R, there

is a conditional measure μξ
V u
R (x) on the partition element V u

R (x) such that for any

Borel subset E ⊂ R, we have11

(3.3) μ(E) =

∫
R

∫
V u
R (x)

1E(y) dμ
ξ
V u
R (x)(y) dμ(x).

Since μξ
V u
R (x) = μξ

V u
R (x′), whenever x

′ ∈ V u
R (x), the outer integral in (3.3) can also be

written as an integral over the quotient space R/ξ, which inherits a factor measure
μ̃ from μ|R in the natural way. By the local product structure of R, we can also
fix p ∈ R and identify R/ξ with V s

R(p). Then μ̃ gives a measure on V s
R(p) by

μ̃(A) = μ(
⋃

x∈A V u
R (x)). Writing μu

x = μξ
V u
R (x) for the conditional measure on the

leaf through x, we can rewrite (3.3) as12

(3.4) μ(E) =

∫
V s
R(p)

∫
V u
R (x)

1E(y) dμ
u
x(y) dμ̃(x).

This disintegration is unique under the assumption that the conditional measures
are normalized. Although the definition depends on R, in fact choosing a different
rectangle R′ merely has the effect of multiplying μu

x by a constant factor on R∩R′

[CPZ18, Lemma 2.5].
One can similarly define a system of conditional measures {μs

x} on V s
R(x) for

x ∈ V u
R (p). It is then natural to ask whether the conditional measure μs

p agrees
with the measure μ̃ on V s

R(p) from (3.4), and we will return to this question in
§4.2.2 when we discuss absolute continuity and the Hopf argument.

11For a finite partition, the obvious way to define a conditional measure on a partition element
A with μ(A) > 0 is to put μA(E) = μ(E ∩ A)/μ(A). Roughly speaking, measurability of ξ
guarantees that it can be written as a limit of finite partitions, and the conditional measures in
(3.3) are the limits of the conditional measures for the finite partitions; see Proposition 6.7 for a
precise statement.

12Note that μu
x depends on R, although this is suppressed in the notation.
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3.3. SRB measures. Now suppose that Λ is a hyperbolic attractor and, hence,
contains the local unstable leaf V u

loc(x) for every x ∈ Λ.

Definition 3.3. Given a hyperbolic attractor Λ for f and a point y ∈ Λ with a
local unstable leaf W = V u

loc(y), let mW be the leaf volume on W generated by
the restriction of the Riemannian metric to W . An invariant measure μ is a Sinăı–
Ruelle–Bowen (SRB) measure if for every rectangle R ⊂ Λ with μ(R) > 0, the
conditional measures μu

x are absolutely continuous with respect to the leaf volumes
mu

x for μ̃-almost every x.

One of the major goals in the study of systems with some hyperbolicity is to
construct SRB measures. In the uniformly hyperbolic setting, this was done by
Sinăı, Ruelle, and Bowen.

Theorem 3.4 ([Sin68,Bow75a,Rue76]). Let Λ be a topologically transitive hyper-
bolic attractor for a C1+α diffeomorphism f . Then there is a unique SRB measure
for f |Λ.

As suggested by the discussion in §2, it is not hard to show that SRB measures
are physical in the sense of Definition 2.1. In fact, one can prove that for hyperbolic
attractors, SRB measures are the only physical measures.13

In addition to this physicality property, it was shown in [Sin68,Rue76] that the
SRB measure μ has the property that

(3.5) μ = lim
n→∞

1

n

n−1∑
k=0

fk
∗m|U ,

where m|U is normalized volume on the trapping region U ⊃ Λ.14 In [PS82], this
idea was used in order to construct SRB measures15 with m|U replaced by leaf
volume mV u

loc(x)
. We refer to this as the geometric construction of SRB measures

and will return to it when we discuss our main results. First, though, we observe
that the original constructions of SRB measures followed a different approach and
used mathematical tools borrowed from statistical physics, as we discuss in the next
section.

3.4. Equilibrium states. It turns out that it is possible to relate the absolute
continuity requirement in Definition 3.3 to a variational problem. The Margulis–
Ruelle inequality [Rue78a] (see also [BP13, §9.3.2]) states that for any invariant
Borel measure μ supported on a hyperbolic set Λ,16 we have the following upper
bound for the Kolmogorov–Sinăı entropy:

(3.6) hμ(f) ≤
∫

log | detDf |Eu(x)| dμ.

13An example due to Bowen and Katok [Kat80, §0.3] shows that when Λ is not an attractor,
it can support a physical measure that is not an SRB measure.

14In fact, they proved the stronger property that fn
∗ m|U → μ.

15More precisely, [PS82] considered the partially hyperbolic setting and used this approach to
construct invariant measures that are absolutely continuous along unstable leaves; SRB measures
are a special case of this when the center bundle is trivial.

16There is a more general version of this inequality that holds without the assumption that
μ is supported on a hyperbolic set, but it requires the notion of Lyapunov exponents, which are
beyond the scope of this paper.



EQUILIBRIUM STATES IN DYNAMICAL SYSTEMS 581

Recall that hμ(f) can be interpreted as the average asymptotic rate at which infor-
mation is gained if we observe a stochastic process distributed according to μ; (3.6)
says that this rate can never exceed the average rate of expansion in the unstable
direction.

Pesin’s entropy formula [Pes77] states that equality holds in (3.6) if μ is abso-
lutely continuous with respect to volume. In fact, Ledrappier and Strelcyn proved
that it is sufficient for μ to have conditional measures on local unstable manifolds
that are absolutely continuous with respect to leaf volume [LS82], and Ledrappier
proved that this condition is also necessary [Led84]. In other words, equality holds
in (3.6) if and only if μ is an SRB measure.

Since every hyperbolic attractor Λ has an SRB measure, we conclude that the
function ϕgeo(x) = − log | detDf |Eu(x)| has the property that

sup
μ∈M(f,Λ)

(
hμ(f) +

∫
ϕgeo dμ

)
= 0,

and the SRB measure for f is the unique measure achieving the supremum, as
claimed in §1.2. More generally, we have the following definition.

Definition 3.5. Let ϕ : M → R be a continuous function, which we call a potential.
An equilbrium state (or equilibrium measure) for ϕ is a measure μ achieving the
supremum

(3.7) sup
μ∈M(f,Λ)

(
hμ(f) +

∫
ϕdμ

)
.

Thus SRB measures are equilibrium states for the geometric potential ϕgeo, which
is Hölder continuous on every hyperbolic set as long as f is C1+α, by (3.1). This
means that existence and uniqueness of SRB measures is a special case of the
following classical result.

Theorem 3.6 ([Sin72,Bow75a,Rue78b]). Let Λ be a locally maximal hyperbolic set
for a C1+α diffeomorphism f , and let ϕ : Λ → R be a Hölder continuous potential.
Assume that f |Λ is topologically transitive. Then there exists a unique equilibrium
state μ for ϕ.

In §§3.5–3.6 we briefly recall two classical proofs of Theorem 3.6 which are based
on either symbolic representation of f |Λ as a topological Markov chain or on the
specification property of f |Λ. In §4.3 we introduce the tools that we will use to
provide a new proof which is based on some constructions in geometric measure
theory.

The function μ �→ hμ(f)+
∫
ϕdμ is affine. It follows that the unique equilibrium

state μmust be ergodic; otherwise, every element of its ergodic decomposition would
also be an equilibrium state. In fact, it has many good ergodic properties: one can
prove that it is Bernoulli, has exponential decay of correlations, and satisfies the
central limit theorem [Bow75a].

The fundamental result of thermodynamic formalism is the variational principle,
which establishes that the supremum in (3.7) is equal to the topological pressure of
ϕ, which can be defined as follows without reference to invariant measures.

Definition 3.7. Given an integer n ≥ 0, consider the dynamical metric of order n

(3.8) dn(x, y) = max{d(fkx, fky) : 0 ≤ k < n}
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and the associated Bowen balls Bn(x, r) = {y : dn(x, y) < r} for each r > 0. We
say that E ⊂ Λ is (n, r)-separated if dn(x, y) ≥ r for all x 
= y ∈ E, and that E is
(n, r)-spanning for X ⊂ Λ if X ⊂

⋃
x∈E Bn(x, r).

Writing Snϕ(x) =
∑n−1

k=0 ϕ(f
kx) for the nth Birkhoff sum along the orbit of x,

the partition sum of ϕ on a set X ⊂ Λ refers to one of the following two quantities:

Zspan
n (X,ϕ, r) := inf

{ ∑
x∈E

eSnϕ(x) : E ⊂ X is (n, r)-spanning for X
}
,

Zsep
n (X,ϕ, r) := sup

{ ∑
x∈E

eSnϕ(x) : E ⊂ X is (n, r)-separated
}
.

Then the topological pressure is given by17

(3.9) P (ϕ) = lim
r→0

lim
n→∞

1

n
logZspan

n (Λ, ϕ, r) = lim
r→0

lim
n→∞

1

n
logZsep

n (Λ, ϕ, r).

(One gets the same value if lim is replaced by lim.)

It is worth noting at this point that the definition of P (ϕ) bears a certain sim-
ilarity to the definition of box dimension: one covers X by a collection of balls
at a given scale, associates a certain weight to this collection, and then computes
the growth rate of this weight as the balls in the cover are refined. The differ-
ence is that here the refinement is done dynamically rather than statically, and
different balls carry different weight according to the ergodic sum Snϕ(x); we will
discuss this point further in §4.3 and §5. When ϕ = 0, we obtain the topological
entropy htop(f) = P (0), which gives the asymptotic growth rate of the cardinality
of an (n, r)-spanning or (n, r)-separated set. One can show that this is also the
asymptotic growth rate of the number of periodic orbits in Λ of length n.

Now the variational principle [Wal82, Theorem 9.10] can be stated as follows:

(3.10) P (ϕ) = sup
μ∈M(f,Λ)

(
hμ(f) +

∫
ϕdμ

)
.

The discussion at the beginning of this section shows that P (ϕgeo) = 0. Given a
potential ϕ, we see that an equilibrium state for ϕ is an invariant measure μϕ such
that P (ϕ) = hμϕ

(f) +
∫
ϕdμϕ. For the potential function ϕ = 0, the equilibrium

state μϕ = μ0 is the measure of maximal entropy.

3.5. First proof of Theorem 3.6: symbolic representation of f |Λ. The
original proof of Theorem 3.6 uses a symbolic coding of the dynamics on Λ. If
Λ = X1 ∪ · · · ∪ Xp, then we say that a bi-infinite sequence ω ∈ Ωp := {1, . . . , p}Z
codes the orbit of x ∈ Λ if fnx ∈ Xωn

for all n ∈ Z. When Λ is a locally max-
imal hyperbolic set, it is not hard to show that every ω ∈ Ωp codes the orbit of
at most one x ∈ Λ; if such an x exists, call it π(ω). Let Σ ⊂ Ωp be the set of all
sequences that code the orbit of some x ∈ Λ. Then Σ is invariant under the shift
map σ : Ωp → Ωp defined by (σω)n = ωn+1, and the map π : Σ → Λ is a topological

17The fact that the limits coincide is given by an elementary argument comparing Zspan
n and

Zsep
n . In fact, the limit in r can be removed due to expansivity of f |Λ; see Definition 3.9 and

[Wal82, Theorem 9.6].



EQUILIBRIUM STATES IN DYNAMICAL SYSTEMS 583

semiconjugacy, meaning that the following diagram commutes.

