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8.3. Hölder Continuity of Lyapunov Coordinates 1019
8.4. Overlapping Derivative Estimates 1022
8.5. Overlapping Stable and Unstable Strips 1026

9. Pseudo-orbits, Branches, Shadowing: Proofs of Theorems E and F 1028
9.1. Regular branches: Proof of Theorem E 1028
9.2. Shadowing: Proof of Theorem F 1029

Part III. Nice Rectangles and Young Towers 1033
10. Hyperbolic Branches in Nice Domains: Proof of Theorem D 1033
11. Building a Tower Out of Hyperbolic Branches: Proof of

Theorem B 1036
11.1. Saturation and Young Towers 1036
11.2. Proof of Proposition 11.3 1039
11.3. Proof of Proposition 11.5 1045
11.4. Proof of Proposition 11.6 1047

11.4.1. Hyperbolicity and Distortion Properties of the Tower 1047
11.4.2. Integrability of the Return Times 1048

11.5. Discussion of the Saturation Condition 1050
12. Hyperbolic Measures Have Nice Regular Sets: Proof of Theorem C 1052
Acknowledgements 1053
Appendix A: List of Terminology and Notation 1054
References 1055



Vol. 23 (2022) SRB Measures and Young Towers on Surfaces 975

Part I. Statements of Results

The purpose of this paper is to study the connection between analytic, geo-
metric, dynamical, and statistical properties of surface diffeomorphisms. In
particular, we are interested in the way that certain analytic properties, such
as hyperbolicity, imply non-trivial geometric structures which in turn produce
non-trivial dynamics and statistical behavior. Although we consider only the
two-dimensional case, our results on pseudo-orbits and shadowing (Theorems E
and F) should extend to higher dimensions as well.

In Sect. 1 we discuss the general philosophy and theoretical framework
of our study, define Sinai-Ruelle-Bowen (SRB) measure and recall the Viana
conjecture on the existence of SRB measures. In Sect. 1.7 we state Theorem A
which, roughly speaking, says that under some mild recurrence condition,
a fat (non-uniformly) hyperbolic set supports an SRB measure,

thus proving a version of the Viana conjecture in the two-dimensional set-
ting. We note that, unlike most previous results in this direction, our assump-
tions are also necessary, thus giving an interesting geometric characterization
of SRB measures. We give a more detailed review of existing results in Sect. 1.8.

Our construction of the SRB measure uses the technique of Young tow-
ers, which gives additional information about the geometry and structure of
the measure. In Sect. 2.4 we state Theorem B which, roughly speaking, says
that under some mild recurrence condition, a (non-uniformly) hyperbolic set
supports a “topological” Young tower and, more specifically,
a fat (non-uniformly) hyperbolic set supports a Young tower .

This result implies Theorem A but is of independent interest. In Sect. 3
we state Theorem C, which says that the assumptions of Theorems A and B
are necessary for the existence of an SRB measure. The following consequences
are worth highlighting here:

• every SRB measure, and more generally every hyperbolic measure, is
liftable to a topological Young tower (Corollary C.1);

• the towers we produce have the first return property (Theorem B);
• we formulate explicit conditions under which the decay rate of the tail of

the tower can be controlled (Corollary C.2).
Our construction of a Young tower works in a general setting and differs

from other constructions in the literature.1 The starting point is a measurable
subset A of a (non-invariant) “uniformly” hyperbolic set bounded by a nice
domain. Using an abstract argument we extend A to a rectangle Γ—a subset
with product structure of local stable and unstable curves—which is maxi-
mal in a sense, allowing us to build a tower. The key step in producing Γ is
Theorem D in Sect. 4, which states that to every almost return to A one can
associate a hyperbolic branch; the total collection of such branches “saturates”
A to the desired rectangle Γ. The proof of Theorem D is based on two general
results, which we state as Theorems E and F in Sects. 5.3 and 5.4, respec-
tively. Theorems D, E, and F are new results in non-uniform hyperbolicity

1These typically use specific geometric characteristics of the system under consideration.
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theory of independent interest, with Theorem E providing a new version of
Katok’s closing lemma and Theorem F giving a new version of the shadowing
property.

In Part I of the paper we state all our results. In Part II we state and
prove Theorem E and F which, as mentioned above, are general results in the
theory of non-uniform hyperbolicity. Part III is devoted to the proofs of the
remaining results in our more specific setting. These results have a clear logical
interdependence as follows:

E =⇒ D =⇒ B =⇒ A(1) and F =⇒ C =⇒ A(2).

The letters above refer to the corresponding theorems. Theorem A has two
parts: A(1) states our sufficient conditions for the existence of an SRB mea-
sure, and A(2) states that these conditions are necessary. More details on
organization and the relations between the various results are given at the
beginning of Parts II and III. In an appendix we provide a list of terminology
together with references to the relevant definitions.

See Sects. 1.8 and 2.5 for a discussion of related prior work, especially
that of Young [71,72] and Sarig [65].

1. SRB Measures and the Viana Conjecture: Theorem A

Throughout this paper, let M be a surface—by which we mean a compact
boundaryless smooth two-dimensional Riemannian manifold—and let f : M →
M be a C1+α diffeomorphism, where α ∈ (0, 1]. Let d(·, ·) denote the distance
function on M , and let m denote Lebesgue measure on M ; that is, the area
form induced by the Riemannian metric. Given a curve W ⊂ M , we write
mW for the one-dimensional Lebesgue measure on W defined by the induced
Riemannian metric. By “measurable” we always mean “Borel measurable”.

1.1. Physical Measures

The first step in the statistical description of the diffeomorphism f is the notion
of the “statistical basin of attraction” of a probability measure μ:

Bμ :=

{
x ∈ M : lim

n→∞
1
n

n−1∑
k=0

φ(fkx) =
∫

φ dμ for all continuous φ : M → R

}
.

Equivalently, Bμ consists of all points for which 1
n

∑n−1
k=0 δfk(x) converges to

μ in the weak* topology, where δy is the Dirac delta measure on y. If μ is
f -invariant and ergodic, then μ(Bμ) = 1 by the Birkhoff ergodic theorem, but
since Lebesgue measure is the most natural reference measure, we are most
interested in finding μ for which Bμ is large in the following sense.

Definition 1.1. μ is a physical measure for f if m(Bμ) > 0.

Thus a physical measure is a probability measure which describes the
asymptotic statistical behavior of a significant (positive Lebesgue measure)
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subset of the phase space. Not all dynamical systems admit physical measures,2

so it is a basic problem to establish the class of dynamical systems which have
physical measures before going on to investigate further questions related to
the possible number of such measures and their structure and properties.

The simplest example of a physical measure is given by the Dirac-delta
measure δp at an attracting fixed point p. This easily generalizes to the case
when p is an attracting periodic point. At the other extreme, if μ � m is
ergodic, then μ(Bμ) = 1 gives m(Bμ) > 0, hence μ is physical. Unfortunately
it is relatively rare for such absolutely continuous measures to exist, and thus
the problem of the existence of a physical measure is quite non-trivial.

1.2. Hyperbolic Measures

In the 1970s, Sinai, Ruelle, and Bowen established existence, as well as geo-
metric and statistical properties, of physical measures for uniformly hyperbolic
systems. The theory of Sinai–Ruelle–Bowen measures, or SRB measures, has
since been extended to non-uniform hyperbolicity, in which setting we need
the following definition.

Definition 1.2 (Hyperbolic measures and nonzero Lyapunov exponents). An
invariant probability measure μ is hyperbolic if there exists a set Λ ⊆ M with
f(Λ) = Λ and μ(Λ) = 1 which has nonzero Lyapunov exponents, i.e. there
exists a measurable Df -invariant decomposition TxM = Es

x ⊕ Eu
x such that

for every x ∈ Λ and unit vectors es ∈ Es
x, eu ∈ Eu

x we have:

(1) lim
n→±∞

1
n

log ‖Dfn
x (es)‖ =: λs

x < 0 < λu
x := lim

n→±∞
1
n

log ‖Dfn
x (eu)‖;

(2) lim
n→±∞

1
n

log �(Es
fn(x), E

u
fn(x)) = 0.

The heart of this definition is that the Lyapunov exponents λs
x and λu

x are
nonzero and have opposite signs;3 the fact that the limits exist is guaranteed by
Oseledets’ multiplicative ergodic theorem, which also guarantees that although
the angle between the two subspaces is not in general bounded away from
zero, it cannot degenerate at an exponential rate along any given orbit, as
stated in condition (2). We point out that in the two-dimensional case the
Margulis–Ruelle inequality implies that every measure with positive entropy
is hyperbolic.

1.3. Sinai–Ruelle–Bowen (SRB) Measures

A fundamental and crucial property of sets with nonzero Lyapunov exponents
is that every point x ∈ Λ has a local stable curve V s

x and a local unstable curve
V u

x satisfying certain properties which we describe in Definition 1.10.4 For the
moment we use these curves to give the formal definition of SRB measure.

2Consider the identity map, for example.
3If both Lyapunov exponents are negative or both are positive, then it can be shown that
the corresponding ergodic component of the measure μ is supported on an attracting or
repelling periodic orbit, respectively; we exclude this trivial situation.
4In fact, the existence of local stable and unstable curves can be proved under weaker
conditions than those of nonzero Lyapunov exponents, see Definition 1.6 and Theorem 1.12.
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Definition 1.3. (Fat sets). A set A ⊆ Λ is fat if

m

( ⋃
x∈A

V s
x

)
> 0. (1.1)

We can now give the definition of SRB measure that we use in this paper.

Definition 1.4. (SRB measures). An invariant probability measure μ is an SRB
measure if it is hyperbolic and every set X ⊂ Λ with μ(X) = 1 is fat.

One of the key properties of V s
x is that d(fn(y), fn(x)) → 0 as n → ∞

for every y ∈ V s
x . This implies that if x ∈ Bμ for some measure μ then also

y ∈ Bμ for every y ∈ V s
x . Therefore the fatness condition (1.1) together with

Birkhoff’s ergodic theorem implies that any ergodic SRB measure is a physical
measure.5 In his plenary lecture at the ICM in Berlin in 1998, Viana formulated
the following natural conjecture.

Conjecture (Viana [69]). If a smooth map has only nonzero Lyapunov expo-
nents at Lebesgue almost every point, then it admits some SRB measure.

Remark 1.5. In the non-uniform hyperbolicity theory a common definition of
SRB measure μ requires only that “the conditional measures generated by
μ on unstable manifolds are absolutely continuous with respect to the leaf
volume on these manifolds” [49,73]. Such measures may have some zero Lya-
punov exponents in directions transversal to unstable manifolds and hence
need not be hyperbolic. The advantage of this more general definition is that
SRB measures are characterized as the only measures that satisfy the entropy
formula. On the other hand, these “non-hyperbolic” SRB measures may not
be physical, and some authors adopt a different convention beyond uniform
hyperbolicity, in which “SRB measure” simply means “physical measure” [18,
Chapter 11]; this appears to be the intent of the Viana conjecture.

We stress that our definition is in fact equivalent to the requirement
of being “hyperbolic with absolutely continuous conditionals along unstable
manifolds” [68, Theorem C] although we emphasize the fatness condition which
is easier to state and is ultimately the crucial property for proving physicality
of the measure.

In this paper we use the fatness condition to prove a version of the
Viana conjecture for surface diffeomorphisms under the hyperbolicity condi-
tions (H1), (H2), and (H3) (see Definition 1.6; these conditions are weaker
than the nonzero Lyapunov exponents condition in Definition 1.2) but with
the addition of a mild recurrence condition. In Sects. 1.4–1.6 we give the exact
definitions we need for the formal statement of our result in Sect. 1.7; then in
Sect. 1.8 we discuss previous literature on the topic.

5The converse is not true: for example, if p is a hyperbolic fixed point whose stable and

unstable curves form a figure-eight, then δp is a hyperbolic physical measure which is not

SRB [48, p. 140].
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1.4. Hyperbolic Sets

The requirement that the limits in Definition 1.2 exist is somewhat unnatural
in a setting where we do not a priori have an invariant probability measure,
and also obscures a crucial feature of sets with nonzero Lyapunov exponents,
which is the fact that the convergence to the limit can be very non-uniform.
We give here an alternative formulation of hyperbolicity, which is slightly more
technical, but is more general and explicit about the intrinsic non-uniformity.

Definition 1.6 (Hyperbolic set). Given χ, ε > 0, we say that an f -invariant
measurable set Λ is (χ, ε)-hyperbolic if there exists a measurable Df -invariant
splitting TxM = Es

x ⊕ Eu
x for all x ∈ Λ, and measurable positive functions

C,K : Λ → (0,∞) satisfying

e−ε ≤ K(f(x))/K(x) ≤ eε and e−ε ≤ C(f(x))/C(x) ≤ eε (H1)

such that for every x ∈ Λ

�(Es
x, Eu

x ) ≥ K(x) (H2)

and for all unit vectors es
x ∈ Es

x, eu
x ∈ Eu

x and for all n ≥ 1,

‖Dfn
x (es

x)‖ ≤ C(x)e−χn, ‖Dfn
x (eu

x)‖ ≥ C(x)−1eχn,

‖Df−n
x (es

x)‖ ≥ C(x)−1eχn, ‖Df−n
x (eu

x)‖ ≤ C(x)e−χn.
(H3)

A set Λ is χ-hyperbolic if it is (χ, ε)-hyperbolic for all ε > 0, and hyperbolic if
it is a union of χ-hyperbolic sets over all χ > 0.

We will always assume that both Es
x and Eu

x are non-trivial (hence one-
dimensional) and we stress that our definition of hyperbolicity is inherently
non-uniform and the set Λ is not in general closed. Moreover, observe that if
Λ is (χ, ε′)-hyperbolic for some 0 < ε′ < ε, then it is (χ, ε)-hyperbolic.

Remark 1.7. It can be shown that a set Λ with nonzero Lyapunov exponents
(as in Definition 1.2) is hyperbolic (as in Definition 1.6), Indeed, if Λ has
nonzero Lyapunov exponents then it is a union of f -invariant sets on which
the Lyapunov exponents λs, λu are uniformly bounded away from 0. Each such
set is then (χ, ε)-hyperbolic for some χ > 0 and for every ε > 0, where the
functions K = Kε and C = Cε clearly depend on ε, see [13, §3.3].6

A first advantage of formulating hyperbolicity as above is that we can
write Λ as a union of nested sets on which we have uniform estimates.

Definition 1.8 (Regular sets). Given a (χ, ε)-hyperbolic set Λ, for each � ≥ 1
we define the regular level set

Λχ,ε,� := {x ∈ Λ : C(x) ≤ eε� and K(x) ≥ e−ε�}. (1.2)

6The converse is not true; the limits in the definition of nonzero Lyapunov exponents need
not exist at every point (only almost every), even in uniform hyperbolicity. Although exis-
tence of these limits is not necessary for our results, the slow variation condition (H1) still
plays a crucial role in Theorem 1.12, and it seems unlikely that it can be removed.
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One can assume without loss of generality that the regular level sets
Λχ,ε,� are closed by replacing them with their closures, which still carry the
hyperbolic structure in (H2) and (H3) with C(x) = eε� and K(x) = e−ε�, and
then taking the union over all � to get a (χ, ε)-hyperbolic set containing Λ.
When the values of χ, ε are clear from context, we will often suppress them
in the notation and simply write Λ� = Λχ,ε,�. Clearly Λ� ⊆ Λ�+1 ⊆ · · · and
Λ =

⋃
�≥1 Λ� and, by (H1),

f±k(Λ�) ⊆ Λ�+k for all �, k ∈ N. (1.3)

Note that for a χ-hyperbolic set Λ the regular sets Λ� are not defined
until we fix a value of ε > 0; changing the value of ε changes the functions
C,K and hence changes the sets Λ�. On the other hand, we can introduce a
useful notation for regular sets independent of an a-priori choice of Λ.

Definition 1.9 ((χ, ε, �)-regular sets). A set Γ ⊂ M is (χ, ε, �)-regular if there
exists a (χ, ε)-hyperbolic set Λ such that Γ ⊂ Λ�.

1.5. Local Stable and Unstable Curves

One of the fundamental consequences of hyperbolicity is the existence of stable
and unstable curves.

Definition 1.10 (Local stable and unstable curves). Given C, λ > 0, we say
that a C1 curve V s in M is a local (C, λ)-stable curve if for every y, z ∈ V s

and n ≥ 0, we have

d(fn(y), fn(z)) ≤ Ce−λnd(y, z) (1.4)

and if in addition the curve can be written as V s = expx(γ) for some x ∈ M
and γ ⊂ TxM satisfying the following conditions:
(1) there is a splitting TxM = E ⊕ F , an interval B ⊂ E, and a C1 function

ψ : B → F such that γ := {v + ψ(v) : v ∈ B};
(2) γ lies in the ball around the origin of radius inj(M), the injectivity radius

of the manifold.
Replacing fn with f−n in (1.4) gives the definition of a local (C, λ)-unstable
curve V u. We will sometimes omit C, λ from the notation when their precise
values are unimportant, and refer simply to local stable and unstable curves.

Definition 1.11 (Brackets). A point z ∈ M is said to be the bracket of two
points x, y ∈ M if there is a local stable curve V s

x containing x and a local
unstable curve V u

y containing y and such that z ∈ V s
x ∩ V u

y , and if moreover z
is the only point with this property and the intersection is transversal. In this
case we write [x, y] = z.

The above definitions are slightly more general than those commonly
used in the literature because we make no a priori assumption that the points
involved lie in a (χ, ε)-hyperbolic set; this makes certain bookkeeping tasks
more convenient (see Remark 11.4). With that said, we will still restrict our
attention to points satisfying the usual picture provided by the following clas-
sical result; see [13, §7.1] or [56] for a more precise and technical statement
and the proof.
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Theorem 1.12 (Local Stable and Unstable Manifold Theorem). For all χ >
λ > 0 there exists ε0 > 0 such that, for any ε ∈ (0, ε0) and any � ∈ N there
exist constants C�, δ� > 0 such that if Λ is a (χ, ε)-hyperbolic set, then there
are families {V s

x � x}x∈Λ�
and {V u

x � x}x∈Λ�
of C1+Hölder local (C�, λ)-stable

and (C�, λ)-unstable curves, respectively, such that
(1) V s

x and V u
x depend continuously on x ∈ Λ� in the C1 topology;

(2) if x, y ∈ Λ� satisfy d(x, y) < δ�, then the bracket [x, y] exists and is the
unique point in V s

x ∩ V u
y .

Remark 1.13. In fact Theorem 1.12 follows from Theorem F and Corollary 1,
with the small caveat that there we only guarantee that V

s/u
x are local

(C�, λ/3)-stable and unstable curves. The proof of Theorem 1.12 could be
modified to improve λ/3 to λ by being more careful with the bounds in (1.6),
(1.7), and (5.9), but this is not necessary for our purposes.

1.6. Definition of Constants

Before proceeding further, we give an explicit bound on how small ε must be
in the (χ, ε)-hyperbolic sets we consider. The precise form of this bound is
technical and can be omitted at a first reading; the important thing is that
as with ε0 in Theorem 1.12, the quantity ε1 depends only on f , χ, and λ. Fix
constants c1 < 0 < c2, c3 such that

c1 = −c2 ≤ min
x∈M

{log ‖Dxf−1‖−1} ≤ max
x∈M

{log ‖Dxf‖} ≤ c2 <
c3

1 + α
.

(1.5)

Given χ > λ > 0, let ε0 be as in Theorem 1.12. Define the following auxiliary
constants:

γ :=
χ − c1

2χ
, β :=

2χ

c3 + χ
α, ι :=

2(χ − λ)
6ε0γα + (2 + αβ)c2 + 2χ

,

η := 6γαι + 2, ζ := αβι.

(1.6)

Notice that γ, η > 1 and β, ι, ζ ∈ (0, 1). Let ε1 = ε1(f, χ, λ) be given by

ε1 := min
{

λα

18
,
λβ

7γ
,

λζ

η − 1
,

λ

2(1 + 1/α)
,

λ3α

9(λ − 4c1)(λ + 4c3)
, ε0

}
. (1.7)

Throughout the paper, we will consider (χ, ε)-hyperbolic sets where
ε ∈ (0, ε1) and ε1 is given by (1.7).

Remark 1.14. The first bound in (1.7) is used in (5.9), while the next three
are used in the proof of Theorem H in Sect. 8, when we produce a constant
δ > 0 such that for every � ∈ N and every x, y ∈ Λ� with d(x, y) ≤ δe−λ�, the
corresponding Lyapunov charts (Sect. 5.1) are overlapping (Definition 8.1).
More precisely, the second and third bound in (1.7) are used in Lemmas 8.13
and 8.14, and the fourth is used in (8.45). The fifth bound is used in Sect. 11.1
when we prove Theorem B. The last bound, ε1 ≤ ε0 is used to guarantee that
we can apply the local stable and unstable manifold Theorem 1.12. The bounds
in (1.7) also imply that ε1 < λ

12 , which is used in (9.4).
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p

q

ΓpqV s
q V s

p

V u
q

V u
p

Figure 1. A nice domain

Remark 1.15. The precise value of λ ∈ (0, χ) is not important and the reader
wishing to reduce the number of constants may as well consider λ = χ/2,
although choosing a different value of λ might yield a larger value of ε1.

1.7. Nice Domains, Recurrent Sets, and SRB Measures

We are now ready to introduce the key definitions we need to state our main
result. To simplify the notation, for a positive integer T we let TN denote the
set of positive integer multiples of T . We also use the notation V

s/u
p/q to refer

simultaneously to V s
p , V s

q , V u
p , V u

q .

Definition 1.16 (Nice Domain). Given χ, ε > 0, � ∈ N, and r ∈ (0, δ�), a
(χ, ε, �, r)-nice domain is a topological disk Γpq satisfying diam(Γpq) < r whose
boundary is formed by (pieces of) the local stable and unstable curves of
(χ, ε, �)-regular periodic points p, q; see Fig. 1. We let T = T (Γpq) denote the
smallest positive integer such that:
(1) T is a common multiple of the periods of p, q, so that fT (p) = p and

fT (q) = q;
(2) T is even, so that all eigenvalues of DfT

p and DfT
q are positive; and

(3) T is large enough that 8
√

2(1 + e2(λ−χ))−1/2e2ε�e−λT/3 < 1.

Remark 1.17. The “niceness” condition implies that for all n ∈ TN,

fn(V s
p/q ∩ Γpq) ∩ Int Γpq = ∅ and f−n(V u

p/q ∩ Γpq) ∩ Int Γpq = ∅; (1.8)

that is, the stable (respectively, unstable) boundary of Γpq never intersects the
interior of Γpq at iterates which are multiples of T in forward (respectively,
backward) time. This can be thought of as a two-dimensional version of the
notion of “nice interval” in one-dimensional dynamics, which refers to an inter-
val whose boundary points never enter the interval in forward time.7 Here (1.8)

7After this paper was completed we learned of recent work by Chen, Wang, and Zhang that
uses a similar notion for systems with singularities; see Definition 9 in [25, §5.3].
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will play a crucial role by ensuring that certain regions are necessarily nested
or disjoint, see e.g. Remark 4.16 and Lemma 11.11. There is no obvious gener-
alization of this condition to higher dimensions and this is essentially the main
reason for which our main results are restricted to surface diffeomorphisms.