(3.11) Σ
σ ��

π

��

Σ

π

��
Λ

f �� Λ

If the sets Xi overlap, then the coding map may fail to be injective. One would like
to produce a coding space Σ with a nice structure for which the failure of injectivity
is small. This was accomplished by Sinăı when Λ = M [Sin68] and by Bowen in the
general setting [Bow70,Bow75a]. They showed that things can be arranged so that
Σ is defined by a nearest-neighbor condition, with the failure of injectivity confined
to sets that are invisible from the point of view of equilibrium states.

Theorem 3.8 ([Bow75a]). If Λ is a locally maximal hyperbolic set for a diffeomor-
phism f , then there is a Markov partition Λ = X1 ∪ · · · ∪Xp such that each Xi is
a rectangle that is the closure of its interior (in the induced topology on Λ) and the
corresponding coding space Σ is a topological Markov chain

(3.12) Σ = {ω ∈ Ωp : f(intXωn
) ∩ intXωn+1


= ∅ for all n ∈ Z},
and there is a set Λ′ ⊂ Λ such that

(1) every x ∈ Λ′ has a unique preimage under π, and
(2) if μ ∈ M(f,Λ) is an equilibrium state for a Hölder continuous potential

ϕ : Λ → R, then μ(Λ′) = 1.

With this result in hand, the problem of existence and uniqueness of equilibrium
states can be transferred from the smooth system (Λ, f, ϕ) to the symbolic system
(Σ, σ, ϕ̃ := ϕ ◦ π), where tools from statistical mechanics and Gibbs distributions
can be used. We recall here the most important ideas, referring to [Sin72,Bow75a,
Rue78b] for full details.

Give Σ the metric d(ω, ω′) = 2−min{|n|:ωn �=ω′
n}, so that two sequences are close

if they agree on a long interval of integers around the origin. The coding map π is
Hölder continuous in this metric, so ϕ̃ is also Hölder continuous. Fixing r ∈ ( 12 , 1),
the Bowen balls associated to the dynamical metric (3.8) are given by

(3.13) Bn(ω, r) = {ω′ ∈ Σ : ω′
i = ωi for all 0 ≤ i < n} =: Cn(ω),

which we call the n-cylinder of ω. Let En ⊂ Σ contain exactly one point from
each n-cylinder. Then En is both (n, r)-spanning and (n, r)-separated, and writing
Zn(Σ, ϕ̃) =

∑
ω∈En

eSnϕ̃(ω), one obtains

P (ϕ) = P (ϕ̃) = lim
n→∞

1

n
logZn(Σ, ϕ̃).

To understand what an equilibrium state for ϕ̃ should look like, recall that the
Kolmogorov–Sinăı entropy of a σ-invariant measure μ̃ is defined as

hμ̃(σ) = lim
n→∞

1

n

∑
ω∈En

−μ̃(Cn(ω)) log μ̃(Cn(ω)).

A short exercise using the invariance of μ̃ and the continuity of ϕ shows that∫
ϕ̃ dμ̃ = lim

n→∞

∑
ω∈En

∫
Cn(ω)

ϕ̃ dμ̃ = lim
n→∞

∑
ω∈En

μ̃(Cn(ω)) ·
1

n
Snϕ̃(ω).
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Thus maximizing hμ̃(σ) +
∫
ϕ̃ dμ̃ involves maximizing the limit of a sequence of

expressions of the form F (p1, . . . , pN ) =
∑N

i=1 pi(− log pi+ai), where N(n) = #En

and pi, ai are given by μ̃(Cn(ω)) and Snϕ̃(ω), so that pi ≥ 0 and
∑

i pi = 1. It
is a calculus exercise to show that with ai fixed, F achieves its maximum value of
F = log

∑
eaj = logZn(Σ, ϕ̃) ≈ nP (ϕ) when pi = eai/

∑
j e

aj ≈ eaie−nP (ϕ).

This last relation can be rewritten as μ̃(Cn(ω)) ≈ eSnϕ̃(ω)e−nP (ϕ). With this in
mind, one can use tools from functional analysis and statistical mechanics to show
that there is a σ-invariant ergodic measure μ̃ on Σ which has the Gibbs property
with respect to ϕ̃: there is Q > 0 such that for every ω ∈ Σ and n ∈ N, we have

(3.14) Q−1 ≤ μ̃(Cn(ω))

exp(−P (ϕ)n+ Snϕ̃(ω))
≤ Q.

By a general result that we will state momentarily, this is enough to guarantee
that μ̃ is the unique equilibrium state for (Σ, σ, ϕ̃), and hence by Theorem 3.8, its
projection μ = π∗μ̃ is the unique equilibrium state for (Λ, f, ϕ).

To formulate the link between the Gibbs property and equilibrium states, we
first recall the following more general definitions.

Definition 3.9. Given a compact metric space X, a homeomorphism f : X → X is
said to be expansive if there is ε > 0 such that every x 
= y ∈ X has d(fnx, fny) > ε
for some n ∈ Z.

Definition 3.10. A measure μ on X is a Gibbs measure for ϕ : X → R if for every
small r > 0 there is Q = Q(r) > 0 such that for every x ∈ X and n ∈ N, we have

(3.15) Q−1 ≤ μ(Bn(x, r))

exp(−P (ϕ)n+ Snϕ(x))
≤ Q.

Note that σ : Σ → Σ is expansive, and that (3.14) implies (3.15) in this symbolic
setting. Then uniqueness of the equilibrium state is a consequence of the following
general result.

Proposition 3.11 ([Bow75, Lemma 8]). If X is a compact metric space, f : X →
X is an expansive homeomorphism, and μ is an ergodic f -invariant Gibbs measure
for ϕ : X → R, then μ is the unique equilibrium state for ϕ.

We remark that (3.15) does not require the Gibbs measure to be invariant.
Indeed, one can separate the problem of finding a unique equilibrium state into
two parts: first construct a Gibbs measure without worrying about whether or
not it is invariant; then find a density function (bounded away from 0 and ∞) that
produces an ergodic invariant Gibbs measure, which is the unique equilibrium state
by Proposition 3.11.

3.6. Second proof of Theorem 3.6: specification property. There is another
proof of Theorem 3.6 which is due to Bowen [Bow75] and avoids symbolic dynam-
ics. Instead, it uses the fact that f satisfies the following specification property on
a topologically mixing locally maximal hyperbolic set Λ. For each δ > 0, there
is an integer p(δ) such that given any points x1, . . . , xn ∈ Λ and intervals of inte-
gers I1, . . . In ⊂ [a, b] with d(Ii, Ij) ≥ p(δ) for i 
= j, there is a point x ∈ Λ with

f b−a+p(δ)(x) = x and d(fk(x), fk(xi)) < δ for k ∈ Ii. Roughly speaking, f satis-
fies specification if for every finite number of orbit segments one can find a single
periodic orbit that consecutively approximates each segment with a fixed precision
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δ > 0 and such that transition times are bounded by p(δ). This property allows one
to study some topological and statistical properties of f by only analyzing periodic
orbits.

The construction of the Gibbs measure μ̃ in the first approach uses eigendata of a
certain linear operator acting on an appropriately chosen Banach space of functions
on Λ. The specification property allows one to use a more elementary construction
and obtain a Gibbs measure on Λ as a weak* limit point of measures supported on
periodic orbits. Let Pern := {x ∈ Λ : fnx = x} and Zper

n (ϕ) :=
∑

x∈Pern
eSnϕ(x)

(compare this to Zspan
n and Zsep

n from Definition 3.7). Then consider the f -invariant
Borel probability measures given by

μn :=
1

Zper
n (ϕ)

∑
x∈Pern

eSnϕ(x)δx,

where δx is the atomic probability measure with δx({x}) = 1.
Using some counting estimates on the partition sums Zper

n (ϕ) provided by the
specification property, one can prove that every weak* limit point μ of the sequence
μn is an ergodic Gibbs measure as in (3.15). Then Proposition 3.11 shows that μ
is the unique equilibrium state for ϕ; a posteriori, the sequence μn converges.

4. Description of reference measures and main results

In this section, and especially in Theorem 4.11, we describe a new proof of The-
orem 3.6 that avoids Markov partitions and the specification property and instead
mimics the geometric construction of SRB measures in §3.3. Given a locally max-
imal hyperbolic set Λ and a Hölder continuous potential ϕ : Λ → R, we define for
each x ∈ Λ a measure mC

x on X = V u
loc(x) ∩ Λ such that the sequence of measures

(4.1) μn =
1

n

n−1∑
k=0

fk
∗m

C
x

mC
x(X)

converges to the unique equilibrium state.18 In §4.2 we give some motivation for the
properties we require the reference measures mC

x to have, then in §4.3 we explain
our construction of these measures. In §4.4 we state our main results establishing
the properties of mC

x, including how these measures can be used to prove Theorem
3.6. In §6 we outline the proofs of these results, referring to [CPZ18] for complete
details and for proofs of various technical lemmas.

4.1. Conditional measures as reference measures. We start with the obser-
vation that if we were already in possession of the equilibrium state μ, then the
conditional measures of μ would immediately define reference measures for which
the construction just described produces μ. Indeed, suppose X is a compact topo-
logical space, f : X → X is a continuous map, and μ is a finite f -invariant ergodic
Borel probability measure on X. Given Y ⊂ X with μ(Y ) > 0 and a measurable

partition ξ of Y , let μ̃ be the corresponding factor measure on Ỹ := Y/ξ, and let

{μξ
W : W ∈ ξ} be the conditional measures on partition elements.19 We prove the

18To be more precise we need first to extend mC
x from X to a measure on Λ by assigning to

any Borel set E ⊂ Λ the value mC
x(E ∩X). We shall always assume that in (4.1) mC

x is extended
in this way.

19Note that ξ is not assumed to have any dynamical significance; in particular it need not be a
partition into local unstable leaves, although this is the most relevant partition for our purposes.
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following result in §6.4; it follows from an even more general result in ergodic theory
that we state below as Proposition 6.11.

Theorem 4.1. For μ̃-almost every W ∈ ξ, any probability measure ν on W such

that ν � μξ
W has the property that νn := 1

n

∑n−1
k=0 f

k
∗ ν converges in the weak∗

topology to the measure μ.

Of course, Theorem 4.1 is not much help in finding the equilibrium state μ,

because we need to know μ to obtain the conditional measures μξ
W . We must

construct the reference measure mC
x independently, without using any knowledge

of existence of equilibrium states. Once we have done this, we will eventually show
that mC

x is equivalent to the conditional measure of the constructed equilibrium
state, so our approach not only allows us to develop a new way of constructing
equilibrium states, but also describes their conditional measures.

4.2. Conditions to be satisfied by reference measures. To motivate the prop-
erties that our reference measures must have, we first consider the specific case when
Λ is an attractor and outline the steps in constructing SRB measures.

(1) Given a local unstable leaf W = V u
loc(x) through x ∈ Λ and n ≥ 0, the

image Wn := fn(W ) is contained in the union of local leaves V u
loc(yi) for

some points y1, . . . , ys ∈ Wn, and the leaf volume mu
x is pushed forward to

a measure fn
∗ m

u
x such that (fn

∗ m
u
x)|V u

loc(yi) � mu
yi

for each i.

(2) Each μn := 1
n

∑n−1
k=0 f

k
∗m

u
x can be written as a convex combination of mea-

sures with the form ρin dm
u
yi

for some functions ρin : V
u
loc(yi) → [0,∞) that

are uniformly bounded away from 0 and ∞.
(3) To show that any limit measure μ = limj→∞ μnj

has absolutely continuous
conditional measures on unstable leaves, first observe that given a rectangle
R, the partition ξ into local unstable leaves can be approximated by a
refining sequence of finite partitions ξ
, and the conditional measures μξ

x

are the weak* limits of the conditional measures μξ�
x as � → ∞.

(4) The bounds on the density functions ρin allow us to control the conditional
measures μξ�

x , and hence to control μξ
x as well; in particular, these measures

are absolutely continuous with respect to leaf volume, and thus μ is an SRB
measure.

Now we describe two crucial properties of the leaf volumes mu
x, which we will

eventually need to mimic with our reference measuresmC
x. The first of these already

appeared in (1.1) and describes how mu
x scales under iteration by f ; this will let

us conclude that the SRB measure μ is an equilibrium state for ϕgeo. The second
property describes howmu

x behaves when we slide along stable leaves via a holonomy
map; this issue has so far been ignored in our discussion, but plays a key role in
the proof that the SRB measure μ is ergodic, and hence is the unique equilibrium
state for ϕgeo.

4.2.1. Scaling under iteration. Given any x, y ∈ Λ and A ⊂ f(V u
loc(x))∩V u

loc(y), we
have

f∗m
u
x(A) = mu

x(f
−1A) =

∫
A

| det f−1|Eu(z)| dmu
y (z) =

∫
A

eϕ
geo(f−1z) dmu

y (z),
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and so the Radon–Nikodym derivative comparing the family of measures mu
x to

their pushforwards is given in terms of the geometric potential

(4.2)
d(f∗m

u
x)

dmu
y

(z) = eϕ
geo(f−1(z)).

Iterating this, we see that given A ⊂ fn(V u
loc(x)) ∩ V u

loc(y), we have

(4.3) fn
∗ m

u
x(A) = mu

x(f
−nA) =

∫
A

e
∑n

k=1 ϕgeo(f−kz) dmu
y (z).

By Hölder continuity of ϕgeo and the fact that f−1 contracts uniformly along each
V u
loc, one can easily show that

(4.4)
∣∣∣ n∑
k=1

(
ϕgeo(f−kz1)− ϕgeo(f−kz2)

)∣∣∣ ≤ Qu for all z1, z2 ∈ V u
loc(y),

where Qu is a constant independent of y ∈ Λ, z1, z2 ∈ V u
loc(y), and n ∈ N (see

Lemma 6.6 for details). Together with (4.3), this gives

(4.5) e−Qu ≤ mu
x(f

−nA)

eSnϕgeo(x)mu
y(A)

≤ eQu for all A ⊂ fn(V u
loc(x)) ∩ V u

loc(y).

In particular, writing Bu(y, r) = B(y, r) ∩ V u
loc(y), we observe that for each r > 0

there is a constant K = K(r) > 0 such that mu
y(B

u(y, r)) ∈ [K−1,K] for all y ∈ Λ,
and deduce from (4.5) that the u-Bowen ball

Bu
n(x, r) := {z ∈ V u

loc(x) : dn(x, z) < r} = f−nBu(fnx, r)

admits the leaf volume estimate

(4.6) K−1e−Qu ≤ mu
x(B

u
n(x, r))

eSnϕgeo(x)
≤ KeQu .

Definition 4.2. Consider a family of measures {μx : x ∈ Λ} such that μx is
supported on V u

loc(x). We say that this family has the u-Gibbs property20 with
respect to the potential function ϕ : Λ → R if there is Q1 = Q1(r) > 0 such that
for all x ∈ Λ and n ∈ N, we have

(4.7) Q−1
1 ≤ μx(B

u
n(x, r))

e−nP (ϕ)+Snϕ(x)
≤ Q1.

In particular, (4.6) says thatmu
x has the u-Gibbs property with respect to the po-

tential function ϕgeo. Since the SRB measure μ constructed above has conditional
measures that are given by multiplying the leaf volumes mu

x by nice density func-
tions, one can use (4.6) to ensure that the conditional measures of μ also have the
u-Gibbs property. Integrating these conditional measures gives the Gibbs property
for μ, and then some straightforward estimates involving Zspan

n (Λ, ϕ, r) demonstrate
that μ is an equilibrium state corresponding to the function ϕgeo.

20Note that this is a different notion than the idea of u-Gibbs state from [PS82].
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4.2.2. Sliding along stable leaves. It remains, then, to show that μ is the unique
equilibrium state for ϕgeo; this will follow from Proposition 3.11 if μ is proved to
be ergodic. To establish ergodicity, we use the Hopf argument, which goes back to
E. Hopf’s work on geodesic flow over surfaces [Hop39]. The first step is to observe
that if μ is any invariant measure, then by Birkhoff’s ergodic theorem,21 for every
ψ ∈ L1(μ), the forward and backward ergodic averages exist and agree for μ-a.e. x:

(4.8) lim
n→∞

1

n

n−1∑
k=0

ψ(fkx) = lim
n→∞

1

n

n−1∑
k=0

ψ(f−kx).

Let B ⊂ Λ be the set of points where the limits in (4.8) exist and agree for every
continuous ψ : Λ → R; such points are called Birkhoff regular. For each x ∈ B,
write ψ(x) for the common value of these limits; note that ψ is defined μ-a.e. It is
not hard to prove that μ is ergodic if and only if the function ψ : B → R is constant
μ-a.e. for every continuous ψ : Λ → R. By topological transitivity and the fact that
ψ ◦ f = ψ on B, one obtains the following standard result, whose proof we omit.

Lemma 4.3. An f -invariant measure μ is ergodic if and only if for every contin-
uous ψ : Λ → R and every rectangle R ⊂ Λ, the function ψ : B ∩R → R is constant
μ-a.e.

Now comes the central idea of the Hopf argument: Given ψ ∈ C(Λ), if ψ(x)
exists, then a short argument using the left-hand side of (4.8) gives ψ(y) = ψ(x)
for all y ∈ B ∩ V s

R(x). Similarly, ψ is constant on B ∩ V u
R (x) using the right-hand

side of (4.8).
We want to conclude the proof of ergodicity by saying something like the follow-

ing:

Since B has full measure in R, it has full measure in almost every
stable and unstable leaf in R. Thus there is p ∈ R such that
Bp :=

⋃
x∈B∩V u

R (p) B ∩ V s
R(x) has full measure in R, and by the

previous paragraph, ψ is constant on Bp, so Lemma 4.3 applies.

There is a subtlety involved in making this step rigorous. To begin with, the
term “full measure” is used in two different ways: “B has full measure in R” means
that its complement Bc = R \ B has μ(R \ B) = 0, while “B has full measure in
the stable leaf V s

R(x)” means that μs
x(Bc) = 0, where μs

x is the conditional measure
of μ along the stable leaf. Using the analogue of (3.3)–(3.4) for the decomposition
into stable leaves, we have

(4.9) μ(Bc) =

∫
R

μs
x(Bc) dμ(x) =

∫
V u
R (p)

μs
x(Bc) dμ̃p(x),

where μ̃p is the measure on V u
R (p) defined by

μ̃p(A) = μ
( ⋃
x∈A

V s
R(x)

)
.

21This is a more general version of the ergodic theorem than the one we mentioned in §2.1.
This version applies even when μ is not ergodic, but does not require that the limits in (4.8) are

equal to
∫
ψ dμ; instead, one obtains

∫
ψ dμ =

∫
ψ dμ, which implies the earlier version in the case

when ψ is constant μ-a.e.
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Let B′ = {x ∈ R : μs
x(Bc) = 0}. It follows that

0 = μ(Bc) =

∫
R

μs
x(Bc) dμ(x) =

∫
R\B0

μs
x(Bc) dμ(x),

and since μs
x(Bc) > 0 for all x ∈ R\B0 by definition, we conclude that μ(R\B′) = 0;

in other words, μs
x(Bc) = 0 for μ-a.e. x ∈ R. A similar argument produces B′′ ⊂ B′

such that μ(R \ B′′) = 0 and μu
x(Bc) = μs

x(Bc) = 0 for every x ∈ B′′.
So far, things are behaving as we expect. Now, can we conclude that μ(Bp) =

μ(R) for p ∈ B′′, thus completing the proof of ergodicity? Using (4.9), we have

μ(Bp) =

∫
V u
R (p)

μs
x

( ⋃
y∈B∩V u

R (p)

B ∩ V s
R(y)

)
dμ̃p(x)

≥
∫
B′′∩V u

R (p)

μs
x(B) dμ̃p(x) = μ̃p(B′′).

We would like to say that μ̃p(B′′) = μ̃p(V
u
R (p)) = μ(R), and conclude that Bp has

full μ-measure in R. We know that μu
p(B′′) = μu

p(V
u
R (p)), and so the proof will be

complete if the answer to the following question is “yes”.

Question. Are the measures μ̃p and μu
p on V u

R (p) equivalent?

Note that the measures μu
p are defined in terms of the foliation V u

R , while the
measures μ̃p are defined in terms of the foliation V s

R. We can write the measures
μ̃p in terms of μu

p as follows. Given A ⊂ V u
R (p), we have

(4.10) μ̃p(A) = μ

( ⋃
x∈A

V s
R(x)

)
=

∫
R

μu
y{V u

R (y) ∩ V s
R(x) : x ∈ A} dμ(y).

For each p, y ∈ R, consider the (stable) holonomy map πpy : V
u
R (p) → V u

R (y) defined
by πpy(x) = V u

R (y)∩V s
R(x), which maps one unstable leaf to another by sliding along

stable leaves ; see Figure 4.1. Then (4.10) becomes

μ̃p(A) =

∫
R

(μu
y ◦ πpy)(A) dμ(y).

In other words, μ̃p is the average of the conditional measures π∗
pyμ

u
y = μu

y ◦ πpy

taken over all y ∈ R.

Definition 4.4. Let {νx}x∈R be a family of measures on R with the property that
each νx is supported on V u

R (x), and let νx = νy whenever y ∈ V u
R (x). We say

x

y πpy(x)πpy(A)

V s
R(x)

V u
R (y)

A

p
V u
R (p)

Figure 4.1. The stable holonomy map from V u
R (p) to V u

R (y)
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that the family {νx} is absolutely continuous22 with respect to stable holonomies if
π∗
xyνy � νx for all x, y ∈ R.

The preceding arguments lead to the following result; full proofs (and further
discussion) can be found in [CHT16].

Proposition 4.5. Let Λ be a topologically transitive hyperbolic set for a C1+α

diffeomorphism f , and let μ be an f -invariant measure on Λ. Suppose that for
every rectangle R ⊂ Λ with μ(R) > 0, the unstable conditional measures μu

x are
absolutely continuous with respect to stable holonomies. Then μ is ergodic.

4.3. Construction of reference measures. In light of the previous section, our
goal is to construct for each potential ϕ a reference measure mC

x on each leaf V u
loc(x)

satisfying a property analogous to (4.2) with ϕ in place of ϕgeo, together with the
absolute continuity property from Definition 4.4.

From now on we fix a local unstable manifold W = V u
loc(x) of size τ and consider

the set X = W ∩ Λ on which we will build our reference measure. Before treating
general potentials, we start with the geometric potential ϕgeo, and we assume that
Λ is an attractor for f , so that W ⊂ Λ. This is necessary for the moment since the
measure we build will be supported on W ∩Λ, and the support of mW is all of W ;
in the general construction below we will not require Λ to be an attractor. For the
geometric potential ϕgeo, we know the reference measure mC

x should be equivalent
to the leaf volume mW on W .23 Leaf volume is equivalent to the Hausdorff measure
mH(·, α) with α = dimEu, which is defined by

(4.11) mH(Z, α) := lim
ε→0

inf
∞∑
i=1

(diamUi)
α,

where the infimum is taken over all collections {Ui} of open sets Ui ⊂ W with
diamUi ≤ ε which cover Z ⊂ W .