Remark 1.18. The condition that T be even is used in the proof of Lemma 11.11
to guarantee that the “branches” forming our eventual Markov structure are
disjoint. The condition that T be sufficiently large is used in Sect. 11.4 to
guarantee that the tower we build satisfies the contraction property required
in [71].

Definition 1.19 (Nice regular set). Given χ, ε > 0, � ∈ N, and r ∈ (0, δ�], a
(χ, ε, �, r)-nice regular set is a set A that is (χ, ε, �)-regular and is contained in
some (χ, ε, �, r)-nice domain Γpq.

The simplest way to produce a (χ, ε, �, r)-nice regular set is to fix a
(χ, ε, �, r)-nice domain Γpq and then put A = Λχ,ε,� ∩ Γpq, but we do not
require that the set A has this exact form.

Remark 1.20. The definitions above depend on constants χ, ε, �, r which, for
simplicity, are not always reflected in the notation; we will sometimes refer
to a “nice domain” or a “nice regular set” without naming the constants. We
stress, however, that any reference to nice domains or nice regular sets which
does not explicitly refer to a choice of constants means that such a choice is
implicitly clear from the context. The same applies to the constant T which
is always associated with a nice domain and therefore to a nice regular set (as
for example in the following definition in which T is implicitly given by the
choice of a nice regular set A).

Definition 1.21 (Recurrence). A nice regular set A ⊆ Λ is
(1) recurrent if for all x ∈ A there exist i, j ∈ TN such that

f i(x), f−j(x) ∈ A;

(2) Lebesgue-strongly recurrent if it is recurrent and there is a local unstable
curve V u and a set E ⊂ V u ∩ A of positive one-dimensional Lebesgue
measure8 such that for every x ∈ E we have

lim sup
n→∞

1
n

#{i ∈ TN, 1 ≤ i ≤ n : f i(x) ∈ A} > 0. (1.9)

Observe that a Lebesgue-strongly recurrent set is fat in the sense of (1.1).
We are now ready to state our main result.

Theorem A. Let f be a C1+α surface diffeomorphism.
(1) For every χ > λ > 0, 0 < ε < ε1(f, χ, λ), and � ∈ N, there exists r > 0

such that if there exists a (χ, ε, �, r)-nice regular set A that is Lebesgue-
strongly recurrent, then f admits an SRB measure.

8One could imagine studying other equilibrium measures besides SRB by replacing Lebesgue
measure here with a reference measure such as those studied in [35,36], but we do not pursue
this here.
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(2) Conversely, if f admits an SRB measure, then for every sufficiently small
χ > 0 and every ε > 0, there exists � ∈ N such that for every r > 0, there
exists an (χ, ε, �, r)-nice regular set A that is Lebesgue-strongly recurrent.

In addition to the explicit bounds in (1.7) on ε, we refer to equation (10.1)
for relatively explicit conditions on r.

Remark 1.22. Theorem A provides (in the two-dimensional case) natural geo-
metric conditions which are necessary and sufficient for the existence of an SRB
measure, which is a highly non-trivial feature of a dynamical system. Part 1
of the theorem can be interpreted as a version of Viana’s conjecture. The con-
dition of Lebesgue-strongly recurrent includes a “fatness” requirement, which
is definitely necessary as it is built into the definition of SRB measures (see
also Remark 2.13). Beyond this, the theorem requires “niceness” and “(strong)
recurrence”. While our proof uses the niceness property in an essential way,
we believe that with some new ideas it should be possible to remove this
technical requirement. In addition, part 2 of the theorem indicates that this
requirement is not too strong. This leaves us with the requirement of strong
recurrence which is not explicit in the statement of Viana’s conjecture, but we
believe is needed to establish existence of an SRB measure. Here again part 2
of the theorem indicates that strong recurrence is not too much to ask for.

We stress that the proof of Theorem A includes a number of new results
in non-uniform hyperbolicity theory (such as results about almost returns and
shadowing) which are of independent interest. We will discuss these in more
detail in the next sections.

1.8. Historical Background

We review here some of the main results on the existence of SRB measures for
diffeomorphisms. To avoid getting too technical we will not be overly specific
about the precise technical assumptions, emphasizing instead the general ideas.
We refer the reader to [33] for more details and a discussion of the various
techniques which have been used in different settings. Most results mentioned
below hold in arbitrary dimension.

1.8.1. Uniformly Hyperbolic Sets. In the 1970s, Sinai, Ruelle, and Bowen con-
structed (in fact invented! ) SRB measures for fat, uniformly hyperbolic sets Λ
(attractors) under the additional assumption that Λ has a dense set of periodic
points (Axiom A) or, equivalently, that Λ has local product structure or that Λ
is locally maximal (see [67] for a proof that these three properties of uniformly
hyperbolic sets are equivalent).

1.8.2. Partially Hyperbolic Attractors. In 1982, Pesin and Sinai [59] developed
a new “push-forward” technique for constructing what they called “u-Gibbs”
measures (also called simply u-measures), which share a lot of geometric char-
acteristics of SRB measures but are not necessarily physical measures. They
applied their construction to partially hyperbolic attractors. In 2008, Burns,
Dolgopyat, Pesin, and Pollicott [24] showed that under some “transitivity”
assumptions, a u-measure that has negative Lyapunov exponents for vectors
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in the central direction on a set of positive measure is a unique SRB measure.
In 2000, Bonatti and Viana [19] considered a variation of this setting with a
continuous splitting Es ⊕ Euu with uniform expansion estimates in Euu and
non-uniform contraction estimates in Es, and proved the existence of genuine
SRB measures.

Around the same time, Alves, Bonatti, and Viana [1] considered the more
difficult setting of a continuous splitting Ess ⊕ Eu with uniform contraction
and non-uniform expansion estimates. The construction of the SRB measure in
this case required a significantly more sophisticated version of the push-forward
technique. An alternative construction of the SRB measure using Young towers
was carried out more recently in [5] under some slightly weaker expansivity
assumptions.

1.8.3. Non-uniformly Hyperbolic Sets. Relaxing the continuity of the split-
ting Es ⊕ Eu and the uniform lower bound on the angle �(Es

x, Eu
x ) seems to

bring the level of difficulty of the problem to another level. The first result for
a system with this kind of hyperbolic set is due to Benedicks and Young who
constructed SRB measures for certain two-dimensional “Hénon” maps, first
using the push-forward technique [16] and then using Young towers [17,71],
in both cases taking significant advantage of the specific geometric and ana-
lytic properties of the maps. These results were extended to more general
“Hénon-like” maps in [70] but still only apply to some quite restrictive classes
of systems.

More recently, [30] significantly generalizes the techniques of [1] to suc-
cessfully construct SRB measures for systems in which the splitting Es ⊕ Eu

is only measurable, with angle �(Es
x, Eu

x ) not bounded away from zero, and
with non-uniform contraction and expansion estimates which, however, need
to satisfy a non-trivial “synchronization” assumption.

1.8.4. Necessary and Sufficient Conditions. Theorem A is in some sense an
optimal result, because the conditions stated there are both necessary and
sufficient for the existence of an SRB measure. In contrast, the prior results
mentioned above all established sufficient conditions for existence of SRB mea-
sures, without addressing the question of whether the conditions are also nec-
essary.9

We mention three notable exceptions, where some set of conditions was
demonstrated to be both necessary and sufficient for existence of an SRB
measure. First is work of Tsujii [68], in which a point x is called “regular”
if its empirical measures μn = 1

n

∑n−1
k=0 δfkx weak*-converge to an ergodic

measure μ whose Lyapunov exponents agree with the exponents of x; then
existence of an SRB measure is shown to be equivalent to existence of a positive
volume set of regular points with nonzero Lyapunov exponents. More recently,
Burguet [22] has proved a similar result, using a different definition of “regular”
that is related to the “tempered” property, and that does not require one to

9As we will see in the next section, for surfaces Young’s tower conditions from [71] turn out
to be necessary as well as sufficient, but this was not proved in that paper.
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determine in advance whether empirical measures from a point converge to a
given measure.

Finally, we mention a paper of Snir Ben Ovadia [15] that appeared after
our results were completed. This work is most closely related to ours as it estab-
lishes existence of an SRB measure under conditions of hyperbolicity, fatness
and strong recurrence which are very similar to ours. Moreover, Ben Ovadia’s
proof works in any dimension, not just for surfaces, and does not require the
use of nice domains. However, while our method is pretty much geometrical,
his approach is completely different and is based on Markov coding which he
developed in his earlier work on countable Markov partitions [14], building on
work of Sarig [65]. This Markov coding is in general, non-uniformly bounded-
to-one, and thus the tower which can be obtained by inducing on a single state
need not be a first T -return Young tower for any T , in contrast to the one we
build; see Sect. 11.5 for a discussion of how the first return property is related
to the saturation property of the rectangle that we build as the base of the
Young tower. Moreover, as we will see in Corollary C.2, our construction per-
mits us to formulate a condition under which the tower has exponential tails,
which appears to have no analogue in the abstract Markov partition approach.
We believe that this opens up a possibility to study various properties of SRB
measures such as the decay of correlations and the central limit theorem using
recently available techniques involving Young towers.

2. Young Towers: Theorem B

Our strategy for producing the SRB measure in Theorem A consists of a
new technique for the construction of a Young tower. The latter has a non-
trivial geometric and dynamical structure, and it is rather remarkable that its
existence can be deduced using only a nice regular set that is Lebesgue-strongly
recurrent.

2.1. Rectangles

Recall that Theorem 1.12 guarantees that given χ > λ > 0 and a (χ, ε)-
hyperbolic set Λ, any two sufficiently close points x, y ∈ Λ� have a unique
bracket [x, y] = V s

x ∩ V u
y . This point need not be contained in Λ�, or even in

Λ; for example, this occurs when Λ consists of two hyperbolic periodic orbits
that pass sufficiently close to each other.

Nevertheless, we will see in Theorem F and Corollary 1 that z = [x, y]
always belongs to some hyperbolic set, and indeed more precisely to a
(λ/4, 2ε, �+�′)-regular set, where �′ depends only on χ, λ, ε. One could then pro-
duce local stable and unstable curves V s

z and V u
z by applying Theorem 1.12;

however, a priori these may be shorter than V s
x and V u

y . We will generally
write V s

z = V s
x and V u

z = V u
y for the longer curves, even though these may

not be “centered” at z. Indeed, we can write V s
z = V s

x for any z ∈ V s
x , and

similarly for unstables.
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Brackets play a very important role in describing the geometry of hyper-
bolic sets. In particular we will be interested in sets which are closed with
respect to the bracket operation.

Definition 2.1 (Rectangles). Given C, λ > 0, a (C, λ)-rectangle is a set Γ such
that for every x, y ∈ Γ there is a (C, λ)-local stable curve V s

x containing x and
a (C, λ)-local unstable curve V u

y containing y with the property that [x, y] :=
V s

x ∩ V u
y is a single point, and [x, y] ∈ Γ. When the precise values of C, λ are

unimportant, we will refer to Γ simply as a rectangle.

Remark 2.2. Rectangles are also sometimes referred to in the literature as
sets with local product structure or hyperbolic product structure, though this
is usually in the more restrictive uniformly hyperbolic setting. The discussion
above shows that rectangles are very natural structures also in our more general
(non-uniformly) hyperbolic setting. Indeed, if A is a (χ, ε, �)-regular set of
sufficiently small diameter then the bracket [x, y] is well defined and consists of
a single point for every pair of points x, y ∈ A. In this case then [[x, y], [x′, y′]] =
[x, y′] ∈ Γ for all x, y, x′, y′ ∈ A and therefore the set

Γ := {[x, y] : x, y ∈ A} (2.1)

is closed under the bracket operation, so Γ is a (C�, λ)-rectangle.

2.2. Topological Young Towers

To describe the notion of Young tower that we use, we first recall some standard
and some slightly non-standard definitions.

Definition 2.3. (Nice Rectangles). A rectangle Γ is a nice rectangle if Γ ⊂ Γpq

for some nice domain Γpq and if the local stable and unstable curves of every
point x ∈ Γ are “full length” in Γpq in the following sense: V u

x intersects both
V s

p and V s
q , and V s

x intersects both V u
p and V u

q .

A nice rectangle is not assumed a priori to be a nice regular set (although
it is assumed to have stable and unstable curves through every point); the
word “nice” in both cases emphasizes the geometry of the situation. We want
to restrict our attention to the pieces of local stable and unstable curves which
are inside the nice domain and so, for any x ∈ Γ ∪ {p, q}, let

W s/u
x := V s/u

x ∩ Γpq.

Then a nice rectangle Γ ⊂ Γpq has the structure

Γ = Cs ∩ Cu where Cs :=
⋃
x∈Γ

W s
x and Cu :=

⋃
x∈Γ

Wu
x . (2.2)

Definition 2.4 (s-subsets and u-subsets). If Γ is a rectangle, we say that Γs ⊂ Γ
is an s-subset of Γ if x ∈ Γs implies V s

x ∩ Γ ⊂ Γs and Γu ⊂ Γ is a u-subset of
Γ if x ∈ Γu implies V u

x ∩ Γ ⊂ Γu.

Definition 2.5 (T-return times). For a T -recurrent set A ⊂ Γpq and x ∈ A, let

τ(x) := min{i ∈ TN : f i(x) ∈ A}
be the first T-return time to A.
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Definition 2.6 (Topological Young Tower). A nice T -recurrent rectangle Γ sup-
ports a first T-return topological Young tower if for each i ∈ TN we can sub-
divide Γs

i := {x ∈ Γ : τ(x) = i} into pairwise disjoint s-subsets

Γs
i1, . . . ,Γ

s
imi

such that Γu
ij := f i(Γs

ij) (Y0)

is a u-subset of Γ for every j = 1, . . . , mi. If Γs
i is empty we put mi = 0.

This definition in particular requires that Γs
i is an s-subset, so that for

each x ∈ Γ with τ(x) = i we have f i(W s
x ∩ Γ) ⊂ W s

fix ∩ Γ; this Markov
condition, and the analogous one for u-subsets, is often formulated explicitly
as part of the definition of a Young tower.

Remark 2.7. We remark that the “first T-return” part of the definition comes
from the fact that τ(x) is the first T-return time. A similar definition can be
used for a general return time function that is constant on local stable leaves
to give a more general topological Young tower.

Remark 2.8. As mentioned in Remark 1.20, several constants, including T ,
are implicit in these definitions. We will sometimes include T explicitly in the
associated terminology, for example in the notions of “T-return times” and
of “first T-return” in Definitions 2.5 and 2.6 above, when it helps maintain
clarity.

2.3. Young Towers

We call the above a topological Young tower because Y0 captures only the
topological structure of a Young tower which is often, including in the present
setting, the most difficult part of the construction. To state the other properties
of a Young tower we need to introduce the induced map to Γ.

Definition 2.9 (Induced map). For a rectangle Γ which supports a first T-
return topological Young tower, we define the induced map

F : Γ → Γ by F |Γs
i

:= f i

and refer to Γ as the base of the tower. We also let JacuF (x) := |det Dfτ(x)|Eu
x
|

denote the unstable Jacobian of this induced map, where Eu
x = TxWu

x .

Definition 2.10. (Young Tower). Let Γ be a rectangle which supports a first
T-return topological Young tower. We say that Γ supports a first T-return
Young tower if there exist constants κ1, κ2 ∈ (0, 1) and c > 0 such that

(Y1) for every i ∈ TN, j ∈ {1, ...,mi}, x ∈ Γs
ij :

(a) d(F (x), F (y)) ≤ κ1d(x, y) for every y ∈ V s
x

(b) d(x, y) ≤ κ1d(F (x), F (y)) for every y ∈ V u
x ∩ Γs

ij .
(Y2) for every x ∈ Γ and n ≥ 0:

(a) For all y ∈ V s
x , we have∣∣∣∣log

JacuF (Fn(x))
JacuF (Fn(y))

∣∣∣∣ ≤ cκn
2 ;
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(b) If y ∈ V u
x has the property that for all 0 ≤ k ≤ n there are ik ∈ TN

and jk ∈ {1, . . . , mik
} such that F k(x), F k(y) ∈ Γs

ikjk
, then we have∣∣∣∣log

JacuF (Fn−k(x))
JacuF (Fn−k(y))

∣∣∣∣ ≤ cκk
2 for all 0 ≤ k ≤ n.

Remark 2.11. The additional geometric estimates required for a topological
Young tower to be a Young tower are non-trivial and are not consequences of
the topological structure. Indeed, it is easy to construct a topological Young
tower which has a neutral fixed point, i.e. a fixed point at which the derivative
has both eigenvalues equal to 1. An easy and intuitive model of this, albeit in
the one-dimensional non-invertible setting, is the map f(x) = x + x2 mod 1
which is topologically a full branch map with two branches but does not satisfy
uniform expansion or bounded distortion. Similarly, a topological Young tower
with a neutral fixed point cannot satisfy conditions (Y1) and (Y2).

Definition 2.12 (Integrable return times). A fat rectangle Γ which supports a
first T-return Young tower has integrable return times if there is x ∈ Γ such
that ∫

V u
x ∩Γ

τ dmV u
x

< ∞.

2.4. Existence of Young Towers

Young towers are non-trivial geometric structures and their construction gen-
erally requires substantial work. A key part of our argument is to show that
they are part of the intrinsic structure of hyperbolic sets.

Theorem B. Let f : M → M be a C1+α surface diffeomorphism. For every
χ > λ > 0, every 0 < ε < ε1(f, χ, λ), and every � ∈ N there exists r > 0 such
that if A is a (χ, ε, �, r)-nice regular set that is recurrent, then
(1) A is contained in a nice rectangle Γ ⊂ Γpq that is recurrent and supports

a first T -return topological Young tower;
(2) if the set Γ of part (1) is Lebesgue-strongly recurrent, then Γ supports a

first T -return Young tower with integrable return times.

Remark 2.13. Since the rectangle Γ provided by Theorem B(1) is recurrent
and contains A, it follows from Definition 1.21 that if A is Lebesgue-strongly
recurrent, then Γ is Lebesgue-strongly recurrent as well. However, it is possible
that the set A is not fat (and hence not Lebesgue-strongly recurrent) but still
produces a Lebesgue-strongly recurrent (hence fat) rectangle Γ. In particular
the assumptions in part 1 of Theorem A can be relaxed to require that the
construction which we will use in the proof of part (1) of Theorem B produces
a Lebesgue-strongly recurrent rectangle. A simple setting in which this dis-
tinction may be seen to be potentially relevant is that of a two-dimensional
Anosov diffeomorphism. Then we can easily find a small nice domain Γpq and
may choose A as a countable dense set of points in Γpq which means in par-
ticular that A is not fat, but we shall see from the proof of Theorem B that
this gives rise to a Lebesgue-strongly recurrent rectangle Γ.



990 V. Climenhaga et al. Ann. Henri Poincaré

Remark 2.14. We will see in the proof (see Proposition 11.3) that the rectangle
Γ produced by Theorem B(1) is (λ/4, 2ε, � + �′)-regular for a value of �′ that
depends only on χ, λ, ε.

2.5. Historical Background

The Young tower approach for constructing invariant measures is a particular
case of a general and classical method in ergodic theory, that of inducing. This
is based on the construction of a return map to some subset of the phase
space which is simpler to study and more amenable to the construction of an
invariant measure; this invariant measure can then be extended to the whole
phase space by an elementary argument.

The specific inducing structure defined above, which is pertinent to the
study of systems with hyperbolic behavior, was introduced by Young [71]
as a framework for studying the existence and ergodic properties of SRB
measures.10 Since then, it has been applied to a variety of cases, includ-
ing billiards [11,26,27,52,71], certain Hénon maps [17], and partially hyper-
bolic diffeomorphisms [5,7,9,10]. A non-invertible version of a Young tower
was also introduced by Young in [72] and has proved extremely powerful in
studying non-invertible maps satisfying non-uniform expansivity conditions
[6,8,21,34,39,41,46,61].

A quite remarkable feature of the method of Young towers is that it
associates, by construction, a non-trivial geometric structure to the measure;
a structure which moreover can be used effectively to study several statistical
and ergodic properties of the measure, see [2,3,28,38,42,43,47,53–55,63,71,72]
as well as the other references mentioned above. This leads naturally to the
question of the domain of applicability of this method: if it implies so much
structure then maybe it can only be applied to a limited number of special
cases which have this structure? This legitimate doubt is partly supported
by the observation that all the constructions of Young towers so far have
relied heavily on specific, assumed a-priori, geometric properties of the systems
under consideration. This question has therefore led to the so-called liftability
problem, which is the question of which measures have, or “lift to”, a Young
tower structure, see Definition 3.2, and therefore can in principle be obtained
by the method of Young towers.

For the non-invertible non-uniformly expanding case this has been
addressed in several papers and in particular it is shown in [4] that essen-
tially every invariant probability measure which is absolutely continuous with
respect to Lebesgue lifts to a Young tower. One consequence of our results,
stated formally as Corollary C.1, is that for surface diffeomorphisms, every
hyperbolic measure (in particular, every SRB measure) lifts to a Young tower,
which means that the geometric structure of Young towers is intrinsic to all
hyperbolic (and in particular, all SRB) measures. Moreover, we show that
every hyperbolic measure lifts to a first return Young tower for some iterate
of the map, which is perhaps surprising because in most other applications of

10A more general inducing structure was introduced in [57]; it can be used to study the
existence and ergodic properties of equilibrium measures, which include SRB measures.
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Young’s work the towers do not have the first return property. Using this, we
obtain a way of controlling the tail of the tower, see Corollary C.2.

A related result in this direction is Sarig’s result [65] that every hyperbolic
measure for a surface diffeomorphism can be lifted to a countable-state topo-
logical Markov shift, which is closely related to a Young tower. The results
of [65] have been extended to higher dimensions [14], to three-dimensional
flows [51] and to non-uniformly hyperbolic surface maps with discontinuities
[50]. It seems natural to expect that our results admit similar extensions,
although for the extension to higher dimensions one must confront a major
technical obstruction, which is that the nice domains we use are inherently
two-dimensional.

3. Lifting Hyperbolic Measures to Towers: Theorem C

Statement 1 of Theorem A follows immediately from Statement (2) of The-
orem B and the results in [71] on the existence of SRB measures for Young
towers. Statement 2 of Theorem A follows immediately from our next result,
which states that nice Lebesgue-strongly recurrent rectangles are necessary for
the existence of hyperbolic (SRB) measures.