We want to describe a measure that is equivalent tomH(·, α) but whose definition
uses the dynamics of f . In (4.11), the covers used to measure Z were refined
geometrically by sending ε → 0. We consider instead covers that refine dynamically :
we restrict the sets Ui to be u-Bowen balls Bu

n(x, r) = Bn(x, r)∩W , and refine the
covers by requiring n to be large rather than by requiring r to be small. Note that
if Ui is a metric ball B(x, ε), then (diamUi)

α ≈ mW (Ui) up to a multiplicative
factor that is bounded away from 0 and ∞. For a u-Bowen ball, on the other hand,
(4.6) gives mW (Bu

n(x, r)) ≈ eSnϕ
geo(x), and so we use this quantity to compute the

weight of the cover. This suggests that we should fix r > 0 and define the measure
of Z ⊂ W by

(4.12) mϕgeo

x (Z) := lim
N→∞

inf
∞∑
i=1

eSni
ϕgeo(xi),

where the infimum is taken over all collections {Bu
ni
(xi, r)} of u-Bowen balls with

xi ∈ W , ni ≥ N , which cover Z. It is relatively straightforward to derive property
(4.2) from (4.12).

22There is a related, but distinct, notion of absolute continuity of a foliation (with respect to
volume), which also plays a key role in smooth ergodic theory; see [BP07, §8.6].

23From Theorem 4.1 we see that the equivalence class of the measure is the crucial thing for
the geometric construction to work.



EQUILIBRIUM STATES IN DYNAMICAL SYSTEMS 591

Now it is nearly apparent what the definition should be for a general potential:
we want to replace ϕgeo with ϕ in (4.12). There is one small subtlety, though. First,
Definition 3.7 gives P (ϕ+c) = P (ϕ)+c for c ∈ R. This along with the definition of
equilibrium state and the variational principle (3.10) shows that adding a constant
to ϕ does not change its equilibrium states, and thus we should also expect that ϕ
and ϕ + c produce the same reference measure on W ∩ Λ. For this to happen, we
need to modify (4.12) so that adding a constant to ϕ does not affect the value. This
can be achieved by multiplying each term in the sum by e−niP (ϕ). Note that since
P (ϕgeo) = 0, this does not modify (4.12). Thus we make the following definition.

Definition 4.6. Let 0 < r < τ
3 . We define a measure on X := W ∩ Λ by

(4.13) mC
x(Z) := lim

N→∞
inf

∑
i

e−niP (ϕ)eSni
ϕ(xi),

where the infimum is taken over all collections {Bu
ni
(xi, r)} of u-Bowen balls with

xi ∈ X, ni ≥ N , which cover Z, and for convenience we write C = (ϕ, r) to keep
track of the data on which the reference measure depends.

Both definitions (4.12) and (4.13) are specific cases of the Carathéodory mea-
sure produced by a dynamically defined Carathéodory dimension structure, which
we discuss at greater length in §5; this is the Pesin–Pitskel′ definition of topolog-
ical pressure [PP84] that generalized Bowen’s definition of topological entropy for
noncompact sets [Bow73]. In particular, Proposition 5.4 establishes the crucial
property that every local unstable leaf carries the same topological pressure as the
entire set Λ.

4.4. Statements of main results. Now we state the most important properties of
mC

x and show how it can be used as a reference measure to construct the equilibrium
state for ϕ. All results in this section are proved in detail in [CPZ18];24 we outline
the proofs in §6. Our first main result shows that the measure mC

x is finite and
nonzero.

Theorem 4.7 ([CPZ18, Theorem 4.2]). Let Λ be a topologically transitive locally
maximal hyperbolic set for a C1+α diffeomorphism f , and let ϕ : Λ → R be Hölder
continuous. Fix r as in Definition 4.6, and for each x ∈ Λ, let mC

x be given by (4.13),
where C = (ϕ, r). Then there is K > 0 such that for every x ∈ Λ, mC

x is a Borel
measure on V u

loc(x)∩Λ with mC
x(V

u
loc(x)∩Λ) ∈ [K−1,K]. If V u

loc(x)∩V u
loc(y)∩Λ 
= ∅,

then mC
x and mC

y agree on the intersection.

As described in §4.2, we need to understand how the measures mC
x transform

under (1) the dynamics of f and (2) sliding along stable leaves via holonomy. For
the first of these properties, the following result gives the necessary scaling property
analogous to (4.2).

Theorem 4.8 ([CPZ18, Theorem 4.4]). Under the hypotheses of Theorem 4.7, for
every x ∈ Λ, we have f∗mC

f(x) := mC
f(x) ◦ f � mC

x, with Radon–Nikodym derivative

eP (ϕ)−ϕ, so that (1.2) holds.

24The numbering of references within [CPZ18] refers to the first arXiv version; it is possible
that the numbering will change between this and the final published version.
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Corollary 4.9 ([CPZ18, Corollary 4.5]). Under the hypotheses of Theorem 4.7,
the family of measures {mC

x}x∈Λ has the u-Gibbs property from Definition 4.2. In
particular, for every relatively open U ⊂ V u

loc(x) ∩ Λ, we have mC
x(U) > 0.

The final crucial property of the reference measures is that they are absolutely
continuous under holonomy.

Theorem 4.10 ([CPZ18, Theorem 4.6]). Under the hypotheses of Theorem 4.7,
there is a constant Q2 > 0 such that for every rectangle R ⊂ Λ and every y, z ∈ R,
the measures π∗

yzm
C
z = mC

z ◦ πyz and mC
y are equivalent on V u

R (y), with

Q−1
2 ≤

dπ∗
yzm

C
z

dmC
y

≤ Q2.

Note that Theorem 4.10 in particular shows that given a rectangle R ⊂ Λ, if
mC

x(V
u
R (x)) > 0 for some x ∈ R, then the same is true for every x ∈ R. Moreover,

by Corollary 4.9 this happens whenever R is the closure of its interior (relative to
Λ).

Using these properties of the measures mC
x, we can carry out the geometric

construction of equilibrium states; see §6 for the proof of the following.

Theorem 4.11. Under the hypotheses of Theorem 4.7, the following are true.

(1) For every x ∈ Λ, the sequence of measures μn :=
1
n

∑n−1
k=0 f

k
∗m

C
x/m

C
x(V

u
loc(x))

from (4.1) is weak* convergent as n → ∞ to a probability measure μϕ that
is independent of x.

(2) The measure μϕ is ergodic, gives positive weight to every open set in Λ, has
the Gibbs property (3.15), and is the unique equilibrium state for (Λ, f, ϕ).

(3) For every rectangle R ⊂ Λ with μϕ(R) > 0, the conditional measures μu
y

generated by μϕ on unstable sets V u
R (y) are equivalent for μϕ-almost every

y ∈ R to the reference measures mC
y |V u

R (y). Moreover, there exists Q3 > 0,

independent of R and y, such that for μϕ-almost every y ∈ R we have25

(4.14) Q−1
3 ≤

dμu
y

dmC
y

(z)mC
y(R) ≤ Q3 for μu

y -a.e. z ∈ V u
R (y).

Theorems 4.10 and 4.11(3) allow us to show that the equilibrium state μϕ has
local product structure, as follows. Consider a rectangle R ⊂ Λ with μϕ(R) > 0,
and a system of conditional measures μu

x with respect to the partition ξ of R into
local unstable leaves. Given p ∈ R, define a measure μ̃p on V s

R(p) by μ̃p(A) =
μϕ(

⋃
x∈A V u

R (x)) as in the paragraph preceding (3.4). Since R is homeomorphic to
the direct product of V u

R (p) and V s
R(p), the product of the measures μu

p and μ̃p gives
a measure on R that we denote by μu

p ⊗ μ̃p. The following local product structure
result is a consequence of Theorem 4.10, Theorem 4.11(3), and (3.4); see §6.3.3.

Corollary 4.12. For every rectangle R and μϕ-almost every p ∈ R, we have
π∗
pyμ

u
y ∼ μu

p for μ̃p−almost every y ∈ V s
R(p), and thus μϕ ∼ μu

p ⊗ μ̃p. More-
over, it follows that μ̃p is equivalent to μs

p, the conditional measure on V s
R(p) with

respect to the partition into stable leaves, for μϕ-a.e. p ∈ R.

25It is reasonable to expect, based on analogy with the case of SRB measure, that the Radon–
Nikodym derivative in (4.14) is in fact Hölder continuous and is given by an explicit formula. At
present we can only prove this for a modified version of mC

x, whose definition we omit here.
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We remark that Corollary 4.12 was also proved by Leplaideur [Lep00]. His proof
uses Markov partitions to construct families of leaf measures with the properties
given in Theorems 4.7 and 4.10. Historically, this description of μϕ in terms of its
direct product structure dates back to Margulis [Mar70], who described the unique
measure of maximal entropy for a transitive Anosov flow as a direct product of leaf-
wise measures satisfying the continuous-time analogue of (1.2) for ϕ = 0. In this
specific case the equivalences in Corollary 4.12 can be strengthened to equalities.

5. Carathéodory dimension structure

The definition of the measures mC
x in (4.13) is a specific instance of the Carathé-

odory dimension construction introduced by the second author in [Pes88] (see also
[Pes97, §10]). It is a substantial generalization and adaptation to dynamical sys-
tems of the classical construction of Carathéodory measure in geometric measure
theory, of which Lebesgue measure and Hausdorff measure are the most well-known
examples. We briefly recall here the Carathéodory dimension construction together
with some of its basic properties.

5.1. Carathéodory dimension and measure. A Carathéodory dimension struc-
ture, or C-structure, on a set X is given by the following data.

(1) An indexed collection of subsets of X, denoted F = {Us : s ∈ S}.
(2) Functions ξ, η, ψ : S → [0,∞) satisfying the following conditions:

(A1) if Us = ∅, then η(s) = ψ(s) = 0; if Us 
= ∅, then η(s) > 0 and
ψ(s) > 0;26

(A2) for any δ > 0 one can find ε > 0 such that η(s) ≤ δ for any s ∈ S with
ψ(s) ≤ ε;

(A3) for any ε > 0 there exists a finite or countable subcollection G ⊂ S
that covers X (meaning that

⋃
s∈G Us ⊃ X) and has ψ(G) :=

sup{ψ(s) : s ∈ S} ≤ ε.

Note that no conditions are placed on ξ(s), which we interpret as the weight of Us.
The values η(s) and ψ(s) can each be interpreted as a size or scale of Us; we allow
these functions to be different from each other.

The C-structure (S,F , ξ, η, ψ) determines a one-parameter family of outer mea-
sures on X as follows. Fix a nonempty set Z ⊂ X, and consider some G ⊂ S that
covers Z (meaning that

⋃
s∈G Us ⊃ Z). Then ψ(G) is interpreted as the largest size

of sets in the cover, and we set for each α ∈ R,

(5.1) mC(Z, α) := lim
ε→0

inf
G

∑
s∈G

ξ(s)η(s)α,

where the infimum is taken over all finite or countable G ⊂ S covering Z with
ψ(G) ≤ ε. Defining mC(∅, α) := 0, it follows from [Pes97, Proposition 1.1] that
mC(·, α) is an outer measure. The measure induced by mC(·, α) on the σ-algebra of
measurable sets is the α-Carathéodory measure; it need not be σ-finite or nontrivial.

Proposition 5.1 ([Pes97, Proposition 1.2]). For any set Z ⊂ X, there exists a
critical value αC ∈ R such that mC(Z, α) = ∞ for α < αC and mC(Z, α) = 0 for
α > αC .