Theorem C. Let f be a C1+α surface diffeomorphism. If μ is a non-atomic
ergodic hyperbolic measure for f , then for every sufficiently small χ > 0 and
every ε > 0, there is an integer � ∈ N such that for every r > 0, there exists a
(χ, ε, �, r)-nice regular set A with μ(A) > 0 such that every x ∈ A has positive
frequencies of returns as in (1.9), and continues to satisfy this property with
f i replaced by f−i. In particular, A is recurrent, and if μ is an SRB measure,
then A is Lebesgue-strongly recurrent.

Remark 3.1. As will be seen in Proposition 12.1, the condition on � in The-
orem C is merely that it be sufficiently large that μ(Λχ,ε,�) > 0 for some
(χ, ε)-hyperbolic set Λ.

The rest of the paper is therefore devoted to the proofs of Theorems B
and C, which we will carry out through the development of some non-trivial
technical results of independent interest. We first conclude this section with two
almost immediate corollaries of Theorems B and C, also of independent inter-
est. The first is an observation concerning the geometric structure of hyper-
bolic measures, formalized in the notion of liftability which is relevant in many
applications and studies of the ergodic properties of invariant measures, see
e.g. [58].

Definition 3.2. (Liftable measures). An invariant probability measure μ is
liftable (to a topological Young tower) if there exists a recurrent rectangle
Γ which supports a topological Young tower and a probability measure μ̂ on
Γ which is invariant for the corresponding induced map F : Γ → Γ, such that

Eμ̂ :=
∫

Γ

τ dμ̂ < ∞ and μ =
1

Eμ̂

∞∑
i=0

f i
∗(μ̂|{τ > i}). (3.1)
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The following is an immediate consequence of Theorem C and [74].

Corollary C.1. Let f be a C1+α surface diffeomorphism. Then every ergodic
non-atomic hyperbolic (invariant) probability measure lifts to a first T-return
topological Young tower for some T > 0.

Before stating our second corollary, we emphasize that we have a first
T-return tower which is, to all intents and purposes, essentially as good as
if it was a first return time tower. Existence of a first T-return tower in this
generality is a rather surprising result and has important consequences. For
example, because every return to Γpq ∩Λ� is a return to the base of the tower,
we can relate the size of the tail of the tower to the return rate to regular level
sets.

Corollary C.2. Let f be a C1+α surface diffeomorphism, μ an ergodic non-
atomic χ-hyperbolic measure, and Λ a χ-hyperbolic set with μ(Λ) > 0. Suppose
that for every ε > 0 there is � ∈ N such that for every open set U ⊂ M with
μ(U ∩ Λ�) > 0 and every �′, T ∈ N, we have

lim
n→∞

1
n

log μ
{
x ∈ U ∩ Λ�′ : fkT (x) /∈ U ∩ Λ� for every 1 ≤ k ≤ n

}
< 0.

(3.2)

Then μ lifts to a first T -return topological Young tower for some T > 0, whose
tail decays exponentially in the sense that

lim
n→∞

1
n

log μ̂{x ∈ Γ : τ(x) > n} < 0. (3.3)

Proof. Without loss of generality, assume that χ > 0 is sufficiently small that
Theorem C applies. Fix λ ∈ (0, χ) and let ε1 be given by (1.7). Fix ε ∈ (0, ε1),
and let � ∈ N be as in the hypotheses of Corollary C.2, so that (3.2) holds for
all open U ⊂ M with μ(U ∩ Λ�) > 0 and every �′, T ∈ N. Note that � can also
be chosen large enough to guarantee that μ(Λ�) > 0.

With this value of �, let r > 0 be given by Theorem B, and let U ′ ⊂ M
be an open set with diameter less than r such that μ(U ′ ∩ Λ�) > 0. Note that
by Remark 3.1 this value of � works for the conclusion of Theorem C (and in
particular Proposition 12.1), which guarantees the existence of a nice domain
Γpq such that μ(Int Γpq ∩ Λ�) > 0. Let U = Int(Γpq) and let

Z+ = {x ∈ U ∩ Λ� : #{k ∈ N : fkT (x) ∈ U ∩ Λ�} < ∞}.

Define Z− similarly with f−kT in place of fkT , and let Z = Z− ∪ Z+. Note
that μ(Z) = 0 by the Poincaré recurrence theorem. Let A = (U ∩ Λ�)\Z,
and observe that A is a (χ, ε, �, r)-nice regular set that is recurrent, so by
Theorem B it is contained in a nice rectangle Γ ⊂ Γpq that is recurrent and
supports a first T -return topological Young tower.

Just as in Corollary C.1, the measure μ lifts to this tower by [74]. It
remains to prove (3.3). Observe that

{x ∈ Γ : τ(x) > n} ⊂ {x ∈ Γ : fkT (x) /∈ Γ for every 1 ≤ k ≤ n}
⊂ {x ∈ Γ : fkT (x) /∈ A for every 1 ≤ k ≤ n}.

(3.4)
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where the first inclusion uses the first T -return property, and the second uses
the fact that A ⊂ Γ. If fkT (x) /∈ A, then we either have fkT (x) /∈ U ∩ Λ� or
fkT (x) ∈ Z, and thus the sets in (3.4) are contained in

{x ∈ Γ : fkT (x) /∈ U ∩ Λ� for every 1 ≤ k ≤ n} ∪
n⋃

k=1

f−kT (Z).

Now we can use the fact that μ(Z) = 0 and that Γ ⊂ U ∩ Λ�′ for some �′ ∈ N

(recall Remark 2.14) to deduce that

μ{x ∈ Γ : τ(x) > n} ≤ μ{x ∈ U ∩ Λ�′ : fkT (x) /∈ U ∩ Λ� for every 1 ≤ k ≤ n}.

From (3.1) we see that μ(B) ≥ μ̂(B)/Eμ̂ for all Borel sets B. Combining this
observation and the previous inequality with (3.2) yields (3.3). �

Remark 3.3. A similar result can easily be formulated for rates of decay other
than exponential. What the proof above actually shows is the following: let

X = {(an)∞
n=1 : an > 0 for all n and an → 0 as n → ∞}

and suppose that A ⊂ X has the property that for every open set U ⊂ M
with μ(U ∩ Λ�) > 0 and every �′, T ∈ N, there is (an)n ∈ A such that

μ{x ∈ U ∩ Λ�′ : fkT (x) /∈ U ∩ Λ� for every 1 ≤ k ≤ n} ≤ an for all n.

Then μ lifts to a first T -return topological Young tower for some T > 0 whose
tail is governed by one of these sequences (an)n ∈ A in the sense that

μ̂{x ∈ Γ : τ(x) > n} ≤ Eμ̂an for all n.

When A = {(an)∞
n=1 ∈ X : limn→∞ 1

n log an < 0}, this yields Corollary C.2.

Remark 3.4. If μ is a hyperbolic measure whose log Jacobian along unstable
leaves is sufficiently regular, then control of the tail of the tower implies results
on decay of correlations and other statistical properties; see [37,53,57,66,71,
72] for upper bounds on correlations, [40,64,66] for lower bounds, and [54,55]
for some other statistical properties (this list is far from comprehensive).

The condition on regularity of the log Jacobian is often satisfied when μ is
an equilibrium measure for a sufficiently regular potential function. We remark
that the results in [23,31,32] provide techniques for studying equilibrium states
for some classes of non-uniformly hyperbolic systems, which suggest a method
for establishing the hypothesis of Corollary C.2. (Note that those systems are
not surface diffeomorphisms, so the results here do not apply directly.)

4. Hyperbolic Branches from Almost Returns: Theorem D

A remarkable feature of Theorem B is that its hypotheses contain only a
minimal amount of structure, whereas the conclusions produce a great deal of
non-trivial structure. The fundamental ingredient which we will use to build
this structure is that of a hyperbolic branch which we proceed to define. The
main result of this section, Theorem D, is then a statement on the existence
of hyperbolic branches under very mild recurrence conditions.
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We assume throughout this section that Γpq is a nice domain as in Defini-
tion 1.16 and Fig. 1 and that A ⊂ Γpq satisfies the following condition (which
in particular is true if A is a nice regular set or a nice rectangle).

Definition 4.1. Say that A ⊂ Γpq has full length local stable and unstable curves
if every x ∈ A is contained in a local stable curve W s

x ⊂ Γpq whose endpoints
are on Wu

p and Wu
q , and in a local unstable curve Wu

x whose endpoints are on
W s

p and W s
q .

The following definitions will allow us to discuss analogues of stable and
unstable curves through points in Γpq that do not necessarily lie in A.

Definition 4.2 (Cones). Given a normed vector space V , a cone in V is any
subset K ⊂ V for which there is a decomposition V = E ⊕ F and ω > 0 such
that

K = {0} ∪ {v + w : v ∈ E,w ∈ F, ‖w‖ < ω‖v‖}.

Say that two cones K and K ′ are transverse if K ∩ K ′ = {0}. Note that we
do not require K and K ′ to be defined in terms of the same decomposition
E ⊕ F .

Definition 4.3 (Conefields). A conefield over Γpq is a family of cones K =
{Kx ⊂ TxM}x∈Γpq

; it is continuous if Kx can be defined via decompositions
Ex ⊕ Fx and widths ωx such that Ex, Fx, ωx vary continuously in x.

Definition 4.4 (K-admissible curves). Given a conefield K = {Kx}x∈Γpq
, we

say that a C1 curve γ ⊂ Γpq is K-admissible if for every x ∈ γ we have
Txγ ⊂ Kx.

Definition 4.5 (Adapted conefields). Let A ⊂ Γpq have full length stable and
unstable curves. We say that two transverse continuous conefields Ks = {Ks

x}
and Ku = {Ku

x } over Γpq are adapted for A if W s
x is Ks-admissible and Wu

x is
Ku-admissible for every x ∈ A ∪ {p, q}.

Now we can define the broader family of curves that generalizes the “true”
stable and unstable curves through points in A.

Definition 4.6 (Admissible curves in a nice domain). Given adapted conefields
Ks and Ku for a set A ⊂ Γpq as in the previous definition, we refer to a Ks-
admissible curve as a stable admissible curve, and a Ku-admissible curve as an
unstable admissible curve. We say that a stable admissible curve is full length
if its endpoints lie on Wu

p and Wu
q , and an unstable admissible curve is full

length if its endpoints lie on W s
p and W s

q .

Definition 4.7 (Strips in a nice domain). Given A ⊂ Γpq and Ks/u as above,
a closed region Ĉs ⊂ Γpq is a stable strip if it is bounded by two pieces of
Wu

p ,Wu
q and two full length stable admissible curves; see Fig. 2. Similarly, a

closed region Ĉu ⊂ Γpq is an unstable strip if it is bounded by two pieces of
W s

p ,W s
q and two full length unstable admissible curves.
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p

q

Γpq

Cu

Cs

Figure 2. Stable strips and unstable strips in Γpq

The stable and unstable strips we consider will typically be bounded by
admissible curves of the form W

s/u
x for some x, but we do not require this as

part of the definition.

Definition 4.8 (Hyperbolic Branches). Let Ks,Ku be adapted conefields for
A ⊂ Γpq. Let Ĉs, Ĉu ⊆ Γpq be a stable and an unstable strip, respectively, and
suppose that there exists i > 0 such that f i(Ĉs) = Ĉu. The map

f i : Ĉs → Ĉu (4.1)

is a (C, κ)-hyperbolic branch if for every x ∈ Ĉs and y = f i(x) ∈ Ĉu we have

Df i
x(Ku

x ) ⊂ Ku
y and Df−i

y (Ks
y) ⊂ Ks

x (4.2)

and if for every vu ∈ Ku
x and vs ∈ Ks

y , the vectors defined for 0 ≤ j ≤ i by

vu
j := Df j

x(vu) and vs
j := Df

−(i−j)
y (vs) satisfy

‖vu
j ‖ ≤ Ce−κ(i−j)‖vu

i ‖ and ‖vs
j‖ ≤ Ce−κj‖vs

0‖. (4.3)

We call i the order of the hyperbolic branch.

Remark 4.9. Stable and unstable strips which form a hyperbolic branch have
the special property that their boundaries are pieces of the global stable and
unstable manifolds of the points p, q.

The following result plays no role in Theorem D, but is natural to state
at this point and is important in Sect. 11.2. See Sect. 9.2 and Remark 9.1 for
its proof.

Proposition 4.10. Suppose that I ⊂ N is infinite and that {f i : Ĉs
i → Ĉu

i }i∈I

is a family of (C, κ)-hyperbolic branches whose stable strips are nested in the
sense that Ĉs

i ⊃ Ĉs
j for all i, j ∈ I with j ≥ i. Then

⋂
i∈I Ĉs

i is a local (C, κ)-
stable curve that has full length in Γpq.
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p

q
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q
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q

Cs
1

Cs

Cu
1
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2

Cu
2

Cu

f i

f j

Figure 3. Concatenating hyperbolic branches

Similarly, if the unstable strips are nested in the sense that Ĉu
i ⊃ Ĉu

j for
all i, j ∈ I with j ≥ i, then

⋂
i∈I Ĉu

i is a local (C, κ)-unstable curve that has
full length in Γpq.

Definition 4.11. If f i : Ĉs
1 → Ĉu

1 and f j : Ĉs
2 → Ĉu

2 are hyperbolic branches,
then Ĉs := f−i(Ĉu

1 ∩Ĉs
2) is the stable strip for a hyperbolic branch f i+j : Ĉs →

Ĉu := f j(Ĉu
1 ∩ Ĉs

2). We refer to this new branch as the concatenation of the
original two branches. Observe that Ĉs consists of the points in the stable
strip of the first branch that are mapped by f i to the stable strip of the
second branch, as shown in Fig. 3.

If we start with two (C, κ)-hyperbolic branches, then the concatenation
of the two has the property that for every x ∈ Ĉs and vs ∈ Df

−(i+j)
fi+j(x)K

s
fi+j(x),

the vectors vs
k := Dfk

x (vs) for 0 ≤ k ≤ i + j satisfy ‖vs
k‖ ≤ Ce−κk‖vs

0‖ when
0 ≤ k ≤ i, and

‖vs
k‖ ≤ Ce−κ(k−i)‖vs

i ‖ ≤ C2e−κk‖vs
0‖

when k > i, with similar estimates on vu
k ; thus f i+j : Ĉs → Ĉu is a (C2, κ)-

hyperbolic branch. The fact that C is replaced with C2 can be a problem as
the constant would continue to grow with each repeated concatenation.

In the uniformly hyperbolic setting, one can deal with this problem by
passing to an adapted metric, or Lyapunov metric, in which C = 1. In non-
uniform hyperbolicity this procedure does not give a continuous metric on M ,
and one must restrict to regular level sets. In the next section we use this idea
to produce a family of branches that has the following property.

Definition 4.12 (Concatenation property of hyperbolic branches). We say that
a collection of (C, κ)-hyperbolic branches has the concatenation property if any
finite concatenation of these branches is still a (C, κ)-hyperbolic branch.

Given a nice regular set A ⊂ Γpq, it would be a fairly routine exercise in
non-uniform hyperbolicity theory (and the geometry of nice domains) to show
that for every x ∈ Γ and i ∈ N such that f i(x) ∈ Γ, there is a hyperbolic
branch f i : Ĉs → Ĉu such that x ∈ Ĉs, and that the collection of branches
associated with all returns to A has the hyperbolic branch property. However,
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W s
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Γpq

f iW s
x

f i(x)

[x, y, i]

Figure 4. An almost return and the associated hyperbolic
branch

when we prove Theorem B in Sect. 11, it will become important to work with
a larger collection of branches associated with a weaker kind of return.11

Definition 4.13 (Almost Returns). Let A ⊂ Γpq have full length stable and
unstable curves. A point x ∈ A has an almost return to A at time i ∈ TZ (see
Fig. 4) if f i(x) ∈ Γpq and there is y ∈ A such that

[x, y, i] �= ∅ where [x, y, i] :=

{
f i(W s

x) ∩ Wu
y if i > 0

f i(Wu
x ) ∩ W s

y if i < 0.

Note that actual returns, where x, f i(x) ∈ A, are special cases of almost
returns and thus if A is recurrent, then every x ∈ A has infinitely many almost
returns in both forward and backward time. In Sect. 11 we will construct a
rectangle using hyperbolic branches associated with almost returns, for which
we need the following definition and result. (These become vacuous for a set
without almost returns.)

Definition 4.14 (Hyperbolic branch property). The set A ⊂ Γpq has the (C, κ)-
hyperbolic branch property if there exist adapted conefields Ks/u such that the
following are true:

(1) whenever x ∈ A has an almost return to A at a time i ∈ TN, there exists
a (C, κ)-hyperbolic branch f i : Ĉs → Ĉu such that x ∈ Ĉs;

(2) the collection of such branches has the concatenation property.

Theorem D. Let f be a C1+α surface diffeomorphism. For every χ > λ > 0,
every 0 < ε < ε1(f, χ, λ), and every � ∈ N, there is r > 0 such that every
(χ, ε, �, r)-nice regular set has the (C, λ/3)-hyperbolic branch property for C =
8
√

2(1 − e2(λ−χ))−1/2e2ε�.

11We need the larger collection to guarantee that the rectangle we build is “saturated”, see
Remark 11.10 and Sect. 11.5.



998 V. Climenhaga et al. Ann. Henri Poincaré

The constant C in Theorem D is equal to Q̂e2ε� where Q̂ is as in (5.3)
below. The constant r determined by Theorem D is the same constant which
appears in the statements of Theorem B and Theorem A, and is given rela-
tively explicitly in (10.1). In Sect. 11 we use Theorem D, together with some
regularity estimates from Sect. 5.4 and Sect. 8.2, to prove Theorem B, and
thus part 1 of Theorem A. Most of that proof only relies on Theorem D and
can be read independently of the other sections; the regularity results are only
needed for the proof of part (2) of Theorem B.

Theorem D implies that every almost return corresponds to a hyperbolic
branch. Such branches can be concatenated as in Definition 4.11, and we point
out that the concatenated branches themselves may or may not correspond to
almost returns; see Remark 11.1.

Remark 4.15. Our construction of a first T -return topological Young tower in
Sect. 11 is solely based on the hyperbolic branch property. Theorem D ensures
this property in the setting of a global invariant hyperbolic set Λ although
one could imagine verifying this property in other situations using alternate
arguments. In this case one would still require some extra information on
bounded distortion in order to get the analogue of Theorem B(2) about a
genuine Young tower.

Remark 4.16. The proof of Theorem D in Sect. 10 relies on the notion of “reg-
ular branch” that we introduce in the next section. The hyperbolic branches
we seek are restrictions of these regular branches to a nice domain Γpq (see
Fig. 10), and Lemmas 10.3 and 10.4 use the niceness property in a crucial way
to show that the restricted branch has stable and unstable strips that are actu-
ally contained in Γpq. One could attempt to mimic the restriction procedure
for a domain Γpq without the niceness property, but in that case there would
be no way to guarantee this containment.

5. Pseudo-orbits: Theorems E and F

The proofs of Theorems C and D are ultimately based on a new and non-trivial
result, Theorem E, in the general theory of (non-uniformly) hyperbolic sets,
which is a generalization of the Katok closing lemma. This result is of inde-
pendent interest, and we expect it to have further applications beyond those
presented here. For simplicity, and in view of the setting of our main theorems,
we state it for two-dimensional diffeomorphisms, but it should generalize in a
relatively straightforward way to arbitrary dimension.

In Sect. 5.1 we introduce the basic notion of a Lyapunov chart, following
the approach of Sarig in [65], and use this to define the notion of stable and
unstable strips in Sect. 5.2 and of regular branch for pseudo-orbits in Sect. 5.3.
In Sect. 5.3 we state our main result about regular branches for pseudo-orbits,
and in Sect. 5.4 a useful consequence about shadowing orbits.
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Figure 5. The Lyapunov chart at x

5.1. Lyapunov Charts

Let Λ be a (χ, ε)-hyperbolic set. We fix some

b > 0

sufficiently small to be determined in the course of the proof. This is the
only constant which we cannot give explicitly in terms of properties of f and
the constants associated with the hyperbolic set Λ, however see equations
(5.15), (7.13), (7.14), and Lemma 8.15 for the key places in which conditions
on b appear. For x ∈ Λ, let es

x ∈ Es
x, eu

x ∈ Eu
x be unit vectors and define

s, u : Λ → [1,∞) by

s(x)2 := 2
∞∑

n=0

e2nλ‖Dfn
x es

x‖2,

u(x)2 := 2
∞∑

n=0

e2nλ‖Df−n
x eu

x‖2.

(5.1)

By (H3), for λ < χ, the sums above converge and therefore s(x), u(x) are
well defined, though note that they are not uniformly bounded in x. Letting
e1 = (1, 0), e2 = (0, 1) denote the standard basis vectors in R

2, define the
linear map Lx : R2 → TxM , by letting

Lx(e1) := u(x)−1eu
x and Lx(e2) := s(x)−1es

x (5.2)

and extending to R
2 by linearity. We call Lx the Lyapunov change of coordi-

nates at x.
In Lemma 6.4 we prove the following standard relation between the Rie-

mannian metric and the metric induced by the Lyapunov coordinates: for any
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0 < λ < χ let12

Q0 := 1/8 and Q̂ := Q−1
0

(
2

∞∑
i=0

e2(λ−χ)i

)1/2

=
8
√

2√
1 − e2(λ−χ)

,

(5.3)

then, for every � ∈ N and x ∈ Λ�, we have

1 ≤ ‖L−1
x ‖ ≤ 3Q0Q̂e2ε�. (5.4)

For every x ∈ Λ let

b(x) := b

( ∞∑
k=−∞

e−3|k|ε‖L−1
fk(x)

‖
)− 1

α

. (5.5)

Notice that the sum converges by (1.3) and (5.4). For � ≥ 1 let

b� := b

(
3Q0Q̂e2ε�

∞∑
k=−∞

e−|k|ε
)− 1

α

(5.6)

It follows immediately from the definition that b�+1/b� = e−2ε/α and b ≥
b(x) ≥ b� > 0, and it follows from (5.4) (we give a formal proof in Lemma 6.5)
that e−3ε/α < b(x)/b(f(x)) < e3ε/α. Then, for every x ∈ Λ� we define

B(�)
x := [−b�, b�]2 ⊆ [−b(x), b(x)]2 =: Bx ⊂ R

2. (5.7)

Letting expx : TxM → M be the exponential map, define Ψx : Bx → M by

Ψx := expx ◦ Lx.

The map Ψx is called a Lyapunov chart at x; see [13] for a more general
notion.13 We write

N (�)
x := Ψx(B(�)

x ) ⊆ Ψx(Bx) =: Nx. (5.8)

Notice that Ψx(0) = x and therefore N (�)
x ,Nx are neighbourhoods of x, which

we call, respectively, the regular neighbourhood of level � of x and the regular
neighbourhood of x.