26In [Pes97], condition (A1) includes the requirement that there is s0 ∈ S such that Us0 = ∅.
Here we remove this assumption and instead define mC(∅, α) := 0, which is equivalent.
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We call dimC Z = αC the Carathéodory dimension of the set Z associated to
the C-structure (S,F , ξ, η, ψ). By Proposition 5.1, α = dimC X is the only value
of α for which (5.1) can possibly produce a nonzero finite measure on X, though it
is still possible that mC(X, dimC X) is equal to 0 or ∞.

5.2. Examples of C-structures. The C-structures in which we are interested are
generated by other structures on the set X.

5.2.1. Hausdorff dimension and measure. If X is a metric space, then consider the
C-structure given by S := X × (0,∞) and

F := {B(x, r) : x ∈ X, r > 0}, ξ(x, r) = 1, η(x, r) = ψ(x, r) = r.

Comparing (4.11) and (5.1), we see that mC(Z, α) = mH(Z, α) for every Z ⊂ X,
and the Hausdorff dimension dimH(Z) is the critical value such that mH(Z, α) is
infinite for α < dimH(Z) and 0 for α > dimH(Z). Thus dimC Z = dimH Z, and the
outer measuremC(·, dimH Z) on Z is the (dimH Z)-dimensional spherical Hausdorff
measure.

It is useful to understand when an outer measure defines a Borel measure on a
metric space. Recall that an outer measure m on a metric space (X, d) is a metric
outer measure if m(E ∪ F ) = m(E) +m(F ) whenever

d(E,F ) := inf{d(x, y) : x ∈ E, y ∈ F )} > 0.

Proposition 5.2 ([Fed69, §2.3.2(9)]). If X is a metric space and m is a metric
outer measure on X, then every Borel set in X is m-measurable, and so m defines
a Borel measure on X.

Given any E,F ⊂ X, with d(E,F ) > 0, we see that any cover G ⊂ F of E ∪ F
with ψ(G) ≤ d(E,F )/2 can be written as the disjoint union of a cover of E and a
cover of F ; using this it is easy to show that mH(E∪F, α) = mH(E,α)+mH(F, α),
so mH(·, α) is a metric outer measure. By Proposition 5.2, this defines a Borel
measure on X.

5.2.2. Topological pressure as a Carathéodory dimension. Let f be a continuous
map of a compact metric space X, and let ϕ : X → R be a continuous function.
Then as described already in §4.3, one can consider covers that are refined dynami-
cally rather than geometrically. This was done first by Bowen to define topological
entropy in a more general setting [Bow73], and then extended by Pesin and Pitskel′

to topological pressure [PP84]. Here we give a definition that differs slightly from
[PP84] but gives the same dimensional quantity [Cli11, Proposition 5.2].

Fix r > 0 and to each (x, n) ∈ X × N, associate the Bowen ball Bn(x, r). Let
F be the collection of all such Bowen balls, and let S = X × N, so s = (x, n) has
Us = Bn(x, r). Now put

(5.2) ξ(x, n) = eSnϕ(x), η(x, n) = e−n, ψ(x, n) = 1
n .

It is easy to see that (S,F , ξ, η, ψ) satisfies (A1)–(A3), so this defines a C-structure.
The associated outer measure is given by

(5.3) mC(Z, α) = lim
N→∞

inf
G

∑
(x,n)∈G

eSnϕ(x)e−nα,

where the infimum is over all G ⊂ S such that
⋃

(x,n)∈G Bn(x, r) ⊃ Z and n ≥ N

for all (x, n) ∈ G.
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Remark 5.3. The measure mC(·, α) is not necessarily a metric outer measure, since
there may be x 
= y ∈ X such that y ∈ Bn(x, r) for all n ∈ N.27 Thus, Borel sets
in X need not be mC(·, α)-measurable.

Writing dimr
C Z for the critical value of α, where the superscript emphasizes the

dependence on r, the quantity

PZ(ϕ) = lim
r→0

dimr
C Z

is called the the topological pressure of ϕ on the set Z. Observe that this notion
of topological pressure is more general than the one introduced in Definition 3.7 as
it is more suited to arbitrary subsets Z (which need not be compact or invariant);
both definitions agree when Z = X [Pes97, Theorem 11.5].

5.2.3. A C-structure on local unstable leaves. Now consider the setting of Theorems
4.7–4.10. Λ is a hyperbolic set for a C1+α diffeomorphism f , and ϕ : Λ → R is
Hölder continuous. Fix r > 0 and define a C-structure on X = V u

loc(x) ∩ Λ, which
depends on ϕ, in the following way. To each (x, n) ∈ X × N, associate the Bowen
ball Bn(x, r). Let F be the collection of all such balls, and let S = X × N, so
s = (x, n) has Us = Bn(x, r). Now put

(5.4) ξ(x, n) = eSnϕ(x), η(x, n) = e−n, ψ(x, n) = 1
n .

Again, (S,F , ξ, η, ψ) satisfies (A1)–(A3) and defines a C-structure, whose associ-
ated outer measure is given by

(5.5) mC(Z, α) = lim
N→∞

inf
G

∑
(x,n)∈G

eSnϕ(x)e−nα,

where the infimum is over all G ⊂ S such that
⋃

(x,n)∈G Bn(x, r) ⊃ Z and n ≥ N

for all (x, n) ∈ G.
Given x ∈ Λ, we are interested in two things:

(1) the Carathéodory dimension of X, as determined by this C-structure; and
(2) the (outer) measure on X defined by (5.3) at α = dimC(X).

The first of these is settled by the following, which is proved in [CPZ18, Theorem
4.2(1)].

Proposition 5.4. With Λ, f, ϕ, r as above, and the C-structure defined on X =
V u
loc(x)∩Λ by Bowen balls Bn(x, r) and (5.4), we have dimr

C(X) = P (ϕ) for every
x ∈ Λ. In particular, this implies that PX(ϕ) = PΛ(ϕ).

Note that on each X = V u
loc(x)∩Λ, covers by Bowen balls Bn(x, r) are the same

thing as covers by u-Bowen balls Bu
n(x, r) = Bn(x, r) ∩ V u

loc(x), which we used in
§4.3. Thus when we put α = P (ϕ), we see that (5.5) agrees with (4.13) for every
Z ⊂ X, and in particular, the quantity mC

x(Z) defined in (4.13) is the outer measure
on X associated to the C-structure above and the parameter value α = P (ϕ).

One must still do some work to show that this outer measure is finite and nonzero;
this is done in [CPZ18], and the idea of the argument is given in §6.1 below. We
conclude this section by observing that the issue raised in Remark 5.3 is not a
problem here, and that we have in fact defined a metric outer measure. Indeed,
given any x ∈ Λ and y ∈ V u

loc(x) ∩ Λ, we have diamBu
n(y, r) ≤ rλn for all n ∈ N

by Proposition 3.1, so if E,F ⊂ X have d(E,F ) > 0, then there is N ∈ N such

27In fact, mC(·, α) is an outer measure if and only if f is positively expansive to scale r.
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that Bn(y, r) ∩ Bk(z, r) = ∅ whenever y ∈ E, z ∈ F , and k, n ≥ N . Then for
N sufficiently large, any G as in (5.5) has the property that it splits into disjoint
covers of E and F , and thus mC

x(E ∪ F ) = mC
x(E) +mC

x(F ). By Proposition 5.2,
mC

x defines a Borel measure on X, as claimed in Theorem 4.7.

5.3. An application: measures of maximal dimension. If X is a measurable
space with a measure μ, and dimC is a Carathéodory dimension on X, then the
quantity

dimC μ = inf{dimC Z : μ(Z) = 1}
= lim

δ→0
inf{dimC Z : μ(Z) > 1− δ}

is called the Carathéodory dimension of μ. We say that μ is a measure of maximal
Carathéodory dimension if dimC μ = dimC X. Note that if the Carathéodory mea-
sure mC(X,α) at dimension α = dimC X is finite and positive, then this measure
is a measure of maximal Carathéodory dimension.

With f : Λ → Λ as in Theorem 4.7, we consider a particular but important family
of potential functions ϕgeo

t (x) on Λ, called the geometric t-potentials : for any t ∈ R

ϕgeo
t (x) := −t log | detDf |Eu(x)|.

Since the subspace Eu(x) depends Hölder continuously on x ∈ Λ (see (3.1)), for
each t ∈ R the function ϕgeo

t (x) is Hölder continuous and hence, it admits a unique
equilibrium state μt := μϕgeo

t
.

We consider the function P (t) := P (ϕgeo
t ) called the pressure function. One can

show that this function is monotonically decreasing, convex, and real analytic in t.
Moreover, P (t) → +∞ as t → −∞ and P (t) → −∞ as t → +∞ with P (1) ≤ 0.
Therefore, there is a number 0 < t0 ≤ 1 which is the unique solution of Bowen’s
equation P (t) = 0. We shall show that given x ∈ Λ, there is a C-structure on the
set X = V u

loc(x) ∩ Λ with respect to which t0 is the Carathéodory dimension of
the set X. Indeed, since P (t0) = 0, the measure mt0

x := mC
x, given by (4.13) for

C = (ϕgeo
t0 , r), can be written as

(5.6) mt0
x (Z) = lim

N→∞
inf

{∑
i

( ni−1∏
k=0

det
(
Df |Eu(fk(xi))

))−t0
}
,

where the infimum is taken over all collections {Bu
ni
(xi, r)} of u-Bowen balls with

xi ∈ X, ni ≥ N , which cover Z.
Relation (5.6) shows that the measure mt0

x is the Carathéodory measure gener-
ated by the C-structure τ ′ = (S,F , ξ′, η′, ψ), where

ξ′(x, n) := 1, η′(x, n) :=
ni−1∏
k=0

det
(
Df |Eu(fk(xi))

)−1
.

It is easy to see that with respect to the C-structure τ ′ we have that dimC,τ ′ X =
t0 and the measure mt0

x = mC,τ ′(·, t) is the measure of maximal Carathéodory
dimension. In particular, the Carathéodory dimension of X = V u

loc(x) ∩ Λ does
not depend on the choice of the point x ∈ Λ. It is also clear that the number t0
depends continuously on f in the C1 topology and hence, so does the Carathéodory
dimension dimC,τ ′ X.
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We consider the particular case when the map f is u-conformal; that isDf|Eu(x)=
a(x)Isomx for all x ∈ Λ, where Isomx is an isometry. The direct calculation involv-
ing (5.6) shows that in this case mt0

x is a measure of full Hausdorff dimension and
that t0 dimEu = dimH X.

Given a locally maximal hyperbolic set Λ, it has been a long-standing open prob-
lem to compute the Hausdorff dimension of the set X = V u

loc(x) ∩ Λ and to find
an invariant measure whose conditional measures on unstable leaves have maximal
Hausdorff dimension, provided such a measure exists. The above result solves this
problem for u-conformal diffeomorphisms. The reader can find the original proof
and relevant references in [Pes97]. It was recently proved that without the assump-
tion of u-conformality, there are examples for which there is no invariant measure
whose conditionals have full Hausdorff dimension; see [DS17]. Theorem 4.11 pro-
vides one way to settle the issue in the nonconformal case by replacing “measure
of maximal Hausdorff dimension” with “measure of maximal Carathéodory dimen-
sion” with respect to the C-structure τ ′ just described.

6. Outline of proofs

In §§6.1–6.2 we outline the proofs of Theorems 4.7–4.10, referring to [CPZ18]
for complete details; see Remarks 2.3 and 4.1 of that paper for an explanation of
why the setting here is covered. In §6.3 we prove Theorem 4.11, again referring to
[CPZ18] for certain technicalities. In §6.4 we give a complete proof of Theorem 4.1.

6.1. Reference measures are nonzero and finite. Recall that Λ is a locally
maximal hyperbolic set for f , on which each x has local stable and unstable man-
ifolds of size τ > 0. We assume that f |Λ is topologically transitive. In what
follows, we occasionally use the following notation: given A,B,C, a ≥ 0, we write
A = C±aB as shorthand to mean C−aB ≤ A ≤ CaB. The key to the proof of
Theorem 4.7 is the following result.

Proposition 6.1. For every r1 ∈ (0, τ ) and r2 ∈ (0, τ/3], there is C > 1 such that
for every x ∈ Λ and n ∈ N we have

(6.1) Zspan
n (Bu

Λ(x, r1), ϕ, r2) = C±1enP (ϕ).

Similar partition sum bounds are obtained in Bowen’s paper [Bow75], where
they are proved for all of Λ instead of for a single unstable leaf. For the full proof
of Proposition 6.1, see [CPZ18, §6]; we outline the argument below. As in Bowen’s
case, the underlying mechanism is a set of elementary lemmas, which we give in
§6.1.1. In §6.1.2 we explain why it is reasonable to expect these lemmas to apply to
the sequence Zspan

n , and in §6.1.3 we outline how Proposition 6.1 leads to Theorem
4.7.

6.1.1. Elementary counting lemmas.

Lemma 6.2. If Zn > 0 is a sequence of numbers satisfying Zn+m ≤ ZnZm for
all m,n, then P = limn→∞

1
n logZn exists and is equal to infn∈N

1
n logZn. In

particular, Zn ≥ enP for every n.

Proof. Fix n ∈ N. Then for all m ∈ N, we can write m = an + b, where a ∈ N

and b ∈ {0, 1, . . . , n − 1}, and iterate the submultiplicativity property to obtain
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Zm ≤ Za
nZb. Taking logs and dividing by m gives

1

m
logZm ≤ a

m
logZn +

logZb

m
≤ an

m
· 1
n
logZn +

max{logZ0, . . . , logZn−1}
m

.

Sending m → ∞, we see that an
m → 1, so

(6.2) lim
m→∞

1

m
logZm ≤ 1

n
logZn.

Since n was arbitrary, we deduce that

lim
m→∞

1

m
logZm ≤ inf

n∈N

1

n
logZn ≤ lim

n→∞

1

n
logZn,

whence all three terms are equal and the limit exists. Now (6.2) implies that
Zn ≥ enP . �

Lemma 6.3. If Zn > 0 is a sequence of numbers satisfying Zn+m ≤ CZnZm for
all m,n, where C > 0 is independent of m,n, then P = limn→∞

1
n logZn exists and

is equal to infn∈N
1
n log(CZn). In particular, Zn ≥ C−1enP for all n.

Proof. The proof follows by applying Lemma 6.2 to the sequence Yn = CZn, which
satisfies Yn+m = CZn+m ≤ C2ZnZm = YnYm. �

Lemma 6.4. If Zn > 0 is a sequence of numbers satisfying Zn+m ≥ C−1ZnZm

for all m,n, where C > 0 is independent of m,n, then P = limn→∞
1
n logZn exists

and is equal to supn∈N

1
n log(Zn/C). In particular, Zn ≤ CenP for all n.

Proof. The proof follows by applying Lemma 6.2 to the sequence Yn = C/Zn, which
satisfies Yn+m = C/Zn+m ≤ C2/(ZnZm) = YnYm. �

6.1.2. Partition sums are nearly multiplicative. In light of Lemmas 6.3 and 6.4, Pro-
position 6.1 can be proved by showing that the partition sums Zspan

n (Bu
Λ(x, r1), ϕ, r2)

are nearly multiplicative: Zspan
n+m = C±1Zspan

n Zspan
m . A short argument given in

[CPZ18, Lemma 6.3] shows that Zsep
n = e±QuZspan

n , and thus it suffices to show
that

Zspan
n+m ≤ CZspan

n Zspan
m , Zsep

n+m ≥ C−1Zsep
n Zsep

m ,

where we are being deliberately vague about the arguments of Zspan and Zsep.
Figure 6.1 illustrates the idea driving the estimate for Zsep: if En={y1, . . . , ya}⊂

Bu
Λ(x, r1) is a maximal (n, r2)-separated set of points, and to each 1 ≤ i ≤ a we

x
y1

fny1 fn

y2
fny2

fn

y3 fny3fn

Bu(x, r1)

Bu(fny1, r2)

z31

z32

Figure 6.1. Proving that Zsep
n+m ≥ C−1Zsep

n Zsep
m
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associate a maximal (m, r2)-separated set Ei
m = {zi1, . . . , zibi} ⊂ Bu

Λ(f
nyi, r2), then

pulling back all the points zij gives an (m+ n, r2)-separated set

Em+n =

a⋃
i=1

f−n(Ei
m) = {f−nzij : 1 ≤ i ≤ a, 1 ≤ j ≤ bi} ⊂ Bu

Λ(x, r1),

so we expect to get an estimate along the lines of

Zsep
m+n ≥

∑
p∈Em+n

eSm+nϕ(p) =
∑

p∈Em+n

eSnϕ(p)eSmϕ(fn(p))

�
a∑

i=1

bi∑
j=1

eSnϕ(yi)eSmϕ(zi
j) =

a∑
i=1

eSnϕ(yi)

( bi∑
j=1

eSmϕ(zi
j)

)
(6.3)

≈
( a∑

i=1

eSnϕ(yi)

)
Zsep
m ≈ Zsep

m Zsep
n ,

where we continue to be deliberately vague about the arguments of Zsep. If we can
make this rigorous, then a similar argument with spanning sets instead of separated
sets will lead to Zspan

m+n ≤ CZspan
m Zspan

n , which will prove Proposition 6.1.
But how do we make (6.3) rigorous? There are two sources of error which are

hinted at by the “≈” symbols.

(1) Given p∈Em+n and the corresponding y∈En (where fn(p)∈Bu
Λ(f

ny, r2)),
the approximation on the first line of (6.3) requires us to compare the
ergodic sums Snϕ(p) and Snϕ(y). In particular, we must find a constant
Qu (independent of y, p, n) such that |Snϕ(p) − Snϕ(y)| ≤ Qu whenever
p ∈ Bu

n(y, r2).
(2) The omission of the arguments for Zsep

n obscures the fact that Zsep
m+n and

Zsep
m in (6.3) both refer to (n, r2)-separated subsets of Bu

Λ(x, r1), while Z
sep
n

refers to (n, r2)-separated subsets of Bu
Λ(f

nyi, r2). Thus we must control
how Zsep

n (Bu
Λ(x, r1), ϕ, r2) changes when we fix n and let x, r1, r2 vary; in

particular, we must find for each r1, r
′
1, r2, r

′
2 a constant C such that for

every n, x, y, we have

Zsep
n (Bu

Λ(x, r1), ϕ, r2) = C±1Zsep
n (Bu

Λ(y, r
′
1), ϕ, r

′
2).

The first source of error described above can be controlled by establishing a
generalized version of property (4.4).

Definition 6.5. We say that a potential ϕ : Λ → R has the u-Bowen property if
there is Qu > 0 such that for every x ∈ Λ, n ≥ 0, and y ∈ Bu

n(x, τ ) ∩ Λ, we have
|Snϕ(x)− Snϕ(y)| ≤ Qu. We also say that ϕ has the s-Bowen property if there is
Qs > 0 such that for every x ∈ Λ, n ≥ 0, and y ∈ Bs

Λ(x, τ ) = Bs(x, τ )∩Λ, we have
|Snϕ(x)− Snϕ(y)| ≤ Qs.

28

Lemma 6.6. If ϕ : Λ → R is Hölder continuous, then ϕ has the u-Bowen property
and the s-Bowen property.29

28The asymmetry in the definition comes because Snϕ is a forward Birkhoff sum and Bu
n(x, τ)

is defined in terms of forward iterates; one could equivalently define the s-Bowen property in terms
of backward Birkhoff sums and s-Bowen balls. The s-Bowen property is needed to control the
second source of error described above.

29This is the only place where Hölder continuity is used; in particular, Hölder continuity could
be replaced by the u- and s-Bowen properties in all our main results.
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Proof. We prove the u-Bowen property; the proof of the s-Bowen property is similar.
Given y ∈ Bu

n(x, τ ), for every 0 ≤ k < n, we have d(x, y) ≤ τλn−k where 0 < λ < 1
is as in Proposition 3.1(4), so writing β for the Hölder exponent of ϕ, we have

|Snϕ(x)− Snϕ(y)| ≤
n−1∑
k=0

|ϕ(fkx)− ϕ(fky)| ≤
n−1∑
k=0

|ϕ|βd(fkx, fky)β

≤ |ϕ|βτβ
n−1∑
k=0

λβ(n−k) < |ϕ|βτβ(1− λβ)−1 =: Qu. �

To control the second source of error described above, the first main idea is that
topological transitivity guarantees that for every δ > 0, the images fk(Bu

Λ(y, δ))
eventually come within δ of x, and that the k for which this occurs admits an
upper bound that depends only on δ. Then given a spanning set E ⊂ Bu

Λ(y, δ), the
part of the image fk(E) that lies near x can be moved by holonomy along stable
manifolds to give a spanning set in the unstable leaf of x. This is made precise in
[CPZ18, Lemma 6.4]. One can use similar arguments to change the scales r1, r2;
for example, if x, y are on the same local unstable leaf and have orbits that remain
within r2 of each other until time n, then they remain within r2λ

k of each other
until time n− k; see [CPZ18, §6] for full details.

6.1.3. Proving Theorem 4.7. Fix x ∈ Λ and set X := V u
loc(x) ∩ Λ. We showed

in §5.2.3 that mC
x defines a metric outer measure on X, and hence gives a Borel

measure. Note that the final claim in Theorem 4.7 about agreement on intersections
is immediate from the definition. Thus it remains to prove that mC

x(X) ∈ [K−1,K],
where K is independent of x; this will complete the proof of Theorem 4.7, and will
also prove Proposition 5.4. For full details, see [CPZ18, §6.5].

The idea is that it suffices to prove that for a fixed r > 0, we have mC
x(B

u
Λ(x, r))

uniformly bounded away from 0 and ∞, since each V u
loc(x) can be covered with a

uniformly finite number of balls Bu
Λ(y, r). The upper bound is easier to prove since

it only requires that we exhibit a cover satisfying the desired inequality. This is
provided by Proposition 6.1, which guarantees existence of an (n, r)-spanning set
En ⊂ Bu

Λ(x, r) such that ∑
y∈En

eSnϕ(y) ≤ CenP (ϕ),

and thus (4.13) gives

mC
x(B

u
Λ(x, r)) ≤ lim

n→∞

∑
y∈En

e−nP (ϕ)eSnϕ(y) ≤ C.

The lower bound is a little trickier since we must obtain a lower bound for an
arbitrary cover by u-Bowen balls as in (4.13), which are allowed to be of differ-
ent orders, so we do not immediately get an (n, r)-spanning set for some par-

ticular n. This can be resolved by observing that any open cover of Bu
Λ(x, r)

has a finite subcover, so to bound mC
x(B

u
Λ(x, r)) it suffices to consider covers of

the form {Bu
ni
(yi, r) : 1 ≤ i ≤ a, ni ≥ N}. Given such a cover, one can take

n = max(n1, . . . , na) and use arguments similar to those in the proof of Proposi-

tion 6.1 to cover each Bu
ni
(yi, r) by a union of u-Bowen balls Bu

n(z
j
i , r) (1 ≤ j ≤ bi)



EQUILIBRIUM STATES IN DYNAMICAL SYSTEMS 601

satisfying ∑
j

eSnϕ(z
j
i ) ≤ C ′e(n−ni)P (ϕ)eSni

ϕ(yi)

for some constant C ′ that is independent of our choice of covers. Then the set
E = {zji : 1 ≤ i ≤ a, 1 ≤ j ≤ bi} is (n, r)-spanning for Bu

Λ(x, r) and satisfies

C−1enP (ϕ) ≤
∑
z∈E

eSnϕ(z) ≤
a∑

i=1

C ′e(n−ni)P (ϕ)eSni
ϕ(yi).