5.2. Stable and Unstable Strips

We want to define stable and unstable cones and other objects related to
these regular neighbourhoods and Lyapunov charts, these will be analogous to
the corresponding definitions for nice domains in Sect. 4. For this we need to
introduce an additional small constant ω which, for completeness, we define
precisely.

Let χ > λ > 0 and 0 < ε < ε1(f, χ, λ), and Λ a (χ, ε)-hyperbolic
set. Notice that (1.7) gives ε < αλ/18 and so 3ε/α < λ/6, which gives

12We could of course replace Q0 in the expression for Q̂ by its explicit value but various
calculations to be given below will be easier and clearer by keeping track of Q0 as an
independent constant.
13In [13] the Lyapunov change of coordinates Lx is required to be tempered, but we do not
require this condition.
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e−λ/2e3ε/α < e−λ/3. Thus we can choose ω > 0 sufficiently small that the
following inequalities all hold:

e−λ/2e3ε/α + e−λω < e−λ/3,

eλ/
√

1 + ω2 ≥ e2λ/3,

(e−λ/24 − ωeλ/24)/
√

1 + ω2 > e−λ/4,

(1 − ω) ≥
√

2(1 + ω2)/2,

2ω < 1 − eλ/24e−λ/3,

e−λ/24 < 1/
√

1 + e−2λω2.

(5.9)

From now on we always assume that ω satisfies (5.9). The following three
definitions are analogues of Definitions 4.5–4.7 for nice domains.

Definition 5.1 (Cones in regular neighbourhoods). For any λ > 0 we fix the
following cones defined in terms of standard Euclidean coordinates with v =
(v1, v2) ∈ R

2:

K̃s := {v : |v1| < e−λω|v2|} ⊂ {v : |v1| < ω|v2|} := Ks,

K̃u := {v : |v2| < e−λω|v1|} ⊂ {v : |v2| < ω|v1|} := Ku.
(5.10)

Given x ∈ Λ and y ∈ Nx, we write

Ks/u
x,y := DΨ−1

x (y)Ψx(Ks/u) and K̃s/u
x,y := DΨ−1

x (y)Ψx(K̃s/u) (5.11)

for the cones in TyM that correspond to the cones over Bx.

Definition 5.2 (Admissible curves in regular neighbourhoods). Let x ∈ Λ. A
C1 curve γs ⊂ Bx is a stable admissible curve (resp. strongly stable admissi-
ble curve) if its tangent directions lie in Ks (resp. K̃s); similarly for unstable
admissible curves γu ⊂ Bx. In particular, the horizontal and vertical bound-
aries of Bx or B(�)

x , are stable and unstable admissible curves, respectively,
and so we denote them by ∂sBx, ∂sB(�)

x and ∂uBx, ∂uB(�)
x , respectively. A sta-

ble admissible curve γs is a full length stable admissible curve, with respect
to Bx or B(�)

x if its endpoints lie on distinct components of ∂uBx or ∂uB(�)
x ,

respectively. We define full length unstable admissible curves similarly. For a
C1 curve γs/u ⊂ Nx we use the same terminology according to the geometry
of the corresponding curve Ψ−1

x (γs/u) ⊂ Bx.

Definition 5.3 (Strips in regular neighbourhoods). Let x ∈ Λ. A region Bs
x ⊆

B(�)
x is a (strongly) stable strip if its boundary is formed by two full length

(strongly) stable admissible curves and two pieces of ∂uB(�)
x . Full length unsta-

ble admissible curves and (strongly) unstable strips Bu
x ⊆ B(�)

x are defined
similarly. Moreover, for subsets N s/u

x ⊆ N (�)
x , we use the same terminology

depending on the geometry of the corresponding sets Ψ−1
x (N s/u

x ) ⊆ B(�)
x .

5.3. Pseudo-orbits and Regular Branches

Definition 5.4 (Pseudo-orbits). Given constants δ, λ > 0 and a finite sequence
�̄ = (�0, . . . , �k) of positive integers satisfying |�j − �j−1| ≤ 1 for all 1 ≤ j ≤ k,



1002 V. Climenhaga et al. Ann. Henri Poincaré

we say that a finite sequence of points x̄ = (x0, . . . , xk) is a finite (�̄, δ, λ)-
pseudo-orbit if for every 0 ≤ j ≤ k we have

xj ∈ Λ�j
and d(f(xj−1), xj) ≤ δe−λ�j .

Notice that the true orbit of the point x ∈ Λ� is trivially an (�̄, δ, λ)-
pseudo-orbit for δ = 0 and for the sequence �j = � + j, recall (1.3). The
results we present here are essentially already known for true orbits, but their
generalizations to pseudo-orbits is non-trivial and constitute a crucial step in
our arguments. Given a finite (�̄, δ, λ)-pseudo-orbit we write

N 0
x̄ :=

k⋂
i=0

f−iN (�i)
xi

and N j
x̄ := f j(N 0

x̄ ) for 1 ≤ j ≤ k

for the sets of points corresponding to orbit segments that go through all the
Lyapunov neighbourhoods of the points xi; the size of these sets depends on
the choice of �̄, but we suppress this in the notation.

Remark 5.5. We point out that one must carefully distinguish between N j
x̄ ,

where the subscript denotes a finite pseudo-orbit and the superscript indicates
which point in the pseudo-orbit to consider, and N (�)

x , where the subscript
denotes a point and the superscript denotes the level of a regular set containing
that point. A similar distinction should be made when N is replaced by B as
in the following.

In Lyapunov coordinates, for every 0 ≤ j ≤ k, we write

Bj
x̄ := Ψ−1

xj
(N j

x̄) ⊆ B(�j)
xj

(5.12)

and for every 0 ≤ i, j ≤ k,

f i,j
x̄ := Ψ−1

xj
◦ f j−i ◦ Ψxi

: Bi
x̄ → Bj

x̄, (5.13)

which is a diffeomorphism between Bi
x̄ and Bj

x̄ by definition. We will show that
such maps are hyperbolic branches in a suitable sense.

Definition 5.6 (�̄-regular branch). A finite (�̄, δ, λ)-pseudo-orbit x̄ determines
an �̄-regular branch for f if the following are true:

(i) B0
x̄, Bk

x̄ are stable and unstable strips in B(�0)
x0 , B(�k)

xk , respectively;
(ii) given 0 ≤ i < j ≤ k, y ∈ Bi

x̄, z ∈ Bj
x̄, vu ∈ Ku, and vs ∈ Ks, we have

Dyf i,j
x̄ vu ∈ Ku, ‖Dyf i,j

x̄ vu‖ ≥ eλ(j−i)/3‖vu‖,

Dzf
j,i
x̄ vs ∈ Ks, ‖Dzf

j,i
x̄ vs‖ ≥ eλ(j−i)/3‖vs‖.

(5.14)

In the specific case where �0 = �k = � and �j = min(� + j, � + k − j) for
0 < j < k, we refer to this as an �-regular branch.

Here and in what follows, we use underlined variables such as y, z to rep-
resent coordinates in R

2, while undecorated variables such as y, z will represent
points in M .

We now state our main result in the general setting of hyperbolic sets.
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Theorem E. Let f : M → M be a C1+α surface diffeomorphism. For every
χ > λ > 0 and every 0 < ε < ε1(f, χ, λ), there are b, δ > 0 such that if Λ is
a (χ, ε)-hyperbolic set, then every finite (�̄, δ, λ)-pseudo-orbit in Λ determines
an �̄-regular branch.

Recall from Definition 4.11 and the discussion following it that two (C, κ)-
hyperbolic branches can be concatenated, but the resulting branch is only
guaranteed to be (C2, κ)-hyperbolic. The crucial advantage we gain by consid-
ering �̄-regular branches is that the concatenation of two �̄-regular branches is
again a �̄-regular branch; this is because the hyperbolicity estimates in (5.14)
are given at the level of the Lyapunov charts, and not on the surface itself.
The relationship between the two types of estimates is given by the following
computation.

Since D0 expx is the identity map, we can choose b small enough that
Ψx : Bx → Nx is a diffeomorphism, in particular injective, for every x ∈ Λ,
and such that (5.4) gives

‖DyΨx‖ ≤ 2 and ‖DyΨ−1
x ‖ ≤ 4Q0Q̂e2ε� (5.15)

for every � ∈ N, x ∈ Λ�, y ∈ Bx, and y ∈ Nx. The conclusion of the following
result should be compared to Definition 4.8.

Proposition 5.7. Suppose x̄ = (x0, . . . , xk) determines an �̄-regular branch.
Given y ∈ N 0

x̄ and vu ∈ Ku
x0,y, let vu

j = Dyf j(vu) for 0 ≤ j ≤ k. Then
vu

j ∈ Ku
xj ,fjy and

‖vu
j ‖ ≤ Q̂e2ε�ke−λ(k−j)/3‖vu

k‖. (5.16)

Similarly, given z ∈ N k
x̄ and vs ∈ Ks

xk,z, let vs
j = Dzf

−(k−j)(vs) for 0 ≤ j ≤ k;
then vs

j ∈ Ks
xj ,f−(k−j)z

and

‖vs
j‖ ≤ Q̂e2ε�0e−λj/3‖vs

0‖. (5.17)

Proof. The inclusions follow immediately from (5.11) and (5.14). For (5.16) it
suffices to observe that (5.14) gives

‖vu
j ‖ = ‖Dfky(Ψfjy ◦ fk,j

x̄ ◦ Ψ−1
fky

)(vu
k )‖ ≤ 2 · e−λ(k−j)/3 · 4Q0Q̂e2ε�k‖vu

k‖
and recall that Q0 = 1/8 from (5.3). The proof of (5.17) is analogous. �

In Sect. 10 we use Theorem E and Proposition 5.7 to prove Theorem D.

Remark 5.8. In the theory of uniformly hyperbolic systems, it is well-known
that every pseudo-orbit segment determines a regular branch as in Defini-
tion 5.6; that is, there is δ > 0 such that x0, . . . , xk determines a regular branch
whenever d(f(xj), xj+1) < δ for all 0 ≤ j < k. In non-uniform hyperbolicity,
various versions of Theorem E have been obtained. The first result of this type
is the well-known Katok closing lemma [48]. Other versions were obtained by
Hirayama [44], and by Sarig [65] in his construction of countable Markov parti-
tions for surface diffeomorphisms with positive topological entropy; this latter
result was generalized to higher dimensions by Ben Ovadia [14]. What makes
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our Theorem E different is the explicit relationship between � and the pseudo-
orbit scale δe−λ�; this is absolutely crucial for our arguments, particularly our
construction of hyperbolic branches associated with almost T -returns.

5.4. Shadowing

We conclude this section by stating a consequence of Theorem E for the prob-
lem of shadowing in the non-uniformly hyperbolic setting. It is classical prob-
lem in hyperbolic dynamics whether every pseudo-orbit is “shadowed” by a
real orbit of the system [60]. In uniform hyperbolicity theory a positive answer
to this question is a fundamental result, with many applications and in partic-
ular, is a key ingredient in the construction of Markov partitions. Extending
it to the setting of non-uniform hyperbolicity has proved challenging and few
results have been obtained, see [13]. Here we give a powerful shadowing result,
which follows relatively easily from Theorem E. In addition to the existence of
a shadowing orbit, this result gives an explicit estimate on the hyperbolicity
constants associated with this shadowing orbit and also proves Theorem 1.12
on the existence of local stable and unstable curves (up to optimizing the rate
of contraction, see Remark 1.13).

Definition 5.9. Given a bi-infinite sequence �̄ = (�n)n∈Z with |�n+1 − �n| ≤ 1
for all n, a bi-infinite (�̄, δ, λ)-pseudo-orbit is a bi-infinite sequence (xn)n∈Z

such that for every n ∈ Z, we have xn ∈ Λ�n
and d(f(xn−1), xn) ≤ δe−λ�n .

Replacing “n ∈ Z” with “n ≥ 0” and “n ≤ 0” gives the definitions of forward
(�̄, δ, λ)-pseudo-orbit and backward (�̄, δ, λ)-pseudo-orbit, respectively.

Theorem F. Let f : M → M be a C1+α surface diffeomorphism. For every
χ > λ > 0 and every 0 < ε < ε1(f, χ, λ), there are b, δ > 0 such that if Λ is a
(χ, ε)-hyperbolic set, then the following are true.

(1) If (xn)n≥0 is a forward (�̄, δ, λ)-pseudo-orbit in Λ, then
⋂

n≥0 f−n(N (�n)
xn )

is a C1+Hölder full length local (Q̂e2ε�0 , λ/3)-stable curve.
(2) If (xn)n≤0 is a backward (�̄, δ, λ)-pseudo-orbit in Λ, then

⋂
n≤0 f−n(N (�n)

xn )
is a C1+ Hölder full length local (Q̂e2ε�0 , λ/3)-unstable curve.

(3) If (xn)n∈Z is a bi-infinite (�̄, δ, λ)-pseudo-orbit in Λ, then there is a unique
shadowing point y ∈ M such that fn(y) ∈ N (�n)

xn for all n ∈ Z. Moreover,
the point y is (λ/4, 2ε, �0 + �′)-regular for �′ = � 1

2ε log Q̂�.
Let σ denote the left shift on N

Z (which contains the possible sequences
�̄) and ΛZ (which contains the possible pseudo-orbits (xn)n∈Z). If x̄ is a bi-
infinite (�̄, δ, λ)-pseudo-orbit, then σx̄ is a bi-infinite (σ�̄, δ, λ)-pseudo-orbit. It
follows from uniqueness of the shadowing point that the map x̄ �→ y intertwines
σ and f : if y is the unique shadowing point for x̄, then f(y) is the unique
shadowing point for σx̄. Moreover, if the pseudo-orbit is periodic in the sense
that σn�̄ = �̄ and σnx̄ = x̄ for some n ∈ N, then fn(y) = y. In particular, this
allows us to deduce the Katok closing lemma as a specific case of Theorem F:
if x, fn(x) ∈ Λ� and d(x, fn(x)) < δe−λ�, then we can take xk = fk(x) and
�k = � + min(k, n − k) for 0 ≤ k < n, and repeat periodically mod n, to get a
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bi-infinite (�̄, δ, λ)-pseudo-orbit whose unique shadowing point is the periodic
point from the Katok closing lemma.

Corollary 1. If x, y ∈ Λ� and d(x, y) ≤ δe−λ�, then writing

�n = � + |n| and zn =

{
fn(y) n < 0,

fn(x) n ≥ 0

gives a (�̄, δ, λ)-pseudo-orbit z̄, whose unique shadowing point z is the bracket
[x, y] = V s

x ∩V u
y . Thus {[x, y] : x, y ∈ Λ�, d(x, y) ≤ δe−λ�} is a (λ/4, 2ε, �+ �′)-

regular set, where �′ = � 1
2ε log Q̂�.

Remark 5.10. The δ in Corollary 1 is the same as in Theorem F. This corollary
in particular shows that the bracket [x, y] exists, so that δe−λ� plays the role
of δ� from Theorem 1.12. In general the δ� used there could be larger than
δe−λ�, because that result made no claims about regularity of [x, y].

Part II. Hyperbolic Theory

In this part of the paper we develop all the general hyperbolic theory needed
for the proofs of our main results and prove Theorems E and F. For simplicity
we state and prove everything in the two-dimensional setting, as required by
our applications of these results. The results in this part, as well as Theorems E
and F, do not contain any inherently two-dimensional ideas, and we expect
that they hold as stated in higher dimensions as well; we have not written down
detailed proofs, but there do not appear to be any conceptual obstructions.
This should be contrasted with Theorems A–D and their proofs in Part III,
where a crucial role is played by the notion of “nice domain”, which has no
obvious higher-dimensional analogue.

The contents of this part are completely self-contained, with no reference
to existing results in the literature, and follow directly from the definition of
(χ, ε)-hyperbolic set.

In Sect. 6 we give some basic estimates related to Lyapunov charts. In
Sect. 7 we state and prove Theorem G, on the hyperbolicity of f in Lyapunov
charts, which is a fundamental result in the theory of hyperbolic sets and the
key motivation behind the introduction of Lyapunov charts. In Sect. 8 we state
and prove Theorem H which gives some conditions guaranteeing that Lyapunov
charts of nearby points are “overlapping” in a suitable sense. Some qualitative
versions of this result are known, but we give a quantitative version which is
not available in the existing literature and which is crucial for our arguments;
this is the most involved technical step in the paper. In Sect. 9.1 we combine
these two results to prove Theorem E, and in Sect. 9.2 we deduce Theorem F.

Throughout the proofs, we will write Qj for various constants that depend
only on f, χ, λ, ε and are independent of x, y, �, n, k, etc.
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6. Lyapunov Chart Estimates

Recall the definition of Lyapunov charts in Sect. 5.1 and in particular the func-
tions s(x), u(x) defined in (5.1), the map Lx defined in (5.2), and the quantities
b� and b(x) defined in (5.6) and (5.5), respectively. We follow here the basic
approach of Sarig in [65] and prove some properties of these objects, includ-
ing (5.4). We start with a couple of simple estimates showing that although
the functions s(x), u(x) are not slowly varying along orbits, they are uniformly
bounded on each Λ� and satisfy a bounded variation property along orbits.

Lemma 6.1. For every � ≥ 1 and x ∈ Λ�, we have√
2 ≤ s(x) ≤ Q0Q̂eε� and

√
2 ≤ u(x) ≤ Q0Q̂eε�. (6.1)

Proof. The lower bounds follow immediately from the definition of s(x), u(x)
in (5.1). Using the hyperbolicity property (H3) and the definition of Q0, Q̂ in
(5.3), we have

s(x)2 ≤ 2
∑
n≥0

e2nλC(x)2e−2nχ = C(x)2(Q0Q̂)2,

and then the definition of Λ� in (1.2) gives the upper bound for s(x). The
upper bound for u(x) is similar. �

Lemma 6.2. There exists a constant Q1 = Q1(c1, c2, λ) > 0 such that for every
x ∈ Λ and unit vectors es

x ∈ Es
x, eu

x ∈ Eu
x , we have

Q−1
1 ≤ eλ‖Dxf(es

x)‖ ≤ s(x)/s(f(x)) ≤
√

1 + e2λ‖Dxf(es
x)‖2 ≤ Q1,

Q−1
1 ≤ eλ‖Dxf(eu

x)‖−1 ≤ u(f(x))/u(x) ≤
√

1 + e2λ‖Dxf(eu
x)‖−2 ≤ Q1.

Proof. For s(x) we have

s(x)2

2
:=

∞∑
k=0

e2kλ‖Dfk
x es

x‖2 = 1 + e2λ‖Dfxes
x‖2

∞∑
k=1

e2(k−1)λ‖Dfk−1
f(x)e

s
f(x)‖2,

and
∞∑

k=1

e2(k−1)λ‖Dfk−1
f(x)e

s
f(x)‖2 =

∞∑
k=0

e2kλ‖Dfk
f(x)e

s
f(x)‖2 = s(f(x))2,

which gives s(x)2 = 2
(
1 + e2λ‖Dfxes

x‖2s(f(x))2
)
. Dividing both sides by

s(f(x))2 and taking a square root, we obtain
s(x)

s(f(x))
=

√
2(s(f(x))−2 + e2λ‖Dfxes

x‖2) ≥ eλ‖Dfxes
x‖, (6.2)

and the upper bound for s(x)/s(f(x)) also follows since s(f(x)) ≥ √
2 so

2(s(f(x)))−2 ≤ 1. For uniformity of Q1 it suffices to note that ‖Df±1
x ‖ ≤

max(e−c1 , ec2) by (1.5). A similar computation for u(x), using f−1 in place of
f , gives the following analogue of (6.2):

u(x)
u(f−1(x))

=
√

2(u(f−1(x)))−2 + e2λ‖Df−1
x eu

x‖2 ≥ eλ‖Df−1
x eu

x‖,
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with the upper bound again coming from u(f(x)) ≥ √
2, so that

eλ‖Df−1
x eu

x‖ ≤ u(x)
u(f−1(x))

≤
√

1 + e2λ‖Df−1
x eu

x‖2.

Applying this to f(x) and f−1(f(x)) = x, we get

eλ‖Df−1
f(x)e

u
f(x)‖ ≤ u(f(x))

u(x)
≤

√
1 + e2λ‖Df−1

f(x)e
u
f(x)‖2.

Using that ‖Df−1
f(x)e

u
f(x)‖ = ‖Dfxeu

x‖−1 we get the bounds for u, and unifor-
mity via Q1 comes as it did for s. �

An almost immediate, but extremely important, consequence of Lemma 6.2,
and therefore of the way the functions s(x), u(x) are defined, is the following
fundamental result originally proved in [56].14

Theorem 6.3. (Oseledets–Pesin Reduction Theorem). For every x ∈ Λ,

L−1
f(x) ◦ Dxf ◦ Lx =

(
Ax 0
0 Bx

)
, (6.3)

where Lx is given by (5.2) and Ax, Bx ∈ R satisfy

0 < Q−1
1 < Bx ≤ e−λ < 1 < eλ ≤ Ax < Q1. (6.4)

Proof. The diagonal form is a consequence of the invariance of the stable and
unstable subspaces Es

x, Eu
x and the fact that Lx, Lf(x) map the coordinate axes

to these subspaces, recall (5.2). Thus, by linearity of Lx we have

Axe1 = L−1
f(x) ◦ Dxf ◦ Lx(e1) = L−1

f(x) ◦ Dxf
( eu

x

u(x)

)
=

u(f(x))
u(x)

‖Dxf(eu
x)‖,

Bxe2 = L−1
f(x) ◦ Dxf ◦ Lx(e2) = L−1

f(x) ◦ Dxf
( es

x

s(x)

)
=

s(f(x))
s(x)

‖Dxf(es
x)‖,

and the statement then follows from Lemma 6.2. �

Lemma 6.4. For every x ∈ Λ, we have

1 ≤
√

s(x)2 + u(x)2√
2 sin�(Es

x, Eu
x )

≤ ‖L−1
x ‖ ≤

√
s(x)2 + u(x)2

sin �(Es
x, Eu

x )
. (6.5)

In particular, for every � ≥ 1, x ∈ Λ�, and k ∈ Z, we have

1 ≤ ‖L−1
fk(x)

‖ ≤ 3Q0Q̂e2ε�e2ε|k|. (6.6)

Proof. Let θ(x) = �(Es
x, Eu

x ). Consider the orthonormal basis {eu
x, (eu

x)⊥} in
TxM , oriented so that es

x = cos θ(x)eu
x + sin θ(x)(eu

x)⊥. From (5.2), we have
Lxe1 = u(x)−1eu

x and Lxe2 = s(x)−1es
x, so the matrices of L±1

x relative to the
orthonormal bases {e1, e2} and {eu

x, (eu
x)⊥} have the form

Lx =
(

u(x)−1 s(x)−1 cos θ(x)
0 s(x)−1 sin θ(x)

)
and L−1

x =
(

u(x) −u(x)/ tan θ(x)
0 s(x)/ sin θ(x)

)
.