Dividing through by enP (ϕ), taking an infimum over all covers, and sending N → ∞
gives C−1 ≤ C ′mC

x(B
u
Λ(x, r)). Again, full details are in [CPZ18, §6.5].

6.2. Behavior of reference measures under iteration and holonomy.

6.2.1. Iteration and the u-Gibbs property. The simplest case of Theorem 4.8 occurs
when ϕ = 0, so the claim is that mC

f(x) = eP (0)mC
x ◦ f−1, which is exactly the

scaling property satisfied by the Margulis measures on unstable leaves. Given E ⊂
V u
loc(f(x)), we see from the relationship f−1Bu

n(y, r) = Bu
n+1(f

−1y, r) that any
cover {Bu

ni
(yi, r)} of E leads immediately to a cover {Bu

ni+1(f
−1yi, r)} of f−1E,

and vice versa. Using this bijection in the definition of the reference measures in
(4.13), we get

mC
f(x)(E) = lim

N→∞
inf

∑
i

e−niP (0)

= eP (0) lim
N→∞

inf
∑
i

e−(ni+1)P (0) = eP (0)mC
x(f

−1E).

For nonzero potentials one must account for the factor of eSni
ϕ(xi) in (4.13). This

can be done by partitioning E into subsets E1, . . . , ET on which ϕ is nearly constant,
and repeating the above argument on each Ei to get an approximate result that
improves to the desired result as T → ∞; see [CPZ18, §7.1] for details.

Once (1.2) has been proved, we can iterate it to obtain

(6.4) mC
fn(x)(A) =

∫
f−n(A)

enP (ϕ)−Snϕ(y) dmC
x(y)

for all A ⊂ V u
loc(f

n(x)). Applying this to A = Bu(fn(x), δ) = fn(Bu
n(x, δ)) and

using Theorem 4.7 gives a constant Q4 = Q4(δ) such that

mC
x(B

u
n(x, δ))e

nP (ϕ)−Snϕ(x) = e±Qu

∫
Bu

n(x,δ)

enP (ϕ)−Snϕ(y) dmC
x(y)

= e±QumC
fn(x)(B

u(fn(x), δ)) = e±QuQ±1
4 ,

for every x, n, where the first estimate uses the u-Bowen property from Lemma
6.6. This establishes the u-Gibbs property for mC

x with Q1 = Q4e
Qu and proves

Corollary 4.9.

6.2.2. Holonomy maps. Given nearby points y, z and sets Ey ⊂ V u
loc(y), Ez ⊂

V u
loc(z) such that πyz(Ey) = Ez (with respect to some rectangle), we observe that

every cover of Ey by u-Bowen balls {Bu
ni
(xi, r)} produces a cover of Ez by the

images {πyzB
u
ni
(xi, r)}. If y, z are close enough to each other to guarantee that

(6.5) πyzB
u
ni
(xi, r) ⊂ Bu

ni
(xi, 2r)
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for each i, then we get Ez ⊂
⋃

i B
u
ni
(xi, 2r). Fixing k ∈ N such that each x ∈ Λ has

Bu
Λ(x, 2r) ⊂

⋃k
j=1B

u
Λ(x

j , r) for some x1, . . . , xk, we see that Ez ⊂
⋃

i,j B
u
ni
(xj

i , r),

and thus (4.13) gives

mC
z (Ez) ≤

∑
i,j

e−niP (ϕ)eSni
ϕ(xj

i ) ≤ k
∑
i

e−niP (ϕ)eSni
ϕ(xi)+Qu .

Taking an infimum and then a limit gives mC
z (Ez) ≤ keQumC

y(Ey).
In general, if y, z lie close enough for holonomy maps to be defined but not close

enough for (6.5) to hold, then we can iterate Ey, Ez forward until some time n at
which fny, fnz are close enough for the previous part to work, and use Theorem
4.8 to get (assuming without loss of generality that Ey ⊂ Bu

n(y, τ ), and similarly
for Ez)

mC
z (Ez) =

∫
fn(Ez)

e−nP (ϕ)+Snϕ(f
−nx) dmC

fnz(x)

≤ keQu

∫
fn(Ey)

e−nP (ϕ)+Snϕ(f
−nx′)+Qs dmC

fny(x
′) = keQu+QsmC

y(Ey),

where the inequality uses the result from the previous paragraph. Since the roles of
y, z were symmetric, this proves Theorem 4.10 with Q2 = keQu+Qs . See [CPZ18,
§7.3] for a more detailed version of this argument.

6.3. Geometric construction of equilibrium states. Now that we have estab-
lished the basic properties of the reference measures mC

x associated to a Hölder
continuous potential function ϕ, the steps in the geometric construction of the
unique equilibrium state μϕ are as follows.

(1) Prove that every weak* limit point μ of the sequence of probability measures

μn = 1
n

∑n−1
k=0 f

k
∗m

C
x/m

C
x(V

u
loc(x)) is an invariant measure whose conditional

measures satisfy part (3) of Theorem 4.11; in particular, they are equivalent
to the reference measures mC

y .
(2) Use this to deduce that any such μ satisfies part (2) of Theorem 4.11,

namely:
(a) the conditional measures of μ are absolutely continuous with respect

to stable holonomies, and therefore μ is ergodic by the Hopf argument
(Proposition 4.5);

(b) μ gives positive weight to every open set in Λ;
(c) the u-Gibbs property of the reference measures implies the Gibbs prop-

erty (3.15) for μ; and
(d) μ is the unique equilibrium state for ϕ by Proposition 3.11.

(3) Observe that each μn is a Borel probability measure on Λ, and thus every
subsequence has a subsubsequence that converges in the weak* topology
to a Borel probability measure μ, which must be the unique equilibrium
state μϕ by the previous step. Since every subsequence of μn has a subsub-
sequence converging to μϕ, it follows that the sequence itself converges to
this limit, which establishes part (1) of Theorem 4.11.

The first step takes most of the work; once it is done, parts (a)–(c) of the second
step only require short arguments that leverage the properties already established,
part (d) of the second step merely consists of observing that μ satisfies the hypothe-
ses of Proposition 3.11, and the third step is completely contained in the description
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in (3). Thus we outline here the argument for the first step and parts (a)–(c) of
the second step, referring once more to [CPZ18] for complete details.

6.3.1. Conditional measures of limiting measures. In order to understand the con-
ditional measures of μ = limk→∞ μnk

, we start by studying the conditional mea-
sures of μn. Given x ∈ Λ and n ∈ N, the iterate fn

∗ m
C
x is supported on Wn =

fn(V u
loc(x) ∩ Λ), and given any y ∈ Wn, we can iterate the formula from Theorem

4.8 and obtain

(6.6)
d((fn

∗ m
C
x)|V u

loc(y)
)

dmC
y

(z) = e−nP (ϕ)+Snϕ(f
−nz) =: gn(z)

for every z ∈ Wn∩V u
loc(y). One can show that gn → 0 as n → ∞, so it is convenient

to write ρyn(z) := gn(z)/gn(y), and Lemma 6.6 gives

(6.7) ρyn(z) = eSnϕ(f
−nz)−Snϕ(f

−ny) ∈ [e−Qu , eQu ].

These functions describe the conditional measures of fn
∗ m

C
x. Indeed, given a rectan-

gle R, choose y1, . . . , ya ∈ fn(V u
loc(x))∩R such that fn(V u

loc(x))∩R ⊂
⋃a

i=1 V
u
loc(yi),

as in Figure 6.2. Then for every Borel set E ⊂ R, we have30

(6.8) fn
∗ m

C
x(E) =

a∑
i=1

∫
E

gn(z) dm
C
yi
(z) =

a∑
i=1

gn(yi)

∫
E

ρyi
n (z) dmC

yi
(z).

In other words, one can write fn
∗ m

C
x|R as a linear combination of the measures

ρyi
n dmC

yi
associated to the standard pairs31 (V u

loc(yi), ρ
yi
n ), with coefficients given

by gn(yi). This immediately implies that the conditional measures of μn on local
unstable leaves are absolutely continuous with respect to the reference measures
mC

x, with densities bounded away from 0 and ∞.
To go further, we need the following characterization of the conditional measures,

which is an immediate consequence of [EW11, Corollary 5.21].32

x

V u
loc(x)

z1 z2 z3 z4 z5

R

y1
y2

y3
y4

y5
fn

(zi = f−n(yi))

Figure 6.2. Studying fn
∗ m

C
x on a rectangle R

30There is a small technical issue here, namely that there may be some yi at which Wn does
not cross R completely, and so the integral in (6.8) actually gives too large a value. However, this
can only occur if zi = f−n(yi) is very close to the boundary of V u

loc(x), and the contribution of

such points is negligible in the limit; see [CPZ18].
31Standard pairs consisting of a local leaf V u

loc(y) and a density function ρ were introduced by
Chernov and Dolgopyat in [CD09] to study stochastic properties of dynamical systems. They are
also used in constructing SRB measures for some dynamical systems with weak hyperbolicity; see
[CDP16].

32See[PS82] for the analogous argument controlling the conditionals of μ when ϕ is the geo-
metric potential and the reference measure is leaf volume. In that setting, the role of Proposition
6.7 here is played by [PS82, Lemma 13].
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ξ0

R

ξ1 ξ2 ξ3

Figure 6.3. A refining sequence of partitions of R

Proposition 6.7. Let μ be a finite Borel measure on Λ, and let R ⊂ Λ be a
rectangle with μ(R) > 0. Let {ξ
}
∈N be a refining sequence of finite partitions of R
that converge to the partition ξ into local unstable sets V u

R (y) = V u
loc(y) ∩R. Then

there is a set R′ ⊂ R with μ(R′) = μ(R) such that for every y ∈ R′ and every
continuous ψ : R → R, we have

(6.9)

∫
V u
R (y)

ψ(z) dμu
y (z) = lim


→∞

1

μ(ξ
(y))

∫
ξ�(y)

ψ(z) dμ(z),

where ξn(y) denotes the element of the partition ξ
 that contains y.

Now the proof of part (3) of Theorem 4.11 goes as follows. Given a rectangle
R ⊂ Λ with μ(R) > 0, let ξ
 be a refining sequence of finite partitions of R such that
for every y ∈ R and � ∈ N, the set ξ
(y) is a rectangle, and

⋂

∈N

ξ
(y) = V u
R (y),

as in Figure 6.3. Let R′ ⊂ R be the set given by Proposition 6.7. We prove that
(4.14) holds for each y ∈ R′ by showing that for every positive continuous function
ψ : R → R, we have

(6.10)

∫
V u
R (y)

ψ dμu
y =

Q±1
3

mC
y(V

u
R (y))

∫
V u
R (y)

ψ dmC
y ,

where Q3 is a constant that is independent of ψ. To this end, we need to compare
μ(ξ
(y)) and

∫
ξ�(y)

ψ(z) dμ(z) and then apply (6.9). We see from (6.7) and (6.8)

that for each j ∈ N, there is a finite set Yj ⊂ R such that

(6.11)

∫
ξ�(y)

ψ d(fn
∗ m

C
x) =

∑
p∈Yj

gj(p)

∫
V u
R (p)

ψ(z)e±Qu dmC
p(z).