14In [56] it is required that Lx is tempered, but this is not necessary for our formulation.
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The norm of A = L−1
x is the square root of the largest eigenvalue of

AT A =
1

sin2 θ(x)

(
u(x)2 −s(x)u(x) cos θ(x)

−s(x)u(x) cos θ(x) s(x)2

)
,

and thus a routine computation with the quadratic formula gives

‖L−1
x ‖2 =

u(x)2 + s(x)2 +
√(

u(x)2 + s(x)2
)2 − 4s(x)2u(x)2 sin2 θ(x)

2 sin2 θ(x)
.

The square root term lies between 0 and u(x)2 + s(x)2, which proves (6.5).
For (6.6), we first observe that sin θ ≥ 2θ

π for all θ ∈ [0, π
2 ]. From (1.3),

we see that if x ∈ Λ� then fk(x) ∈ Λ�+|k| and so �(Es
fk(x), E

u
fk(x)) ≥ e−ε(�+|k|)

and, by (6.1), s(fk(x)) ≤ Q0Q̂eε(�+|k|) and u(fk(x)) ≤ Q0Q̂eε(�+|k|). Substi-
tuting these bounds into the upper bound from (6.5) gives

‖L−1
fk(x)

‖ ≤
√

2Q0Q̂eε(�+|k|)

2e−ε(�+|k|)/π
=

π√
2
Q0Q̂e2ε�e2ε|k|,

which proves (6.6) since π/
√

2 < 3. �

Lemma 6.5. For every � ≥ 1 and x ∈ Λ�

b ≥ b(x) ≥ b� > 0 and e−3ε/α < b(x)/b(f(x)) < e3ε/α.

Proof. From (6.6), the sum in the definition of b(x) converges. Therefore, for
ε small and x ∈ Λ� we have

1 ≤ ‖L−1
x ‖ ≤

∞∑
k=−∞

e−3|k|ε‖L−1
fk(x)

‖ ≤ 3Q0Q̂e2ε�
∞∑

k=−∞
e−|k|ε

and thus b ≥ b(x) ≥ b� > 0 as in the first part of the statement. Moreover

b(f(x)) := b

( ∞∑
k=−∞

e−3|k|ε‖L−1
fk+1(x)

‖
)−1/α

= b

( ∞∑
k=−∞

e−3|k−1|ε‖L−1
fk(x)

‖e3(−|k|+|k|)ε
)−1/α

= b

( ∞∑
k=−∞

e−3|k|ε‖L−1
fk(x)

‖e3(−|k−1|+|k|)ε
)−1/α

.

Notice that −|k − 1| + |k| can only take the values +1 or −1, depending on
the value of k, and therefore

b(x)e−3ε/α ≤ b

( ∞∑
k=−∞

e−3|k|ε‖L−1
fk(x)

‖e3(−|k−1|+|k|)ε
)−1/α

≤ b(x)e3ε/α.

This completes the proof. �
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Bx

Bs,1
x

Ψx

Nx

f−1(Nf(x))

fN s,1
x

Ψ−1
f(x)

f(Nx)

Nf(x)

N u,1
f(x)

Bf(x)

Bu,1
f(x)

fx

Figure 6. The map f in Lyapunov coordinates

7. Hyperbolicity in Lyapunov Charts: Theorem G

The key motivation for introducing Lyapunov charts is to show that the map
f restricted to some neighbourhood of points of Λ is uniformly hyperbolic in
Lyapunov coordinates and to study the way f maps such neighbourhoods to
each other. To state this precisely, we consider x ∈ Λ and recall from Fig. 5
that the Lyapunov chart Ψx maps Bx ⊂ R

2 onto Nx ⊂ M , so that a point
y ∈ Nx is represented by coordinates y = Ψ−1

x (y) ∈ Bx. (As in Sect. 5, we will
use underlined variables to represent coordinates in Bx ⊂ R

2.) To represent
the map f in these coordinates, we write

Bs,1
x := Ψ−1

x (Nx ∩ f−1Nf(x)) and Bu,1
f(x) := Ψ−1

f(x)(f(Nx) ∩ Nf(x))

and denote by

fx := Ψ−1
f(x) ◦ f ◦ Ψx : Bs,1

x → Bu,1
f(x)

the corresponding diffeomorphism; see Fig. 6. Similarly, if x ∈ Λ�0 , and f(x) ∈
Λ�1 for some �1 with |�1 − �0| ≤ 1 we let �̄ = (�0, �1) and write

Bs,1

x,�̄
:= Ψ−1

x (N (�0)
x ∩ f−1N (�1)

f(x)) and Bu,1

f(x),�̄
:= Ψ−1

f(x)(fN (�0)
x ∩ N (�1)

f(x))

(7.1)

By (5.7), Bs,1

x,�̄
⊆ Bs,1

x and Bu,1

f(x),�̄
⊆ Bu,1

f(x) and therefore fx restricts to a
map

fx : Bs,1

x,�̄
→ Bu,1

f(x),�̄

For simplicity we will just use the same notation fx in both cases. We also
mention that in the definitions of the sets Bs,1

x,�̄
,Bs,1

x ,Bu,1

f(x),�̄
,Bu,1

f(x) we implicitly
mean the connected component, containing x or f(x), respectively, of these sets
which a priori may not be connected. The main result of this section states
that the map fx is uniformly hyperbolic and the sets just defined have a certain
specific geometry, see Fig. 6.

A key part of the statement of Theorem G is that certain sets are stable
and unstable strips which are strictly contained in the sets B(�)

x . It is convenient
to introduce the following sets.
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Definition 7.1. Given r > 0, consider the sets

B̃s
r := [−e−λ/3r, e−λ/3r] × [−r, r] ⊂ R

2,

B̃u
r := [−r, r] × [−e−λ/3r, e−λ/3r] ⊂ R

2

and let

Ñ s/u
x = Ψx(B̃s/u

b(x)) and Ñ s/u
x,� = Ψx(B̃s/u

b�
). (7.2)

Recall that K
s/u
x,y and K̃

s/u
x,y are defined in (5.11).

Theorem G. Let f : M → M be a C1+α surface diffeomorphism. Fix χ > λ >
0, 0 < ε < ε1(f, χ, λ), and ω satisfying (5.9). Then there is b > 0 such that for
every (χ, ε)-hyperbolic set Λ, �̄ = (�0, �1) with |�0 − �1| ≤ 1 and x ∈ Λ�0 with
f(x) ∈ Λ�1 , the following holds: for every y ∈ Bs,1

x , z ∈ Bu,1
f(x), vu/s ∈ Ku/s,

Dyfx(vu) ∈ K̃u, ‖Dyfx(vu)‖ ≥ eλ/2‖vu‖,

Dzf
−1
x (vs) ∈ K̃s, ‖Dzf

−1
x (vs)‖ ≥ eλ/2‖vs‖.

(7.3)

Moreover, the sets Bs,1

x,�̄
,Bu,1

f(x),�̄
are strongly stable and unstable strips, satisfy-

ing

Bs,1

x,�̄
⊆ B̃s

b�0
and Bu,1

f(x),�̄
⊆ B̃u

b�1
. (7.4)

Remark 7.2. Notice that the estimates (7.3) hold in particular for all y ∈ Bs,1

x,�̄
,

z ∈ Bu,1

f(x),�̄
but they do not depend on � and give one-step hyperbolicity in the

sense that the expansion and contraction is exhibited immediately after one
iteration. This is in contrast with the fact that if x ∈ Λ� for large � we have
very poor hyperbolicity estimates on the surface, cf. (H3) and (1.2). This is of
course the effect of the Lyapunov change of coordinates which has controlled,
but very large, distortion, and applies to very small neighbourhoods of x when
x ∈ Λ� for large �, recall (5.4) and (5.5). The crucial advantage of writing
the estimates as in (7.3) is that we can iterate the map any number of times
without loss of hyperbolicity. We only need to worry about the effect of the
distortion at the beginning and end of any arbitrarily long piece of orbit in
order to recover the actual hyperbolicity estimates for the original map f on
the surface.

In the rest of this section we prove Theorem G. In Sect. 7.1 we establish
the derivative estimates (7.3), in Sect. 7.2 we use these to prove the invariance
property of the cones, and in Sect. 7.3 we prove that Bs,1

x,�̄
,Bu,1

x,�̄
are stable and

unstable strips and satisfy (7.4).

7.1. Derivative Estimates

Here we prove the hyperbolicity estimates (7.3). We start with the special case
y = 0.

Lemma 7.3. For every x ∈ Λ, vu ∈ Ku, vs ∈ Ks,

‖D0fx(vu)‖ ≥ e2λ/3‖vu‖ and ‖D0f
−1
x (vs)‖ ≥ e2λ/3‖vs‖. (7.5)
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Before proving Lemma 7.3, we set up some notation. Consider the map

f̂x := exp−1
f(x) ◦f ◦ expx : TxM → Tf(x)M. (7.6)

Then since fx := Ψ−1
f(x) ◦ f ◦ Ψx = L−1

f(x) ◦ exp−1
f(x) ◦f ◦ expx ◦Lx, we have

fx = L−1
f(x) ◦ f̂x ◦ Lx. (7.7)

Given v ∈ TxM , we have

Dv f̂x = Df◦expx(v) exp−1
f(x) ◦Dexpx(v)f ◦ Dv expx . (7.8)

Also fx : Bs,1
x → Bu,1

f(x) and for every y ∈ Bs,1
x , Dyfx = Dy(L−1

f(x) ◦ f̂x ◦ Lx).
Using that Lx, Lf(x) are linear maps, we have

Dyfx = L−1
f(x) ◦ DLx(y)f̂x ◦ Lx (7.9)

With this notation we can easily prove Lemma 7.3.

Proof of Lemma 7.3. For y = 0 we have Lx(y) = Lx(0) = 0, so (7.9) gives

D0fx = L−1
f(x) ◦ D0f̂x ◦ Lx.

Now expx(0) = x gives f ◦ expx(0) = f(x), and the exponential function is
tangent to the identity at 0, i.e. D0 expx = Id and Df(x) exp−1

f(x) = Id, so (7.8)

implies D0f̂x = Dxf , which means that we have

D0fx = L−1
f(x) ◦ Dxf ◦ Lx. (7.10)

Writing vu = v1e1 + v2e2, (6.3) and (7.10) give D0fx(vu) = Axv1e1 + Bxv2e2.
Since vu ∈ Ku implies |v2| ≤ ω|v1|, we conclude that

‖D0fx(vu)‖2

‖vu‖2
=

A2
xv2

1 + B2
xv2

2

v2
1 + v2

2

≥ A2
x

1 + (v2/v1)2
≥ e2λ

1 + ω2
≥ e4λ/3,

where the last two inequalities use (6.4) and (5.9), respectively. This proves
the first half of (7.5); the second is similar. �

By Lemma 7.3 and continuity of the differential, the expansion estimates
in (7.3) hold in some neighbourhood of 0 ∈ Bs,1

x . We show that this neigh-
bourhood contains Bs,1

x , which is the key part of the proof of Theorem G. The
main step is the following estimate for the derivatives of f̂x.

Lemma 7.4. There exists Q2 > 0 such that for all x ∈ Λ and y, z ∈ Bs,1
x ,

‖DLx(y)f̂x − DLx(z)f̂x‖ ≤ Q2‖y − z‖α.

Proof. For simplicity we write v := Lx(y), u := Lx(z). Since Lx is a con-
traction and y, z ∈ Bs,1

x ⊆ [−b(x), b(x)]2 ⊂ [−b, b]2, we have ‖v − u‖ ≤
‖y − z‖ ≤ 2

√
2b. In particular it is sufficient to prove that ‖Dv f̂x − Duf̂x‖ ≤

Q‖v − u‖α for all u, v ∈ TxM with ‖u‖, ‖v‖ ≤ b. Since M is a C2

Riemannian manifold, there is Q3 > 0 such that ‖Dv expx −Du expx ‖ ≤
Q3‖u − v‖, ‖Df◦expx v exp−1

x −Df◦expx u exp−1
x ‖ ≤ Q3‖u − v‖ for all x ∈ M

and u, v ∈ TxM with ‖u‖, ‖v‖ ≤ 1. Moreover, there is Q4 > 0 such that
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d(expx(u), expx(v)) ≤ Q4‖u − v‖ for all such x, u, v, and hence since Df is
Hölder continuous we have ‖Dexpx(v)f −Dexpx(u)f‖ ≤ |Df |αQα

4 ‖u−v‖α. Then
the definition of Dv f̂x,Duf̂x in (7.8) gives the result. �

Lemma 7.5. There exists Q5 > 0 such that for all x ∈ Λ and y, z ∈ Bs,1
x ,

‖Dyfx − Dzfx‖ ≤ Q5b
α.

Proof. By (7.9), using ‖Lx‖ ≤ 1 and Lemma 7.4, for every y, z ∈ Bs,1
x ,

‖Dyfx − Dzfx‖ = ‖L−1
f(x) ◦ DLx(y)f̂x ◦ Lx − L−1

f(x) ◦ DLx(z)f̂x ◦ Lx‖
= ‖L−1

f(x) ◦ (DLx(y)f̂x − DLx(z)f̂x) ◦ Lx‖
≤ ‖L−1

f(x)‖ · ‖DLx(y)f̂x − DLx(z)f̂x‖
≤ Q2‖L−1

f(x)‖ ‖y − z‖α

(7.11)

Moreover, y, z ∈ Bs,1
x ⊂ [−b(x), b(x)]2 implies ‖y − z‖ ≤ 2b(x) and therefore,

by Lemma 6.5,

‖y − z‖α ≤ 2αb(x)α ≤ 2αe3εb(f(x))α. (7.12)

Moreover, from (5.5) we have

b(f(x))α := bα

( ∞∑
k=−∞

e−3|k|ε‖L−1
fk+1(x)

‖
)−1

≤ bα‖L−1
f (x)‖−1

and therefore, substituting into (7.12) and then into (7.11) we get

‖Dyfx − Dzfx‖ ≤ Q2‖L−1
f(x)‖ ‖y − z‖α ≤ 2αe3εQ2b

α,

which completes the proof. �

Now we can prove the expansion estimates in (7.3) for all y. By Lem-
mas 7.3 and 7.5, for every x ∈ Λ, y ∈ Bs,1

x , and vu ∈ Ku, we have

‖Dyfx(vu)‖ ≥ ‖D0fx(vu)‖ − ‖Dyfx − D0fx‖ · ‖vu‖ ≥ (e2λ/3 − Q5b
α)‖vu‖.

Choose b > 0 small enough that

e2λ/3 − Q5b
α ≥ eλ/2; (7.13)

then we get ‖Dyfx(vu)‖ ≥ eλ/2‖vu‖. A similar argument gives ‖Dyf−1
f(x)(v

s)‖ ≥
eλ/2‖vs‖ for every vs ∈ Ks, and so we have the expansion estimates in (7.3).

7.2. Conefield Invariance

We now prove the conefield invariance from (7.3). Fix η > 0 small enough
that if z = z1e1 + z2e2 ∈ R

2 has ‖z‖ = 1 and |z2| < e−2λω|z1|, then every
v ∈ R

2 with ‖v − z‖ < η is contained in K̃u. By homogeneity we see that if
the assumption on ‖z‖ is removed and we have ‖v − z‖ < η‖z‖, then once
again v ∈ K̃u. Given x ∈ Λ and v = v1e1 + v2e2 ∈ Ku, (6.3) gives D0fx(v) =
Axv1e1 + Bxv2e2, and we have |Bxv2| < e−λω|v1| < e−2λω|Axv1|, so D0fx(v)
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B( 0)
x

Bs,1
x,¯

f−1
x (γs

−) f−1
x (γs

+)

(v−
1 , 0) (v+

1 , 0)

γu,1
0

≤ |v+
1 | + e−λωb 0

fx

B( 1)
f(x)

γs
− γs

+

fx(γ
u,1
0 )

Figure 7. Bs,1
x is a strongly stable strip

satisfies the assumption on z mentioned above. Now choose b small enough
that

Q5b
α < η. (7.14)

Then for every y = Ψ−1
x (y) ∈ Bs,1

x , Lemma 7.5 gives ‖Dyfx(v) − D0fx(v)‖ ≤
Q5b

α‖v‖ < η‖v‖, and by our choice of η we conclude that Dyfx(v) ∈ K̃u. A
completely symmetric argument applies to the stable cones and f−1.

7.3. Stable and Unstable Strips

To complete the proof of Theorem G we show that Bs,1

x,�̄
and Bu,1

f(x),�̄
are strongly

stable and unstable strips in B̃s
b�0

, B̃u
b�1

, respectively, recall (7.1) and (7.4).

We begin by proving the statement for Bs,1

x,�̄
. Let γu,1

0 := {(v1, 0) ∈ B(�0)
x :

fx(v1, 0) ∈ B(�1)
f(x)} ⊆ Bs,1

x,�̄
. Notice that fx(0) = 0 and therefore Bs,1

x,�̄
contains

a neighbourhood of 0 and therefore γu,1
0 is a non-trivial horizontal segment,

and in particular its tangent vectors are contained in the unstable cones Ku.
Therefore, by (7.3), the images of the tangent vectors to γu,1

0 are contained in
the strong unstable cones K̃u and in particular the slope of the curve fx(γu,1

0 )
always has absolute value < e−λω < 1.

Since fx(γu,1
0 ) goes through the origin, has slope < 1 in absolute value,

and has both endpoints on the boundary of the square B(�1)
f(x) = [−b�1 , b�1 ]

2

these endpoints must both lie on the stable boundaries γs
± := {(±b�1 , v2), v2 ∈

[−b�1 , b�1 ]} of B(�1)
f(x), so fx(γu,1

0 ) is a full length strongly unstable admissible

curve in B(�1)
f(x) as shown in Fig. 7. Therefore the preimages f−1

x (γs
±)∩B(�0)

x are,

by (7.3), strongly stable admissible curves through the endpoints of γu,1
0 , which

are points on the horizontal axis with coordinates (v±
1 , 0) with |v±

1 | ≤ e−λ/2b�1 .
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Note that this last estimate comes from the fact that every tangent vector to
fx(γu,1

0 ) is contracted by a factor of at least e−λ/2 under the action of f−1
x .

Since f−1
x (γs

±) are strongly stable admissible curves in B(�0)
x , we conclude as

shown in Fig. 7 that their horizontal distance from the y-axis in R
2 is always

bounded above by

|v±
1 | + e−λωb�0 ≤ e−λ/2b�1 + e−λωb�0 < (e−λ/2e3ε/α + e−λω)b�0 ,

where the last inequality uses Lemma 6.5. By (5.9), this is < e−λ/3b�0 , which
proves that Bs,1

x,�̄
is a strongly stable strip in B̃s

b�0
. Similarly, Bu,1

f(x),�̄
is a strongly

unstable strip in B̃u
b�1

.

8. Overlapping Charts: Theorem H

8.1. Overlapping Charts

The parameters defining Lyapunov charts vary slowly along orbits but in gen-
eral only measurably with the point x ∈ Λ. On each regular level set Λ�, the
dependence is continuous, and it is well-known that “if points x, y ∈ Λ� are
close, then their Lyapunov charts are close”. The condition on how close x, y
need to be depends on �; we need an explicit quantitative estimate, which is
provided by (8.3) in Theorem H. This is the core technical result of the paper,
whose proof demands the largest share of our efforts.

First we make precise what it means for two Lyapunov charts to be close.
Let χ > λ > 0 be fixed, ε1 given by (1.7), and ε ∈ (0, ε1). Let Λ be a (χ, ε)-
hyperbolic set. Given � ≥ 1 and x, y ∈ Λ�, recall that N (�)

x ,N (�)
y are defined in

(5.8) and Ñ s/u
x,� , Ñ s/u

y,� in (7.2), and that the notion of “full length (un)stable
admissible curves” is defined in Definition 5.2.

Definition 8.1. (Overlapping charts). We say that N (�)
x and N (�)

y are overlap-
ping if x, y ∈ N (�)

x ∩ N (�)
y and the following conditions hold:

(A) Overlapping derivative estimates: for every z ∈ Ψ−1
x (N (�)

x ∩ N (�)
y )

and every vu ∈ K̃u, vs ∈ K̃s, we have

Dz(Ψ−1
y ◦ Ψx)(vu) ⊂ Ku and ‖Dz(Ψ−1

y ◦ Ψx)(vu)‖ ≥ e−λ/24‖vu‖, (8.1)

Dz(Ψ−1
x ◦ Ψy)(vs) ⊂ Ks and ‖Dz(Ψ−1

x ◦ Ψy)(vs)‖ ≥ e−λ/24‖vs‖, (8.2)

and similarly with the roles of x and y reversed.
(B) Overlapping stable and unstable strips: Every full length strongly
stable admissible curve γs ⊂ Ñ s

x,� (resp. Ñ s
y,�) completely crosses Ñ u

y,�

(resp. Ñ s
x,�) and every full length strongly unstable admissible curve γu ⊂

Ñ u
x,� (resp. Ñ u

y,�) completely crosses Ñ s
y,� (resp. Ñ u

x,�).

Theorem H. Let f be a C1+α surface diffeomorphism. For every χ > λ > 0,
and every 0 < ε < ε1(f, χ, λ), there exists δ > 0 such that given any (χ, ε)-
hyperbolic set Λ, any integer � ∈ N, and x, y ∈ Λ� with

d(x, y) ≤ δe−λ�, (8.3)
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the Lyapunov charts N (�)
x and N (�)

y are overlapping.

In the rest of this section we prove Theorem H. The proof depends on
two intermediate results about the Hölder continuity of E

s/u
x and of s(x), u(x)

which we prove in Sects. 8.2 and 8.3, respectively. In Sects. 8.4 and 8.5 we
combine these to prove parts A) and B), respectively, in the definition of
overlapping charts, thus completing the proof of Theorem H.

Remark 8.2. A similar “overlapping charts” condition plays a central role in
Sarig’s construction of countable Markov partitions; see [65, Definition 3.1] for
the formal definition and [65, Proposition 3.2] for the key properties, which are
similar to our definition above, although it is not immediately clear whether
one definition implies the other. The crucial ingredient of our approach here is
the explicit distance criterion (8.3) that guarantees overlapping charts, which
has no analogue that we are aware of in [65].

8.2. Hölder Continuity of the Splitting

Proposition 8.3. There is Q6 > 0 such that for any � ∈ N and x, y ∈ Λ�, we
have

d(Es
x, Es

y) ≤ Q6e
6εγ�d(x, y)β and d(Eu

x , Eu
y ) ≤ Q6e

6εγ�d(x, y)β

where d(·, ·) represents distance in the Grassmannian of M .

Recall that β and γ are given in (1.6). For generality we prove Proposi-
tion 8.3 as a special case of the following result which does not require x, y to
belong to a (χ, ε)-hyperbolic set. More specifically the Hölder continuity only
depends on the angle and hyperbolicity estimates at the points x, y and not
on how these vary along the orbits of x, y.

Proposition 8.4. Let M be a compact smooth Riemannian manifold and
f : M → M a C1+α diffeomorphism. There is a constant Q6, depending only
on M , ‖Df±1‖, α, |Df±1|α, and χ, such that if C,K > 0 and x, y ∈ M are
such that

‖Dfn
x es

x‖ ≤ Ce−χn and ‖Dfn
y es

y‖ ≤ Ce−χn for all n ≥ 0, (8.4)

‖Dfn
x eu

x‖ ≥ C−1eχn and ‖Dfn
y eu

y‖ ≥ C−1eχn for all n ≥ 0, (8.5)

for some unit vectors e
s/u
x ∈ TxM , e

s/u
y ∈ TyM for which the corresponding

subspaces E
s/u
x/y satisfy �(Es

x, Eu
x ) ≥ K, �(Es

y, Eu
y ) ≥ K, then we have

d(Es
x, Es

y) ≤ Q6(C2K−1)2γd(x, y)β , (8.6)

where γ, β are as in (1.6). The same bound holds for Eu
x , Eu

y if we have

‖Df−n
x eu

x‖ ≤ Ce−χn and ‖Df−n
y eu

y‖ ≤ Ce−χn for all n ≥ 0, (8.7)

‖Df−n
x es

x‖ ≥ C−1eχn and ‖Df−n
y es

y‖ ≥ C−1eχn for all n ≥ 0. (8.8)

In particular, if (8.4), (8.5), (8.7), and (8.8) all hold, then

|�(Es
x, Eu

x ) − �(Es
y, Eu

y )| ≤ Q6(C2K−1)2γd(x, y)β . (8.9)
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To see that Proposition 8.4 implies Proposition 8.3, it suffices to observe
that given ε > 0 and � ∈ N, the conditions (8.4), (8.5), (8.7), (8.8) are satisfied
for all x, y ∈ Λ�, with C = eε� and K = e−ε�.

We will give the explicit calculations only for the stable subspaces, leading
to the proof of (8.6), as the situation for the unstable subspaces is completely
symmetrical. We follow Brin’s approach in [12, Appendix A] (see also [13,
§5.3]; the main idea of the argument goes back to [20]). The only thing we
need that is not given there is the computation for how much vectors in (Es

x)⊥

are expanded, depending on C and K, given in Lemma 8.8. The rest of the
proof of Proposition 8.4 is taken nearly verbatim from [12, Appendix A], with
notation adjusted to fit our current setting.

First note that by the Whitney embedding theorem [45], we can choose
N ∈ N such that M can be smoothly embedded in R

N . By compactness of M ,
the Riemannian metric is uniformly equivalent to the distance induced by the
embedding and therefore it suffices to prove the result under the assumption
that M ⊂ R

N . Then, for each x ∈ M write E⊥(x) for the orthogonal comple-
ment to TxM ⊂ R

N ; since E⊥ is smooth it suffices to prove the result with
Es

x replaced by Ẽs
x := Es

x ⊕ E⊥(x).

Definition 8.5. Given x ∈ M ⊂ R
N and n ∈ N, let D

(n)
x be the N × N matrix

representing the linear map that takes v �→ Dxfn(v) for v ∈ TxM and v �→ 0
for v ∈ E⊥(x).

Since we embed M in R
N , we can treat Grassmannian distance between

subspaces as follows. Given a subspace E ⊂ R
N , we define the distance of a

nonzero vector v from the subspace E by considering the unique decomposition
v = vE + v⊥ where vE ∈ E and v⊥ ⊥ E and letting d(v,E) := ‖v⊥‖/‖v‖. We
can then define the distance between two subspaces E,E′ ⊂ R

N by

d(E,E′) := sup{d(v,E) : v ∈ E′\{0}} = sup{d(v,E′) : v ∈ E\{0}}.(8.10)

The strategy of the proof is based on the following general result.

Lemma 8.6. [12, Lemma A.1]. Let N ≥ 2 and let {Ak}, {Bk}, be two sequences
of real N × N matrices satisfying the following properties
(1) there are Δ ∈ (0, 1) and c3 > 0 such that

‖Ak − Bk‖ ≤ Δec3k for all k ≥ 0; (8.11)

(2) there are subspaces EA, EB ⊂ R
N , χ > 0, and C ′ > 1 such that

‖AkvA‖ ≤ C ′e−χk‖vA‖ and ‖Akv⊥
A‖ ≥ (C ′)−1eχk‖v⊥

A‖ (8.12)

for every vA ∈ EA, v⊥
A ⊥ EA, k ≥ 0, and

‖BkvB‖ ≤ C ′e−χk‖vB‖ and ‖Bkv⊥
B‖ ≥ (C ′)−1eχk‖v⊥

B‖ (8.13)

for every vB ∈ EB , v⊥
B ⊥ EB, k ≥ 0.

Then

d(EA, EB) ≤ 3(C ′)2e2χΔ
2χ

c3+χ . (8.14)
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Proof. We start by fixing q := −(χ + c3), and let k0 := � log Δ
q �, so that

(k0 + 1)q < log Δ ≤ k0q ≤ log Δ − q

(recall that q < 0). In particular,

Δec3k0 ≤ ek0qeak0 = e−χk0 (8.15)

and, letting ξ := 2χ
c3+χ = − 2χ

q ,

e−2χk0 = (eqk0)
−2χ

q = (eqk0)ξ ≤ e−qξΔξ = e2χΔξ, (8.16)

where the inequality uses k0q < −q+log Δ. Then, by (8.11), for every vB ∈ EB

and every k ≥ 1 we have

‖AkvB‖ ≤ ‖BkvB‖ + ‖Ak − Bk‖ · ‖vB‖ ≤ C ′e−χk‖vB‖ + Δec3k‖vB‖
and therefore, in particular, for k = k0, by (8.15),

‖Ak0vB‖ ≤ C ′e−χk0‖vB‖ + Δec3k0‖vB‖ ≤ 2C ′e−χk0‖vB‖.

This implies that

EB ⊂ RA := {v ∈ R
N : ‖Ak0v‖ ≤ 2C ′e−χk0‖v‖}.

Clearly we also have EA ⊂ RA and therefore it is sufficient to estimate the
“width” of RA. For v ∈ RA, write v = vA + v⊥

A , where vA ∈ EA and v⊥
A ⊥ EA.

Then by (8.12), for any k ≥ 1 we have

‖Akv‖ ≥ ‖Akv⊥
A‖ − ‖AkvA‖ ≥ (C ′)−1eχk‖v⊥

A‖ − C ′e−χk‖vA‖,

and therefore, for k = k0, using also that ‖vA‖ ≤ ‖v‖ since the splitting of v
is orthogonal, we get

‖v⊥
A‖ ≤ C ′e−χk0(‖Ak0v‖ + C ′e−χk0‖vA‖) ≤ 3(C ′)2e−2χk0‖v‖,

which, by (8.16), implies d(v,EA) ≤ 3(C ′)2e−2χk0 ≤ 3(C ′)2e2χΔξ and there-
fore, from the definition of ξ, the conclusions of the lemma. �

The following two lemmas give the estimates we need to apply Lemma 8.6.
Recall that c1, c2, c3 are as in (1.5), that M is embedded in R

N , and that D
(n)
x

are the matrices defined in Definition 8.5.

Lemma 8.7. [12, Lemma A.2]. There is Q7 ≥ 1 such that for all x, y ∈ M and
every n ≥ 1, we have

‖D(n)
x − D(n)

y ‖ ≤ Q7e
c3n‖x − y‖α.

Proof. We prove the lemma by induction on n. For n = 1, since f is C1+α we
have ‖D

(1)
x − D

(1)
y ‖ ≤ |Df |α‖x − y‖α and therefore the statement holds for

any Q7 ≥ |Df |α. Then, by the chain rule, we have

D(n+1)
x − D(n+1)

y = D
(1)
fn(x)D

(n)
x − D

(1)
fn(y)D

(n)
y ;

by adding and subtracting D
(1)
fn(x)D

(n)
y , taking norms, using the inductive

assumption and the fact that ‖fnx − fny‖ ≤ ec2n‖x − y‖ for all x, y ∈ M , we
get

‖D(n+1)
x − D(n+1)

y ‖ ≤ ‖D
(1)
fn(x)‖ · ‖D(n)

x − D(n)
y ‖ + ‖D

(1)
fn(x) − D

(1)
fn(y)‖ · ‖D(n)

y ‖
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≤ ec2Q7e
c3n‖x − y‖α + |Df |αec2nα‖x − y‖αec2n

≤ Q7e
c3(n+1)‖x − y‖α

(
ec2−c3

+ |Df |αQ−1
7 e(1+α)c2ne−c3(n+1)

)
.

Since by (1.5), c3 > (1 + α)c2, we can choose Q7 sufficiently large so that the
quantity inside the brackets is less than 1 for every n, which completes the
proof. �

Lemma 8.8. Suppose Ak is a sequence of N × N matrices and R
N = Es ⊕ Eu

is a splitting such that �(Es, Eu) ≥ K > 0, and for every k ≥ 1 and vu ∈ Eu,
vs ∈ Es we have

‖Akvs‖ ≤ Ce−χk‖vs‖ and ‖Akvu‖ ≥ C−1eχk‖vu‖. (8.17)

Then for every w ⊥ Es and every k ≥ 1, we have

‖Akw‖ ≥ (2C2K−1)γeχk‖w‖, (8.18)

where γ := χ−c1
2χ as in (1.6).

Proof. Writing w = wu + ws where wu ∈ Eu, ws ∈ Es, from (8.17) we get

‖Akw‖ ≥ ‖Akwu‖ − ‖Akws‖ ≥ C−1eχk‖wu‖ − Ce−χk‖ws‖.

Let θ = �(ws, wu) and note that θ ≥ K and since w ⊥ ws, we have ‖w‖ =
‖wu‖ sin θ ≤ ‖wu‖ and ‖w‖ = ‖ws‖ tan θ ≥ ‖ws‖ tan K ≥ ‖ws‖K. Plugging
this into the equation above, gives

‖Dxfkw‖ ≥ (C−1eχk − CK−1e−χk)‖w‖. (8.19)

Now fix k0 := �(2χ)−1 log(2C2K−1)�, Then for k ≤ k0 we have

‖Akw‖
eχk‖w‖ ≥ ec1k

eχk
≥ e(c1−χ)k0 ≥ e(c1−χ)(2χ)−1 log(2C2K−1) = (2C2K−1)

c1−χ
2χ

where we recall that c1 < 0 (see (1.5)). The formula for γ gives the required
estimate.

It remains to treat k > k0. In this case we have

e−2χk ≤ e−2χ(k0+1) ≤ e− log(2C2K−1) = 1
2C−2K,

which gives

CK−1e−χk ≤ 1
2
C−1eχk

and hence, (8.19) gives

‖Akw‖ ≥ (2C)−1eχk‖w‖.

Since γ > 1, C ≥ 1, and K ≤ 1, we have

(2C2K−1)−γ ≤ (2C2K−1)−1 = (2C)−1(CK−1)−1 ≤ (2C)−1,

and thus we get the result in this case also, thus completing the proof. �
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To complete the proof of Proposition 8.4, we will apply Lemma 8.6 with

Ak = D(k)
x , Bk = D(k)

y , Δ = Q7‖x − y‖α, C ′ = (2C2K−1)γ .

To verify the conditions of Lemma 8.6, first note that Lemma 8.7 gives

‖Ak − Bk‖ = ‖D(k)
x − D(k)

y ‖ ≤ Q7e
c3k‖x − y‖α = Δeckk,

so that (8.11) holds. For (8.12), we observe that the hypotheses (8.4) and (8.5)
of Proposition 8.4 give

‖Akes
x‖ ≤ Ce−χk and ‖Akeu

x‖ ≥ C−1eχk

for all k ≥ 0, so that Lemma 8.8 can be applied with vs = es
x and vu = eu

x to
obtain

‖Akv⊥
A‖ ≥ (2C2K−1)γeχk‖v⊥

A‖ = C ′eχk‖v⊥
A‖

for all v⊥
A ⊥ Es

x. This establishes (8.12), and (8.13) follows similarly. Thus
Lemma 8.6 applies, and using (1.6) to write 2χ

c3+χ = β
α , we have

d(Es
x, Es

y) ≤ 3(C ′)2e2χΔ
β
α = 3(2C2K−1)2γe2χ(Q7d(x, y)α)

β
α , (8.20)

which completes the proof of Proposition 8.4 by taking Q6 = 3(2)2γe2χQ
β/α
7 .

8.3. Hölder Continuity of Lyapunov Coordinates

In this section we prove that s, u : Λ� → [
√

2, Q0Q̂eε�] are Hölder continuous
with exponent ζ and constant given in terms of eεη�, where ζ, η are given in
(1.6). Observe that the Hölder exponent ζ depends on χ − λ, and decays to 0
as λ → χ where χ is the decay rate associated with the (χ, ε)-hyperbolic set Λ
and λ < χ is the rate used in the definition of s(x), u(x).

Proposition 8.9. There is Q8 > 0 such that for any � ∈ N and x, y ∈ Λ�, we
have

|s(x) − s(y)| ≤ Q8e
εη�d(x, y)ζ and |u(x) − u(y)| ≤ Q8e

εη�d(x, y)ζ . (8.21)

We give the argument for the upper bound for |s(x)−s(y)|; the argument
for |u(x) − u(y)| is analogous. Recall first that by definition,

s(x)2 = 2
∑
n≥0

e2λn‖Dfn
x es

x‖2.

Since s(x), s(y) ≥ 1, we have

|s(x) − s(y)| ≤ |s(x)2 − s(y)2|
2

≤
∑
n≥0

e2λn
∣∣‖Dfn

x es
x‖2 − ‖Dfn

y es
y‖2

∣∣.
(8.22)

Notice that x, y ∈ Λ� gives ‖Dfn
x es

x‖ ≤ eε�e−χn, ‖Dfn
y es

y‖ ≤ eε�e−χn, and so

Δn = Δn(x, y) :=
∣∣‖Dfn

x es
x‖2 − ‖Dfn

y es
y‖2

∣∣ ≤ 2e2ε�e−2χn. (8.23)

Plugging this into (8.22) gives a uniform bound for |s(x)−s(y)| but is not suf-
ficient for our purposes since it does not include d(x, y) and does not therefore
imply Hölder continuity. It will nevertheless be useful to bound the tail of the
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sum for large values of n. For small n we need a more sophisticated estimate
on Δn, as follows.

Lemma 8.10. There is Q9 > 0 such that for all � ∈ N and x, y ∈ Λ� we have

Δn ≤ Q9e
(2+αβ)c2ne6εγα(�+n)d(x, y)αβ . (8.24)

The proof of Lemma 8.10 uses the Hölder continuity of the hyperbolic
splitting from Proposition 8.3 and so for clarity we isolate the specific estimate
in which this property is used.

Sublemma 8.11. There is Q10 > 0 such that for all � ∈ N, x, y ∈ Λ�, and
k ≥ 0, we have∣∣‖Dffkxes

fkx‖ − ‖Dffkyes
fky‖∣∣ ≤ Q10e

6εγα(�+k)d(fkx, fky)αβ . (8.25)

Proof. Since Df is Hölder on TM , we have∣∣‖Dffkxes
fkx‖ − ‖Dffkyes

fky‖∣∣ ≤ |Df |αd(es
fkx, es

fky)α

By (1.3), fkx, fky ∈ Λ�+k and therefore, by Proposition 8.3,

d(es
fkx, es

fky)α ≤ |Df |α(Q6e
6εγ(�+k)d(fkx, fky)β)α

which gives the result. �
Proof of Lemma 8.10. By (1.5) the norm of ‖Df‖ is bounded above by ec2 ,
and therefore, using the formula for the difference of two squares,

Δn ≤ 2ec2n
∣∣‖Dfn

x es
x‖ − ‖Dfn

y es
y‖∣∣. (8.26)

Moreover, by the chain rule we have

∣∣‖Dfn
x es

x‖ − ‖Dfn
y es

y‖∣∣ =
∣∣∣∣

n−1∏
k=0

‖Dffkxes
fkx‖ −

n−1∏
k=0

‖Dffkyes
fky‖

∣∣∣∣ (8.27)

and therefore, applying the standard equality for the difference of two products∣∣∣∏n−1
k=0 ak − ∏n−1

k=0 bk

∣∣∣ =
∣∣∣∑n−1

k=0 a0...ak−1(ak − bk)bk+1...bn−1

∣∣∣, and using that
the absolute value of each individual term is bounded by ec2 , we get∣∣∣∣

n−1∏
k=0

‖Dffkxes
fkx‖ −

n−1∏
k=0

‖Dffkyes
fky‖

∣∣∣∣ ≤ ec2n
n−1∑
k=0

∣∣‖Dffkxes
fkx‖ − ‖Dffkyes

fky‖∣∣.
Substituting this into (8.27) and (8.26) and using (8.25), we get

Δn ≤ 2e2c2n
n−1∑
k=0

∣∣‖Dffkxes
fkx‖ − ‖Dffkyes

fky‖∣∣

≤ 2Q10e
2c2n

n−1∑
k=0

e6εγα(�+k)d(fkx, fky)αβ .

(8.28)

Using the bound ec2 for the derivative we get d(fkx, fky) ≤ ekc2d(x, y) and
therefore, plugging this into (8.28) and rearranging the terms we get

Δn ≤ 2Q10e
2c2ne6εγα�d(x, y)αβ

n−1∑
k=0

e(6εγ+c2β)αk.
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To bound the geometric sum, we write
n−1∑
k=0

e(6εγ+c2β)αk =
e(6εγ+c2β)αn − 1
e(6εγ+c2β)α − 1

≤ e(6εγ+c2β)αn

e(6εγ+c2β)α − 1

and so we conclude that

Δn ≤ 2Q10

e(6εγ+c2β)α − 1
e2c2ne6εγα�d(x, y)αβe(6εγ+c2β)αn

which gives the result. �

Proof of Proposition 8.9. We want to use (8.23) for large n, and (8.24) for
small n; the transition happens at the point where the two bounds are roughly
equal. Thus we choose N such that

e2ε�e−2χN ≈ e(2+αβ)c2Ne6εγα(�+N)d(x, y)αβ ;

more precisely, we take

N =
⌊

2ε� − 6εγα� − αβ log d(x, y)
2χ + (2 + αβ)c2 + 6εγα

⌋
, (8.29)

so that

(2χ + (2 + αβ)c2 + 6εγα)N ≤ 2ε� − 6εγα� − αβ log d(x, y)
≤ (2χ + (2 + αβ)c2 + 6ε0γα)(N + 1). (8.30)

Note that there is a number ρ > 0 which depends only on α, β, �, and ε such
that the numerator in (8.29) is positive provided d(x, y) < ρ. Continuing with
this assumption our choice of N and the bound in (8.23) give

∞∑
n=N

e2λnΔn ≤
∞∑

n=N

2e2λne2ε�e−2χn

≤ 2
1 − e−2(χ−λ)

e2ε�e2(−χ+λ)N = Q11e
2ε�e2(−χ+λ)(N+1)

where Q11 = 2(1 − e−2(χ−λ))−1e2(χ−λ). Then the second inequality in (8.30)
and the definitions of the constants ι, η, ζ in (1.6) give

∞∑
n=N

e2λnΔn ≤ Q11e
2ε�e−2(χ−λ) 2ε�−6εγα�−αβ log d(x,y)

6ε0γα+(2+αβ)c2+2χ

= Q11e
2ε�e−ι(2ε�−6εγα�−αβ log d(x,y))

= Q11e
(2(1−ι)+6γαι)ε�d(x, y)αβι ≤ Q11e

εη�d(x, y)ζ ,

(8.31)

where the last inequality uses the fact that 2(1 − ι) + 6γαι ≤ 2 + 6γαι = η.
Turning our attention to the finite part of the sum, (8.24) gives

N−1∑
n=0

e2λnΔn ≤ Q9

N−1∑
n=0

e2λne(2+αβ)c2ne6εγα(�+n)d(x, y)αβ

≤ Q12e
6εγα�e(6εγα+(2+αβ)c2+2λ)Nd(x, y)αβ

= Q12e
6εγα�e(6εγα+(2+αβ)c2+2χ)(1−ι)Nd(x, y)αβ
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for some constant Q12 independent of �, x, y. Applying the first inequality in
(8.30) gives

e6εγα�e(6εγα+(2+αβ)c2+2χ)Nd(x, y)αβ ≤ e2ε�,

and thus
N−1∑
n=0

e2λnΔn ≤ Q12e
2ε�e−ι(6εγα+(2+αβ)c2+2χ)N

= Q13e
2ε�e−ι(6εγα+(2+αβ)c2+2χ)(N+1)

for Q13 = Q12e
ι(6εγα+(2+αβ)c2+2χ). Now the second inequality in (8.30) gives

N−1∑
n=0

e2λnΔn ≤ Q13e
2ε�e−ι(2ε�−6εγα�−αβ log d(x,y))

= Q13e
(2(1−ι)+6γαι)ε�d(x, y)αβι ≤ Q13e

ηε�d(x, y)ζ ,

where the last inequality again uses 2(1 − ι) + 6γαι ≤ η. Adding (8.31) and
using (8.22) completes the proof of Proposition 8.9 in the case d(x, y) < ρ.
When d(x, y) ≥ ρ, (8.23) gives

Δn ≤ 2e2ε�e−2χnρ−ζd(x, y)ζ (8.32)

and thus (8.22) gives

|s(x) − s(y)| ≤
∑
n≥0

e2λnΔn ≤ 2e2ε�ρ−ζ

1 − e−2(χ−λ)
d(x, y)ζ ,

which completes the proof because η ≥ 1, so e2ε� ≤ e2εη�. �

8.4. Overlapping Derivative Estimates

We are now ready to begin the proof of Theorem H. We consider two points
x, y ∈ Λ� with the property that d(x, y) ≤ δe−λ�, as in (8.3), and prove that
the corresponding regular neighbourhoods at level � are overlapping, subject
to certain conditions on δ. Crucially, these conditions will not depend on �.

In this section we prove the derivative estimates involved in the definition
of overlapping charts. In fact, we will prove here a slightly stronger version of
(8.1) by showing that (8.1) holds for all z ∈ Ψ−1

x (Nx ∩ Ny). The analogous
statement (8.2) is completely symmetric.

For x, y ∈ Λ� with Nx ∩ Ny �= ∅, let z ∈ Nx ∩ Ny and denote

zx := Ψ−1
x (z) ∈ Bx, and zy := Ψ−1

y (z) ∈ By.