Given p ∈ ξ
(y), Theorem 4.10 gives∫
V u
R (p)

ψ dmC
p = Q±1

2

∫
V u
R (y)

ψ(πpyz
′) dmC

y(z
′) = (2Q2)

±1

∫
V u
R (y)

ψ dmC
y

whenever p, y are sufficiently close that ψ(πpyz
′) = 2±1ψ(z′) for all z′ ∈ V u

R (y).
Thus for all sufficiently large �, (6.11) gives∫

ξ�(y)

ψ d(fn
∗ m

C
x) = e±Qu(2Q2)

±1

( ∑
p∈Yj

gj(p)

)∫
V u
R (y)

ψ dmC
y .

Averaging over 0 ≤ j < nk and sending k → ∞ gives

(6.12)

∫
ξ�(y)

ψ dμ = (2Q2e
Qu)±1

(
lim
k→∞

1

nk

nk−1∑
j=0

∑
p∈Yj

gk(p)
)∫

V u
R (y)

ψ dmC
y .

When ψ ≡ 1, this gives

(6.13) μ(ξ
(y)) = (2Q2e
Qu)±1

(
lim
k→∞

1

nk

nk−1∑
j=0

∑
p∈Yj

gk(p)
)
mC

y(V
u
R (y)).
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Dividing (6.12) by (6.13), sending � → ∞, and using (6.9) yields∫
V u
R (y)

ψ dμu
y = (2Q2e

Qu)±2 1

mC
y(V

u
R (y))

∫
V u
R (y)

ψ dmC
y .

Since ψ > 0 was arbitrary, this proves (4.14), modulo some minor technical issues
around the boundary of V u

loc(x) that are dealt with in [CPZ18].

6.3.2. Other properties of limiting measures. Throughout this section, μ will denote
an arbitrary f -invariant Borel probability measure on Λ that satisfies (4.14), so that
the conditional measures μu

y are equivalent to the reference measures mC
y . By the

previous section, this includes every limit point of the sequence μn.
We first observe that by Theorem 4.10 and (4.14), for every rectangle R with

μ(R) > 0, μ-a.e. y, z ∈ R, and every A ⊂ V u
R (z), we have

(6.14)
μu
y (πzyA) = Q±1

3 mC
y(πzyA)/mC

y(R) = Q±1
3 Q±2

2 mC
z (A)/mC

z (R) = (Q3Q2)
±2μu

z (A).

In particular, holonomy maps along stable manifolds are absolutely continuous with
respect to the conditional measures μu

y , and thus by the standard Hopf argument
(Proposition 4.5), μ is ergodic.

Now we prove that μ is fully supported and satisfies the Gibbs property. Let
δ > 0 be small enough that for every x ∈ Λ, the rectangle

R(x, δ) := [Bu
Λ(x, δ), B

s
Λ(x, δ)] = {[y, z] : y ∈ Bu

Λ(x, δ), z ∈ Bs
Λ(x, δ)}

is well defined, as in (3.2). Given n ∈ N, consider the rectangle

Rn(x, δ) := [Bu
n(x, δ) ∩ Λ, Bs

Λ(x, δ)] ⊂ R(x, δ).

It is shown in [CPZ18, Lemma 8.3] that for every δ > 0, there are δ1, δ2 > 0 such
that

(6.15) Rn(x, δ1) ⊂ Bn(x, δ) ⊂ Rn(x, δ2)

for every x ∈ Λ and n ∈ N; thus to prove the Gibbs property (3.14) it suffices to
establish the corresponding bounds on μ(Rn(x, δ)).

Lemma 6.8. Given δ > 0, there is Q5 > 0 such that for every x, δ, n as above, we
have

(6.16) μ(Rn(x, δ)) = Q±1
5 e−nP (ϕ)+Snϕ(x)μ(R(x, δ)).

Proof. Writing μu
y for the conditional measures of μ on unstable leaves in R(z, δ),

we have

μ(Rn(x, δ)) =

∫
R(x,δ)

μu
y (Rn(x, δ)) dμ(y)

= Q±1
3

∫
R(x,δ)

mC
y(Rn(x, δ))

mC
y(R(x, δ))

dμ(y)

= (KQ3)
±1

∫
R(x,δ)

mC
y(πxyBu

n(x, δ)) dμ(y)

= (KQ3Q2)
±1mC

x(B
u
n(x, δ))μ(R(x, δ)),

where the first equality uses the definition of conditional measures, the second
uses (4.14), the third uses Theorem 4.7, and the fourth uses Theorem 4.10. Since
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Bu
n(x, δ) ⊂ Bu

n(x, δ) ⊂ Bu
n(x, 2δ), the result follows from the u-Gibbs property of

mC
x. �

Lemma 6.9 ([CPZ18, Lemma 8.4]). For every sufficiently small δ > 0, there is
δ′ > 0 such that for every z ∈ Λ and x ∈ R(z, δ′), we have R(z, δ′) ⊂ R(x, δ).

Lemma 6.10. If y ∈ Λ has a backward orbit that is dense in Λ, then μ(R(y, δ)) > 0
for all δ > 0.

Proof. Let δ′ > 0 be as in Lemma 6.9. Since Λ is compact, there is a finite set E ⊂ Λ
such that

⋃
z∈E R(z, δ′) = Λ, and thus there is z ∈ E with μ(R(z, δ′)) > 0. Since

the backward orbit of y is dense, there is n ≥ 0 such that x := f−n(y) ∈ R(z, δ′).
By Lemma 6.9 and our choice of x, we have

μ(R(x, δ)) ≥ μ(R(z, δ′)) > 0.

By Lemma 6.8, we conclude that μ(Rn(x, δ)) > 0. Moreover, we have

fnRn(x, δ) = fn[Bu
n(x, δ) ∩ Λ, Bs

Λ(x, δ)] ⊂ [Bu
Λ(y, δ), B

s
Λ(y, δ)] = R(y, δ),

where we use the fact that ‖Df |Es‖ ≤ 1. Since μ is f -invariant, this gives
μ(R(y, δ)) ≥ μ(Rn(x, δ)) > 0. �

Since f is topologically transitive on Λ, every (relatively) open set in Λ contains
a set of the form R(y, δ) where y has a dense backward orbit. Thus Lemma 6.10
implies that μ is fully supported on Λ.

Finally, we deduce the Gibbs property (3.15) for μ as follows. Given δ > 0,
let δ′ > 0 be as in Lemma 6.9, and once again let E ⊂ Λ be a finite set with⋃

z∈E R(z, δ′) = Λ. Since μ is fully supported, we have η := minz∈E μ(R(z, δ′)) > 0.
Now given any x ∈ Λ, we have x ∈ R(z, δ′) for some z ∈ E, and thus Lemma 6.9
gives

μ(R(x, δ)) ≥ μ(R(z, δ′)) ≥ η.

In particular, η ≤ μ(R(x, δ)) ≤ 1 for every x ∈ Λ, and then the Gibbs property
(3.15) follows immediately from Lemma 6.8 and (6.15).

6.3.3. Local product structure. To prove Corollary 4.12, we first observe that (6.14)
gives π∗

ypμ
u
p ∼ μu

y for μ-a.e. p, y ∈ R, which is the first claim. For the second claim,

we define a function h : R → (0,∞) by h(z) =
dμu

z

d(π∗
zpμ

u
p )
(z), so that (3.4) gives

μ(E) =

∫
V s
R(p)

∫
V u
R (y)

1E(z) dμ
u
y(z) dμ̃p(y)

=

∫
V s
R(p)

∫
V u
R (y)

1E(z)h(z) d(π
∗
zpμ

u
p)(z) dμ̃p(y)(6.17)

=

∫
E

h(z) d(μu
p ⊗ μ̃p)(z)

for every measurable E ⊂ R. For the third claim, we observe that (6.17) gives

μ(E) =

∫
E

h(z) d(μu
p ⊗ μ̃p)(z) =

∫
V u
R (p)

∫
V s
R(y)

1E(z)h(z) d(π
∗
ypμ̃p)(z) dμ

u
p(y),

and since μs
y is uniquely determined up to a scalar (for μ-a.e. y) by the condition

that

μ(E) =

∫
V u
R (p)

∫
V s
R(y)

1E(z) dμ
s
y(z) dν(y)

for some measure ν on V u
R (p), we conclude that dμs

y = h d(π∗
ypμ̃p).
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6.4. Proof of Theorem 4.1. We have that for any Borel subset E ⊂ Y

(6.18) μ(E) =

∫
Ỹ

∫
W

1E(z) dμ
ξ
W (z) dμ̃(W ).

Without loss of generality we may assume that μξ
W is normalized, so that μξ

W (W ) =
1. Consider the set B of all Birkhoff generic points x ∈ X, for which

(6.19) lim
n→∞

1

n

n−1∑
k=0

h(fk(x)) =

∫
X

h dμ

for every continuous function h on X. Since μ is ergodic, we have that B has full
measure in Y . By (6.18), there is a set D ⊂ Ỹ such that μ̃(Ỹ \D) = 0, and for every

W ∈ D we have μξ
W (W \ B) = 0. Given any such W and any measure ν � μξ

W ,
we have ν(X \B) = 0. Then Theorem 4.1 is a consequence of the following general
result.

Proposition 6.11. Let X be a compact metric space, let f : X → X be a continuous
map, and let μ be an f -invariant Borel probability measure on X. Let B be the set
of Birkhoff generic points for μ, and let ν be any probability measure on X such

that ν(B) = 1. Then the sequence of measures νn := 1
n

∑n−1
k=0 f

k
∗ ν converges in the

weak* topology to the measure μ.

Before proving Proposition 6.11, we note that μ is not required to be ergodic. In
the case when μ is ergodic, Birkhoff’s theorem gives μ(B) = 1, so that in particular
B is nonempty. For nonergodic μ, the set B can be either empty or nonempty.

Proof of Proposition 6.11. Let κ be a weak* limit point of the sequence νn, so that
there is a subsequence {n
}
∈N such that for every continuous function h on X, we
have

(6.20)

∫
X

h dκ = lim

→∞

∫
X

h dνn�
= lim


→∞

∫
1

n


n�−1∑
k=0

h ◦ fkdν.

We show that κ ≤ μ, which implies that κ = μ since both are probability measures.
It suffices to show that

∫
h dκ ≤

∫
h dμ for every nonnegative continuous function

h.
Fix h as above. Given N ∈ N and ε > 0, let

BN (ε) :=

{
x ∈ B :

∣∣∣ 1
n
Snh(x)−

∫
h dμ

∣∣∣ < ε for all n ≥ N

}
.

Then for every ε > 0 we have
⋃

N∈N
BN (ε) = B, hence there is Nε such that

ν(B \BN (ε)) < ε. By (6.20) we can choose n
 > Nε such that∫
X

h dκ ≤ ε+

∫
1

n

Sn�

h dν = ε+

∫
BN (ε)

1

n

Sn�

h dν +

∫
B\BN (ε)

1

n

Sn�

h dν

≤ 2ε+

∫
h dμ+ ν(B \BN (ε))‖h‖ < ε(2 + ‖h‖) +

∫
h dμ.

Since ε > 0 was arbitrary, this completes the proof of the proposition. �
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[Sin68] Ja. G. Sinăı, Markov partitions and U-diffeomorphisms (Russian), Funkcional. Anal. i
Priložen 2 (1968), no. 1, 64–89. MR0233038
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