Then (Ψ−1
y ◦ Ψx)(zx) = zy and Dzx

(Ψ−1
y ◦ Ψx) : Tzx

Bx → Tzy
Bx. We consider

the standard coordinates given by the orthogonal basis (e1, e2) in Tzx
Bx and

Tzy
Bx and consider an unstable vector

vu
x ∈ K̃u ⊂ Tzx

Bx

which we assume is normalized, so that ‖vu
x‖ = 1, and which we write as

vu
x = vu

1,xe1 + vu
2,xe2.
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zx

vu
x

Bx ⊂ R
2

zy

vu
y

By ⊂ R
2

zx

vu
x

TxM

zy

vu
y

TyM

Ψ−1
y ◦ Ψx

exp−1
y ◦ expx

Lx Lyz
Nx ⊂ M Ny ⊂ M

Ψx Ψy

expx
expy

Figure 8. Applying the transition map

Then let

vu
y := Dzx

(Ψ−1
y ◦ Ψx)(vu

x) = vu
1,ye1 + vu

2,ye2.

We will estimate the absolute values of vu
1,y, vu

2,y in order to prove (8.1). Con-
sider unit vectors eu

x, es
x ∈ TM

x and eu
y , es

y ∈ TM
y , in the directions given by

the hyperbolic splitting. Throughout this section, we write dx,y := d(x, y),
ux = u(x), sx = s(x) to make our computations more compact and easier to
read. Observe that

Ψ−1
y ◦ Ψx = L−1

y ◦ exp−1
y ◦ expx ◦Lx.

Use {eu
x, es

x} as a basis for each tangent space to TxM in the obvious way, and
similarly for TM

y . With respect to these bases and the standard basis {e1, e2},
the derivatives of the maps L−1

y , exp−1
y ◦ expx, and Lx are represented by the

matrices (
uy 0
0 sy

)
,

(
ξu
1 ξs

1

ξu
2 ξs

2

)
,

(
u−1

x 0
0 s−1

x

)
,

respectively, where ξ
s/u
1/2 ∈ R are determined by

DLx(zx)(exp−1
y ◦ expx)eu

x = ξu
1 eu

y + ξu
2 es

y,

DLx(zx)(exp−1
y ◦ expx)es

x = ξs
1e

u
y + ξs

2e
s
y.

(8.33)

Thus Dzx
(Ψ−1

y ◦Ψx) has matrix (with respect to {e1, e2}) given by the product
of these matrices, which is(

uy 0
0 sy

)(
u−1

x ξu
1 s−1

x ξs
1

u−1
x ξu

2 s−1
x ξs

2

)
=

(
uyu−1

x ξu
1 uys−1

x ξs
1

syu−1
x ξu

2 sys−1
x ξs

2

)
,
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and we conclude that

vu
1,y = uyu−1

x ξu
1 vu

1,x + uys−1
x ξs

1v
u
2,x, (8.34)

vu
2,y = syu−1

x ξu
2 vu

1,x + sys−1
x ξs

2v
u
2,x. (8.35)

We now collect the various estimates which we will plug into these equations
to estimate the norms of vu

1,y, vu
2,y.

Lemma 8.12. There exists a constant Q14 > 0 such that for every � ∈ N and
x, y ∈ Λ� satisfying (8.3), we have

|vu
1,x| ≥ 1/

√
2 ≥ 1/2 and |vu

2,x| ≤ e−λω|vu
1,x|, (8.36)

|ξu
2 |, |ξs

1|≤Q14e
6εγ�dβ

x,y and |1 − ξu
1 |, |1−ξs

2|≤Q14e
6εγ�dβ

x,y, (8.37)

Q14e
−ε� ≤ uys−1

x ≤ Q14e
ε� and Q14e

−ε� ≤ syu−1
x ≤ Q14e

ε�, (8.38)

1 − Q14e
(η−1)ε�dζ

x,y ≤ uyu−1
x ≤ 1 + Q14e

(η−1)ε�dζ
x,y, (8.39)

1 − Q14e
(η−1)ε�dζ

x,y ≤ sys−1
x ≤ 1 + Q14e

(η−1)ε�dζ
x,y. (8.40)

Proof. Equation (8.36) follows immediately from the fact that vu
x is a unit

vector and vu
x ∈ K̃u. Equation (8.37) follows from (8.33) and Proposition 8.3

which gives quantitative control on the Hölder dependence of the stable and
unstable directions on the base point in Λ�. Equation (8.38) follows immedi-
ately from (6.1). Finally, by (6.1) and Proposition 8.9,

uy

ux
= 1 +

uy − ux

ux
≥ 1 − |uy − ux|

ux
≥ 1 − Q8e

εη�dζ
x,y

Q0Q̂eε�
,

which gives the first half of (8.39). The upper bound and (8.40) are
similar. �

We are now ready to start estimating the two components vu
1,y, vu

2,y of vu
y .

We estimate each one separately. Once we have proved Lemmas 8.13 and 8.14,
we will be in a position to give the conditions on δ > 0, which we stress will
be independent of �.

Lemma 8.13. For every � ∈ N and x, y ∈ Λ� satisfying (8.3), we have

|vu
1,y| ≥ (1 − Q14δ

β)(1 − Q14δ
ζ)|vu

1,x| − Q2
14δ

β .

Proof. Using (8.37) and (8.39), we have the following estimate for the first
term of (8.34):

|uyu−1
x vu

1,xξu
1 | ≥ (1 − Q14e

6εγ�dβ
x,y)(1 − Q14e

(η−1)ε�dζ
x,y)|vu

1,x|.
Now (8.3) and the bounds on ε in (1.7) give

e6εγ�dβ
x,y ≤ e6εγ�δβe−βλ� = δβe(6εγ−βλ)� ≤ δβ ,

e(η−1)ε�dζ
x,y ≤ e(η−1)ε�δζe−ζλ� = δζe((η−1)ε−ζλ)� ≤ δζ ,

(8.41)

and thus

|uyu−1
x ξu

1 vu
1,x| ≥ (1 − Q14δ

β)(1 − Q14δ
ζ)|vu

1,x|. (8.42)
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For the second term of (8.34), by (8.37) and (8.38), and using |vu
2,x| ≤ 1, we

have

|uys−1
x ξs

1v
u
2,x| ≤ Q2

14e
ε�e6εγ�dβ

x,y ≤ Q2
14e

7εγ�dβ
x,y,

where the second inequality uses the fact that γ ≥ 1. As in (8.41) above,

e7εγ�dβ
x,y ≤ δβe(7εγ−βλ)� ≤ δβ , (8.43)

and thus |uys−1
x ξs

1v
u
2,x| ≤ Q2

14δ
β . Subtracting this from (8.42) and recalling

(8.34) proves the lemma. �

Lemma 8.14. For every � ∈ N and x, y ∈ Λ� satisfying (8.3), we have

|vu
2,y| ≤ (1 + Q14δ

β)(1 + Q14δ
ζ)|vu

2,x| + Q2
14δ

β .

Proof. The proof is nearly identical to the proof of the previous lemma. Let
us bound the first term in (8.35) as follows:

|sys−1
x ξs

2v
u
2,x| ≤ (1 + Q14e

(η−1)ε�dζ
x,y)(1 + Q14e

6εγ�dβ
x,y)|vu

2,x|
≤ (1 + Q14δ

ζ)(1 + Q14δ
β)|vu

2,x|.
Similar computations for the second term of (8.35) give

|syu−1
x ξu

2 vu
1,x| ≤ Q2

14e
ε�e6εγ�dβ

x,y ≤ Q2
14δ

β .

Adding these estimates together proves the lemma. �

Proof of Theorem H (derivative estimates). We can now prove the first part of
Theorem H concerning properties (8.1) and (8.2) in the definition of overlap-
ping charts. Start by requiring that δ > 0 is sufficiently small that Q14δ

β < 1
and Q14δ

ζ < 1. (Further conditions will come later.) Lemmas 8.13 and 8.14
give

|vu
2,y|

|vu
1,y| ≤ (1 + Q14δ

β)(1 + Q14δ
ζ)|vu

2,x| + Q2
14δ

β

(1 − Q14δβ)(1 − Q14δζ)|vu
1,x| − Q2

14δ
β

≤ (1 + Q14δ
β)(1 + Q14δ

ζ)e−λω|vu
1,x| + Q2

14δ
β

(1 − Q14δβ)(1 − Q14δζ)|vu
1,x| − Q2

14δ
β

,

where the second inequality uses the fact that vu
x ∈ K̃u. Note that the function

t �→ at+b
ct+d is decreasing in t when ad−bc < 0, which is the case for the expression

above, and thus we can obtain an upper bound by observing that (8.36) gives
|vu

1,x| ≥ 1
2 , so monotonicity gives

|vu
2,y|

|vu
1,y| ≤ (1 + Q14δ

β)(1 + Q14δ
ζ)e−λω/2 + Q2

14δ
β

(1 − Q14δβ)(1 − Q14δζ)/2 − Q2
14δ

β
. (8.44)

For sufficiently small δ > 0, the right-hand side is < ω, which implies that
vu

y ∈ Ku as required by the first part of (8.1).
For the second part of (8.1), we observe that

‖vu
y‖

‖vu
x‖ ≥ |vu

1,y|√
|vu

1,x|2 + |vu
2,x|2

≥
(
(1 − Q14δ

β)(1 − Q14δ
ζ) − Q2

14δ
β
)|vu

1,x|√
1 + e−2λω2|vu

1,x| ,
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where the second inequality uses Lemma 8.13 and (8.36) for the numera-
tor and the fact that vu

x ∈ K̃u for the denominator. Recall from (5.9) that
1/

√
1 + e−2λω2 > e−λ/24; thus we can choose δ small enough that the right-

hand side of the above expression is > e−λ/24, which proves the second half of
(8.1). Condition (8.2) follows by analogous arguments. �

8.5. Overlapping Stable and Unstable Strips

We now complete the proof of Theorem H by showing that if γ ⊂ Ñ s
x,� is a

full length strongly stable admissible curve, then it completely crosses Ñ u
y,�.

The other three required conditions obtained by interchanging x/y and sta-
ble/unstable are proved analogously.

We start with a couple of simple Lemmas relating the distance d(x, y)
between two points and the amount of overlap of their regular neighbourhoods.

Lemma 8.15. There exists a constant Q15 > 0 such that for every � ≥ 1 and
every x, y ∈ Λ� satisfying d(x, y) ≤ Q15e

−2ε�b�, we have x, y ∈ N (�)
x ∩ N (�)

y .

Proof. Recall that the regular neighbourhood N (�)
x is given by N (�)

x =
Ψx(B(�)

x ) = expx(Lx(B(�)
x )), where B(�)

x = [−b�, b�]2 ⊂ R
2 and Lx is given

by (5.2). In particular, Lx(B(�)
x ) is a parallelogram in TxM centered at 0 with

side lengths 2b�/u(x) and 2b�/s(x). Using the upper bounds in (6.1) we see that
both of these side lengths are at least 2(Q0Q̂)−1e−ε�b�. Moreover, by condition
(H2) and the definition of Λ� in (1.2) we have �(Es

x, Eu
x ) ≥ e−ε�.

Consider a parallelogram whose sides have length A,B and meet at an
angle θ ∈ (0, π/2]. The distance between pairs of opposite edges is at least
min(A,B) · sin θ ≥ min(A,B) · 2θ/π, and thus the parallelogram contains a
ball of radius min(A,B)θ/π around its center. In the setting of the previous
paragraph, this shows that Lx(B(�)

x ) contains a ball in TxM centered at the
origin with radius 2(Q0Q̂)−1π−1e−2ε�b�.

Choose r > 0 such that given any x ∈ M and v ∈ TxM with ‖v‖ ≥ r,
we have d(x, expx(v)) ≥ r/2. Then choosing Q15 > 0 sufficiently small that
2Q15b0 < r and Q15 ≤ (Q0Q̂)−1π−1, we see that Lx(B(�)

x ) contains a ball in
TxM centered at the origin with radius 2Q15e

−2ε�b�, and since e−2ε�b� ≤ b0,
the image of this ball under expx contains B(x,Q15e

−2ε�b�). This shows that
B(x,Q15e

−2ε�b�) ⊂ expx(Lx(B(�)
x )) = Ψx(B(�)

x ) = N (�)
x , which completes the

proof. �

Lemma 8.16. There exists Q16 > 0 such that for � ≥ 1 and x, y ∈ Λ�,

if y ∈ N (�)
x then ‖Ψ−1

x ◦ Ψy(0)‖ ≤ Q16e
2ε�d(x, y).

Proof. If y ∈ N (�)
x then Ψ−1

x ◦ Ψy(0) = Ψ−1
x (y) is well defined. Therefore

‖Ψ−1
x ◦ Ψy(0)‖ = ‖Ψ−1

x (y)‖ = ‖Ψ−1
x (y) − 0‖ = ‖Ψ−1

x (y) − Ψ−1
x (x)‖ and so we

just need to estimate the Lipschitz constant of Ψ−1
x . By definition we have

Ψ−1
x = L−1

x ◦ exp−1
x and the result follows using (6.6) in Lemma 6.4 and the

fact that exp−1
x is close to an isometry. �
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Figure 9. Proving Theorem H

Proof of Theorem H (stable and unstable strips). We can now complete the
proof of Theorem H. Let x, y ∈ Λ� with d(x, y) ≤ δe−λ� as in (8.3). Then
since b� = Ce−2ε�/α for some constant C > 0, we have

d(x, y)e2ε�b−1
� ≤ δe−λ�e2ε�C−1e2ε�/α = δC−1e(2ε(1+ 1

α )−λ)� ≤ δC−1,

(8.45)

where the last inequality uses (1.7). By making δ sufficiently small that δC−1 ≤
Q15, we guarantee that the hypothesis of Lemma 8.15 is satisfied.

Now let γ be a full length strongly stable admissible curve in Ñ s
x,�, and

consider the curves γx = Ψ−1
x (γ) ⊂ B̃s

b�
and γy = Ψ−1

y (γ) ⊂ B(�)
y , as shown in

Fig. 9. Observe that since B̃s
r := [−e−λ/3r, e−λ/3r]×[−r, r] (see Definition 7.1),

γx intersects the x-axis at the point (t, 0) for some |t| ≤ e−λ/3b�. Let ηx be the
segment of the x-axis in B(�)

x that connects this point (t, 0) to the origin; the
length of ηx is at most e−λ/3b�. Let ηy = Ψ−1

y ◦ Ψx(ηx). Let z ∈ B(�)
y be the

intersection point of ηy and γy, and let w± be the endpoints of γy. Writing
z = z1e1 + z2e2 and similarly for w±, our goal is to show that |w±

2 | ≥ e−λ/3b�.
We give the proof for w+; the proof for w− is similar. By Lemma 8.16

and (8.45), the point v := Ψ−1
y (x) = Ψ−1

y (Ψx(0)) has

‖v‖ ≤ Q16e
2ε�d(x, y) ≤ Q16C

−1δb�. (8.46)

By (8.1), ηy is an unstable admissible curve connecting z and v with length
≤ eλ/24e−λ/3b� (using the fact that ηx has length at most e−λ/3b�). Since γy

is a stable admissible curve, we have

|w+
1 − z1| ≤ 2ωb�,

and thus

|w+
1 | ≤ |v1| + |z1 − v1| + |w+

1 − z1| ≤ Q16C
−1δb� + eλ/24e−λ/3b� + 2ωb�.

By (5.9) we can choose δ > 0 small enough that

Q16C
−1δ + eλ/24e−λ/3 + 2ω < 1, (8.47)
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and we conclude that |w+
1 | < b�, so w+ is not on a vertical boundary of B(�)

y .
If w+ is on the top boundary of B(�)

y , then there is nothing to prove,
so we can assume that the part of γy running from z to w+ is the image of
the top half of γx under the transition map. By (8.1), this part of γy is a
stable admissible curve with length ≥ e−λ/24b� (using the fact that the top
half of γx has length at least b�). Since the length of this part of γy is at most√

1 + ω2|w+
2 − z2|, we conclude that

|w+
2 − z2| ≥ e−λ/24b�√

1 + ω2
. (8.48)

As argued above, ηy has length ≤ eλ/24b�; on the other hand since it is a stable
admissible curve, its length is at least√

|z1 − v1|2 + |z2 − v2|2 ≥
√

ω−2 + 1|z2 − v2|,
and we conclude that

|z2 − v2| ≤ ωeλ/24b�√
1 + ω2

. (8.49)

Combining (8.46), (8.48), and (8.49) gives

|w+
2 | ≥ |w+

2 − z2| − |z2 − v2| − |v2| ≥ e−λ/24b�√
1 + ω2

− ωeλ/24b�√
1 + ω2

− Q16C
−1δb�

=
(e−λ/24 − ωeλ/24

√
1 + ω2

− Q16C
−1δ

)
b� ≥ (e−λ/4 − Q16C

−1δ)b�,

where the last inequality uses (5.9). As long as δ is small enough that

e−λ/4 − Q16C
−1δ > e−λ/3, (8.50)

this gives |w+
2 | ≥ e−λ/3b�, completing the proof. �

9. Pseudo-orbits, Branches, Shadowing: Proofs of Theorems E
and F

We are now ready to prove Theorems E and F.

9.1. Regular branches: Proof of Theorem E

The two fundamental ingredients in the proof of Theorem E are Theorem H
and Theorem G, which is essentially the special case of Theorem E where k = 1
and the pseudo-orbit is in fact a real orbit.

Fix δ > 0 sufficiently small so that the conclusions of Theorem H hold.
To prove the first part of Theorem E, we observe that if x̄ = (x0, . . . , xk)
is an (�̄, δ, λ)-pseudo-orbit, then by Theorem H, the Lyapunov charts N (�j)

xj

and N (�j)

f(xj−1)
are overlapping for every 1 ≤ j ≤ k. By Theorem G, for each

0 ≤ j < k, the sets

Bs,1
xj ,(�j ,�j+1)

= Ψ−1
xj

(N (�j)
xj

∩ f−1N (�j+1)

f(xj)
),
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Bu,1
f(xj),(�j ,�j+1)

= Ψ−1
f(xj)

(f(N (�j)
xj

) ∩ N (�j+1)

f(xj)
)

from (7.1) are strongly stable and strongly unstable strips in B̃s
b�j

and B̃u
b�j+1

,
respectively, and fxj

is a diffeomorphism between them that satisfies the inclu-
sions and estimates in (7.3). Since the Lyapunov charts N (�j+1)

xj+1 and N (�j+1)

f(xj)

are overlapping, we conclude that Ψ−1
xj+1

◦Ψf(xj)(Bu,1
f(xj),(�j ,�j+1)

) is an unstable

strip in B(�j+1)
xj+1 , and thus its preimage under Ψ−1

xj+1
◦ f ◦ Ψxj

is a stable strip

in B(�j)
xj . Thus we have

B(�0)
x0

Ψ−1
x0

◦f◦Ψx1−−−−−−−−→ B(�1)
x1

Ψ−1
x1

◦f◦Ψx2−−−−−−−−→ B(�2)
x2

→ · · · → B(�k−1)
xk−1

Ψ−1
xk−1

◦f◦Ψxk−−−−−−−−−→ B(�k)
xk

where the maps are not defined on the entirety of the indicated domain, but
only on a stable strip, and the corresponding image is an unstable strip. In
particular, taking the composition of all the maps we see that (5.12) with j = 0
defines a stable strip B0

x̄ ⊂ B(�0)
x0 that is mapped to an unstable strip Bx̄ ⊂ B(�k)

xk

by Ψ−1
xk

◦fk◦Ψx0 . This proves the first property in the definition of an �̄-regular
branch. For the second, we observe that by (7.3), each fxj−1 = Ψ−1

f(xj−1)
◦ f ◦

Ψxj−1 has a derivative that maps Ku into K̃u, and that the transition map
Ψ−1

xj
◦ Ψf(xj−1) maps this into Ku by the definition of overlapping charts;

moreover, the first map above expands each vector in Ku by a factor of at
least eλ/2, and so after composing with the transition map, the derivative of
Ψ−1

xj
◦ f ◦ Ψxj−1 expands each vector in Ku by a factor of at least eλ/2e−λ/24.

Iterating completes the proof of Theorem E.

9.2. Shadowing: Proof of Theorem F

We prove Theorem F using Theorem E and the definition of regular branch in
Definition 5.6, together with the hyperbolicity estimates from Proposition 5.7.
Start by choosing the constants as in the assumption of Theorem F.

First we prove that V s :=
⋂

n≥0 f−n(N (�n)
xn ) is a C1+Hölder full length

local (Q̂e2ε�0 , λ/3)-stable curve. Given n ∈ N, let �̄n,+ := (�0, . . . , �n) and
x̄n,+ := (x0, . . . , xn), so that x̄n,+ is an (�̄n,+, δ, λ)-pseudo-orbit, which by
Theorem E determines an �̄n,+-regular branch. Let B0

x̄(n) ⊂ B(�0)
x0 be the cor-

responding stable strip.
The boundary curves of the strips {B0

x̄(n)}n∈N can be represented as the
graphs of a uniformly Lipschitz family of functions span e2 → span e1 (recall
Fig. 5 and Definitions 5.1–5.3). This family contains a sequence that con-
verges uniformly to a Lipschitz function whose graph is a continuous curve
Ṽ s ⊂ ⋂

n≥0 B0
x̄(n) ⊂ Bx with endpoints on [−b(x), b(x)] × {−b(x), b(x)} ⊂ Bx.

Moreover, the expansion estimates in Definition 5.6 imply that any full
length unstable admissible curve in Bx intersects B0

x̄(n) in a curve of length
≤ 2b0e

−λn/3, and thus intersects
⋂

n≥0 B0
x̄(n) in a single point. It follows that

Ṽ s =
⋂

n≥0 B0
x̄(n), and thus V s =

⋂
n≥0 f−n(N (�n)

xn ) = Ψx(
⋂

n≥0 B0
x̄(n)) is a



1030 V. Climenhaga et al. Ann. Henri Poincaré

continuous curve satisfying the geometric conditions in Definition 1.10; more-
over, V s is full length in Nx. To prove that it is a local (Q̂e2ε�0 , λ/3)-stable
curve, we need to prove that it is C1 (in fact we will prove that it is C1+Hölder)
and that for every y, z ∈ V s and j ≥ 0 we have

d(f j(y), f j(z)) ≤ Ce−λj/3d(y, z) for C = Q̂e2ε�0 . (9.1)

We start by proving (9.1). Given n ≥ 0, let Wn be an arbitrary full
length stable admissible curve in the unstable strip fn(Ψxn

(B0
x̄(n)), and let

Vn = f−n(Wn). Then for each y, z ∈ V s there are yn, zn ∈ Vn such that yn → y
and zn → z. Moreover, (5.17) from Proposition 5.7 gives d(f j(yn), f j(zn)) ≤
Ce−λj/3d(yn, zn) for all 0 ≤ j ≤ n. Thus for every j ≥ 0 we can send n → ∞
and deduce that (9.1) holds.

It remains to show that V s is C1+Hölder. To this end, let x ∈ V s be
arbitrary and choose a unit tangent vector vn ∈ (Dfn

x )−1Ku
xn,fn(x) ⊂ TxM ,

where the cones are as defined in (5.11). Then (5.17) from Proposition 5.7
gives

‖Df j
xvn‖ ≤ Ce−λj/3 (9.2)

for all 0 ≤ j ≤ n. By compactness of the unit tangent space there is a subse-
quence vnk

→ es
x ∈ TxM . For every j ∈ N, (9.2) holds for all vnk

with nk ≥ j,
and thus it holds for es

x as well:

‖Df j
xes

x‖ ≤ Ce−λj/3 for all j ≥ 0. (9.3)

We will show that x �→ es
x is Hölder continuous and that es

x is tangent to V s

at x; this will complete the proof that V s is a local (C, λ/3)-stable curve.
Let eu

x be an arbitrary unit tangent vector in Ku
x0,x. From (5.16) in Propo-

sition 5.7, we have

‖Df j
xeu

x‖ ≥ Q̂−1e−2ε�j eλj/3

for all j ≥ 0. Observe that

− 2ε�j +
λ

3
j ≥ −2ε�0 − 2εj +

λ

3
j ≥ −2ε�0 +

λ

4
j, (9.4)

where the last inequality uses the fact that ε < λ
3 − λ

4 = λ
12 , which follows from

(1.7). We conclude that

‖Df j
xeu

x‖ ≥ Q̂−1e−2ε�0eλj/4 = C−1eλj/4 for all j ≥ 0. (9.5)

Using (9.3) and (9.5), we can apply Proposition 8.4 and conclude that x �→ es
x

is Hölder continuous.
It remains to show that es

x is tangent to V s at x. Equivalently, we must
show that for any ω > 0, the cone

Kω := {0} ∪ {aeu
x + bes

x : |a| < ω|b|} ⊂ TxM

has the following property: there is a neighbourhood U ⊂ TxM containing
the origin such that (expx |U )−1(V s) lies in Kω. Once we verify this, we can
conclude that V s is differentiable at x and that es

x is in its tangent space.
To find the neighbourhood U , we first observe that given ω > 0, every v ∈
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TxM\Kω has the form v = aeu
x + bes

x for some |a| ≥ ω|b| with |a| > 0. Thus
for all j ≥ 0 we have

‖Df j
xv‖ ≥ |a|‖Df j

xeu
x‖ − |b|‖Df j

xes
x‖ ≥ |a|(C−1eλj/4 − ω−1Ce−λj/3).

Moreover, ‖v‖ ≤ |a| + |b| ≤ |a|(1 + ω−1), and thus

‖Df j
xv‖

‖v‖ ≥ C−1eλj/4 − ω−1Ce−λj/3

1 + ω−1
. (9.6)

Now we fix a choice of j sufficiently large that the right-hand side of (9.6) is
at least 3Ce−λj/3, and let U ⊂ TxM be a sufficiently small neighbourhood of
0 that for all v ∈ U we have

d(f j(expx v), f jx)
d(expx v, x)

≥ 1
2

‖Dxf jv‖
‖v‖ .

Combining this with (9.6) and our choice of j, we see that for all v ∈ U\Kω

we have
d(f j(expx v), f jx)

d(expx v, x)
≥ 3

2
Ce−λj/3,

and comparing this to (9.1) we conclude that expx v does not lie on the curve
V s. It follows that (expx |U )−1(V s) ⊂ Kω, and since ω > 0 was arbitrary, this
shows that V s is differentiable at x and that es

x is in its tangent space. This
completes the proof of the first part of Theorem F. The second part of the
theorem follows by an identical argument.

Remark 9.1. The same proof given above can also be applied to a family of
(C, κ)-hyperbolic branches as in Proposition 4.10; it suffices to replace λ/3
and λ/4 in the above arguments with κ, and to replace the cone families from
(5.11) with the cone families associated with the hyperbolic branches. Thus
we have also proved Proposition 4.10.

It remains to prove the third part of Theorem F. Existence and uniqueness
of the shadowing point follow immediately from the first two parts: indeed, a
bi-infinite pseudo-orbit determines a local stable curve V s =

⋂
n≥0 f−n(N (�n)

xn )

and a local stable curve V u =
⋂

n≤0 f−n(N (�n)
xn ), and thus

⋂
n∈Z

f−n(N (�n)
xn ) =

V s∩V u. Since the curves determined in the first two parts are both full length,
they have a unique point of intersection, which is the unique shadowing point.

Now we establish regularity of y. Fix δ, λ > 0 and let Λ′ be the collection
of unique shadowing points for (�̄, δ, λ)-pseudo-orbits in Λ, where �̄ ∈ N

Z can
be arbitrary. Observe that Λ′ is invariant since as remarked after the statement
of Theorem F, if y is the unique shadowing point for x̄, then f(y) is the unique
shadowing point for σx̄. Given y ∈ Λ′ we have local stable and unstable curves
V

s/u
y as in the first two parts of the theorem. Moreover, these curves satisfy

f(V s
y ) ⊂ V s

f(y) (since shadowing the orbit for n ≥ 0 implies shadowing for

n ≥ 1) and f−1(V u
y ) ⊂ V u

f−1(y). Thus the subspaces defined by E
s/u
y = TyV

s/u
z

produce a measurable Df -invariant splitting on Λ′.
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It remains to prove that this invariant splitting satisfies (H1)–(H3). We
start by letting e

s/u
y be unit vectors in E

s/u
y and observing that (9.3) and (9.5)

imply that writing C(y) = Q̂e2ε�0 , we have

‖Dfn
y es

y‖ ≤ C(y)e−λn/3 and ‖Dfn
y eu

y‖ ≥ C(y)−1eλn/4

for all n ≥ 0, where we observe that (9.5) applies to a broader class of unit
tangent vectors (anything in the cone Ku

x0,y), and in particular applies to our
choice of eu

y . This establishes two of the four inequalities in (H3); the other
two follow from the analogues of (9.3) and (9.5) for the backward pseudo-orbit
and corresponding unstable curve.

Remark 9.2. The fact that (9.5) contains λ/4 instead of λ/3 is due to the fact
that we must use (9.4) to compare the level of regularity at the two ends of
the orbit segment. One consequence of this appears later in Proposition 11.3
and its proof in Sect. 11.2, when we build a nice rectangle for which λ/3
appears in the hyperbolic branch property, but λ/4 appears in the regularity.
Roughly speaking one may say that the hyperbolic branch property controls
contraction/expansion from the endpoints to somewhere in the middle of the
corresponding orbit segment, but regularity requires us also to control it when
going between two points in the middle of the segment, and for this we must
weaken λ/3 to λ/4.

To prove (H1) for C, observe that f(y) is the shadowing orbit for σx̄ with
regularity sequence �̄, so that C(f(y)) = Q̂e2ε�1 , and thus

e−2ε ≤ C(f(y))/C(y) ≤ e2ε. (9.7)

Now we need to estimate �(Es
y, Eu

y ). First observe that �(Es
y, Eu

y ) ≥ ‖es
y −eu

y‖
since the angle represents the length of the arc of the unit circle joining the
endpoints of es

y and eu
y , while the right-hand side is the length of the straight

line joining them. Let vu/s := DyΨ−1
x0

e
u/s
y and observe that ‖vu/s‖ ≥ 1

2 by the
first estimate in (5.15). Moreover, vu/s ∈ Ks/u, so the endpoint of vu lies in
the region of R2 given by

{(x, y) ∈ R
2 : |y| ≤ ω|x| and x2 + y2 ≥ 1/4},

while the endpoint of vu lies in the region

{(x, y) ∈ R
2 : |x| ≤ ω|y| and x2 + y2 ≥ 1/4},

Thus, by (5.9), ‖vu − vs‖ ≥ 1/2,15 and we conclude that

1
2

≤ ‖vu − vs‖ ≤ ‖DyΨ−1
x0

‖‖eu
y − es

y‖ ≤ 4Q0Q̂e2ε�0�(Es
y, Eu

y )

using the second inequality in (5.15). Thus

�(Es
y, Eu

y ) ≥ Q̂−1e−2ε�0 ,

15An elementary computation shows that the optimal lower bound is (1 − ω)/
√

2(1 + ω2).
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so putting K(y) := Q̂−1e−2ε�0 establishes (H2), and (H1) for K follows just
as it did for C. We conclude that the set Λ′ of shadowing points is (λ/4, 2ε)-
hyperbolic. Moreover, to find which Λ′

� contains y, we write

C(y) = Q̂e2ε�0 ≤ e2ε�

and find that this holds as soon as � ≥ �0 + 1
2ε log Q̂. A similar computation

with K(y) shows that y is (λ/4, 2ε, �0 + � 1
2ε log Q̂�)-regular.

Part III. Nice Rectangles and Young Towers

In this third and final part of the paper, we apply the general results stated
in Theorem E and F, and proved in Part II above, to our particular setting in
order to prove Theorems B, C and D. As mentioned above, Theorem A follows
directly from Theorems B and C, and therefore this completes the proofs of
all our results. The sections are organized as follows: in Sect. 10 we prove
Theorem D, which is essentially a reformulation of Theorem E in the setting
of almost returns to nice domains, in Sect. 11 we show that Theorem D implies
Theorem B, and in Sect. 12 we prove Theorem C.

10. Hyperbolic Branches in Nice Domains: Proof of Theorem D

The proof of Theorem D consists of two parts. First we show that every almost
return gives rise to a pseudo-orbit and thus, by Theorem E, to a regular branch,
which satisfies the hyperbolicity estimates given in Proposition 5.7. Then we
show that this regular branch can be “restricted” to give a hyperbolic branch
in the nice domain Γpq. This second part of the proof does not explicitly require
Theorem E, it only uses the existence of a regular branch, but does use in an
essential way the fact that Γpq is a nice domain.

To begin, let C� be the constant given in Theorem 1.12 (without loss of
generality we may assume that C� ≥ 1), c2 > 0 as given in (1.5), and δ > 0 as
in Theorem E. Then we let

r :=
δe−λ(�+1)e−c2

2C�
≤ δ, (10.1)

where the inequality holds since C� ≥ 1 and λ, �, c2 ≥ 0. For generality we
state the following lemma for almost returns in a slightly more general setting
than that of Theorem D, without any explicit references to rectangles or nice
domains.

Lemma 10.1. If x, y ∈ Λ� and k ≥ 1 are such that fk(V s
x ) ∩ V u

y �= ∅, and
z ∈ fk(V s

x ) ∩ V u
y satisfies d(z, y) < r and d(f−k(z), x) < r, then the sequence

x̄ = (x0, . . . , xk) given by xj = f j(x) for 0 ≤ j ≤ k/2 and xj = f j−k(y) for
k/2 < j ≤ k is an (�̄, δ, λ)-pseudo-orbit for �j = min(� + j, � + k − j).
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Proof. Write i = �k/2�. By assumption z ∈ V u
y and f−k(z) ∈ V s

x and therefore
by the assumptions of Lemma and Theorem 1.12 we have

d(f i(x), f i−k(z)) ≤ C�e
−λid(x, f−k(z)) ≤ C�e

−λir ≤ 1
2
δe−λ(�+i),

and

d(f i−k(z)), f i−k(y)) ≤ C�e
−λ(k−i)d(z, y) ≤ C�e

−λ(k−i)r ≤ 1
2
δe−λ(�+i),

and thus d(f(xi), xi+1) = d(f i(x), f i−k(y)) ≤ δe−λ(�+i). Since f(xj) = xj+1

for all j �= i, this completes the proof. �

Consider now the setting of Theorem D: suppose Γ is a nice regular set
with diam(Γpq) < r and suppose x ∈ Γ has an almost return to Γ at time
k ∈ TN. Then the assumptions of Lemma 10.1 are satisfied and there is an
(�̄, δ, λ)-pseudo-orbit x̄ = (x0, . . . , xk) as in the lemma starting and ending
inside Γpq. Moreover, notice that

d(f(p), x1) = d(f(p), f(x0)) ≤ ec2d(p, x0) ≤ ec2 diam(Γpq) ≤ ec2r < δe−λ(�+1),

where the first inequality uses the general fact from (1.5) that d(f(x), f(y)) ≤
ec2d(x, y) for all x, y ∈ M , the second inequality is immediate since p, x0 ∈ Γpq,
the third uses our assumption that diam(Γpq) < r, and the fourth uses (10.1).

By a similar calculation, d(f(xk−1), p) < δe−λ�, and therefore the
sequence

p̄ := (p, x1 . . . , xk−1, p)

is also an (�̄, δ, λ)-pseudo-orbit. Considering the Lyapunov chart Ψp : B(�)
p →

N (�)
p , by Theorem E there is an �-regular branch from B(�)

p to itself associated
with this pseudo-orbit, and we have the corresponding maps

f0,k
p̄ : B0

p̄ → Bk
p̄ and fk : N 0

p̄ → N k
p̄ (10.2)

at the level of Lyapunov charts and of the manifold, respectively, recall (5.13).
For this branch Proposition 5.7 gives the hyperbolicity estimates required in
Definition 4.8 for a (Q̂e2ε�, λ/3)-hyperbolic branch. Moreover, concatenating
any finite sequence of such branches gives a new �-regular branch that is associ-
ated with the concatenated pseudo-orbit, and thus has the same hyperbolicity
estimates given by Proposition 5.7. Thus the collection of such branches sat-
isfies the concatenation property.

Remark 10.2. We emphasize that these are not yet the hyperbolic branches
we require for Γpq as in Definition 4.8. Indeed, these branches are constructed
on the scale of the Lyapunov chart which a priori may be significantly bigger
than the scale of the nice domain Γpq. The strips N 0

p̄ ,N k
p̄ intersect Γpq but

may extend across the boundary of Γpq. We therefore need to “restrict” these
branches to Γpq and produce Γpq-strips Ĉs ⊂ N 0

p̄ and Ĉu ⊂ N k
p̄ such that fk

maps Ĉs onto Ĉu. Since these are subsets of the larger strips N 0
p̄ ,N k

p̄ and the

cones K
s/u
p,y ⊂ TyM defined in (5.11) give conefields over Γpq that are adapted
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p
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Figure 10. Proving Theorem D

to the set Γ, the restricted strips will automatically inherit the hyperbolicity
and concatenation properties.

The remaining part of the argument is essentially topological, and this is
where the niceness assumption plays a crucial role. Indeed, the crucial conse-
quence of niceness is formalized in the following statement.

Lemma 10.3. Let Γ be a nice regular set and suppose that some x ∈ Γ has an
almost return to Γ at a time k ∈ NT . Then fk(W s

x) ⊂ Γpq.

Proof. Suppose by contradiction that the conclusion does not hold. Then
fk(W s

x) must intersect one of Wu
p/q, but this implies that the image under

f−k of this intersection point lies in the interior of Γpq, which is forbidden by
niceness. �

As shown in Fig. 10, let

γu
p := Wu

p ∩ N 0
p̄ and γu

q := Wu
q ∩ N 0

p̄ .

Lemma 10.4. The curves fk(γu
p ) and fk(γu

q ) are full length unstable admissible
curves in Γpq.

Proof. We prove the statement for γu
p , the same argument applies to γu

q .
Observe that each endpoint of γu

p lies on either W s
p , W s

q , or the stable boundary
of N 0

p̄ . Since p and q are fixed by fk, we have fk(W s
p ) ⊂ W s

p and fk(W s
q ) ⊂ W s

q ;
it follows that each endpoint of fk(γu

p ) lies on either W s
p , W s

q , or the stable
boundary of fk(N 0

p̄ ) = N k
p̄ . Since fk(γu

p ) must intersect Γpq by Lemma 10.3,
these restrictions on its endpoints guarantee that it is a full length unstable
admissible curve in Γpq. �
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Proof of Theorem D. By Lemma 10.4, fk(γu
p ), fk(γu

q ) are full length unstable
admissible curves in Γpq and therefore they define an unstable strip Ĉu in
Γpq, whose preimage Ĉs := f−k(Ĉu) is a stable strip in Γpq, thus yielding the
desired hyperbolic branch. The required hyperbolicity estimates are inherited
from the regular branch of which this hyperbolic branch is a subset. �

11. Building a Tower Out of Hyperbolic Branches: Proof of
Theorem B

In this section we prove Theorem B. In Sect. 11.1 we introduce some defi-
nitions and notation and reduce the proof of Theorem B to three Proposi-
tions 11.3, 11.5, and 11.6. We then prove each Proposition in its own subsec-
tion.

11.1. Saturation and Young Towers

Before formulating the propositions, we need to establish some notation and
to introduce the notion of saturation.

Let Γpq be a nice domain and suppose that A ⊂ Γpq is such that every
point x ∈ A has full length stable and unstable curves W

s/u
x . Suppose more-

over that A has the (C, κ)-hyperbolic branch property for some C, κ > 0 (see
Definition 4.14). Let C(A) denote the set of hyperbolic branches associated
with almost returns to A, and let C0(A) ⊂ C(A) be the subset consisting of
those branches associated with (true) returns. Let C∗(A) denote the set of
branches obtained by concatenating finitely many members of C(A). Thus we
have

C0(A) ⊂ C(A) ⊂ C∗(A).

Remark 11.1. Both inclusions can be proper. For the first one, A can have
almost returns without having any true returns, for example, if the set A
consists of one non-periodic point which returns to Γpq, then there is no return
to A but almost returns may exist. For the second, C∗(A) may even contain
branches fk : Ĉs → Ĉu such that Ĉs and Ĉu are disjoint from A. This can
occur if two branches f i : Ĉs

1 → Ĉu
1 and f j : Ĉs

2 → Ĉu
2 generated by almost

returns have a concatenated branch f i+j : Ĉs → Ĉu (recall Definition 4.11 and
Fig. 3) with the property that the part of A in Ĉs

1 lies entirely outside of Ĉs,
and similarly for Ĉu

2 .

Since f is a diffeomorphism of a compact manifold the derivative of f
is bounded and so for each i ≥ 1 there can be at most a finite number of
hyperbolic branches of order i. Thus we can index C0(A) by

I0(A) := {ij : i ∈ TN, j ∈ {1, ....,mi}},

where i gives the order (return time) of the hyperbolic branch and j indexes
the mi hyperbolic branches with order i. Therefore we obtain

C0(A) = {f i : Ĉs
ij → Ĉu

ij}ij∈I0(A). (11.1)
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We consider the particular case when A is a rectangle.

Definition 11.2. (Saturated Rectangle). Let Γ ⊂ Γpq be a nice rectangle with
the hyperbolic branch property16 and let I0(Γ) and C0(Γ) be as above (see
(11.1)). The rectangle Γ is called saturated if for all ij ∈ I0(Γ), we have

Cs
ij := f−i(Ĉu

ij ∩ Cs) ⊂ Cs and Cu
ij := f i(Ĉs

ij ∩ Cu) ⊂ Cu, (11.2)

where Cs/u =
⋃

x∈Γ W
s/u
x as in (2.2).

See Sect. 11.5 for a general discussion of the saturation property and its
connection to the first return property of the Young tower that is eventually
constructed, as well as to multiplicity of the associated countable-state Markov
coding. That section also includes an example of a non-saturated rectangle.

Given χ > λ > 0, 0 < ε < ε1(f, χ, λ), and � ∈ N, let r > 0 be given
by Theorem D, so that every (χ, ε, �, r)-nice regular set has the (Q̂e2ε�, λ/3)-
hyperbolic branch property.

Proposition 11.3. With χ, λ, ε, �, r as above, let A be a (χ, ε, �, r)-nice recurrent
set. Then there exists a nice (Q̂e2ε�, λ/3)-rectangle Γ ⊂ Γpq such that the
following are true.
(1) A ⊂ Γ ⊂ Γpq.
(2) Γ is T -recurrent.
(3) Γ satisfies the (Q̂e2ε�, λ/3)-hyperbolic branch property.
(4) C0(Γ) = C(Γ) = C∗(Γ) = C∗(A).
(5) Γ is saturated.
(6) Γ is (λ/4, 2ε, � + �′)-regular, where �′ = � 1

2ε log Q̂�.
Remark 11.4. See Remark 9.2 for a discussion of why λ/3 appears in the hyper-
bolic branch property (3) and λ/4 appears in the regularity property (6). This
regularity property is used in the proof of Theorem B(2) to establish a Hölder
continuity estimate ((11.3) in Proposition 11.6) leading to bounded distortion
(condition (Y2) in the definition of Young tower), but the construction in
Proposition 11.5 of the topological Young tower for Theorem B(1) only uses
the hyperbolic branch property (3).

At first glance it may appear redundant to state both conclusions (3) and
(6) in Proposition 11.3, since Theorem D guarantees that every nice regular
set satisfies the hyperbolic branch property, so one might reasonably expect to
deduce (3) as a consequence of (6). The problem is that A is (χ, ε, �)-regular
while Γ is only (λ/4, 2ε, � + �′)-regular (which is weaker), and so in order to
apply Theorem D and deduce that Γ satisfies the (C, κ)-hyperbolic branch
property for some κ ∈ (0, λ/4), we would need to make more careful choices in
our original setup, choosing 0 < ε < 1

2ε1(f, λ/4, κ) and then r = r(λ/4, κ, 2ε).
This can be done but would create a more complicated set of conditions for ε
and r in our main theorems, which we prefer to avoid; after deducing conclusion
(6) from Theorem F (see the paragraph following Lemma 11.9), we deduce

16In fact one does not need the full strength of the hyperbolic branch property to make this
definition; it suffices to have a hyperbolic branch associated with each (true) return.
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conclusion (3) by finding an almost return to A itself, to which Theorem D
can be applied, see Lemma 11.13 and the sentence following it.

Proposition 11.5. Let Γ ⊂ Γpq be a T -recurrent nice (C0, κ)-rectangle satis-
fying the (C0, κ)-hyperbolic branch property, and suppose that Γ is saturated.
Then Γ supports a first T -return topological Young tower.

Replacing T -recurrence with Lebesgue-strong T -recurrence allows us to
upgrade the topological Young tower to a fully fledged Young tower satisfying
the required distortion estimates and having integrable return times.

Proposition 11.6. Let Γ ⊂ Γpq be a Lebesgue-strongly T -recurrent nice (C0, κ)-
rectangle satisfying the (C0, κ)-hyperbolic branch property, and suppose that
C0e

−κT < 1. Suppose moreover that Γ is saturated and that there are
C1, β1, γ1 > 0 such that γ1 < β1κ and for all a ∈ Z and x, y ∈ fa(Γ), we
have

d(Eu
x , Eu

y ) ≤ C1e
γ1|a|d(x, y)β1 , (11.3)

Then Γ supports a first T -return Young tower with integrable return times.

To prove Theorem B, we will apply Propositions 11.5 and 11.6 to the
rectangle constructed in Proposition 11.3, with C0 = Q̂e2ε� and κ = λ/3.
Propositions 11.3, 11.5, and 11.6 will be proved in Sect. 11.2, Sect. 11.3, and
Sect. 11.4, respectively.

Remark 11.7. The only hyperbolic branches that are required in the proof of
Propositions 11.5 and 11.6 are those associated with true returns (of Γ); so
these results remain true if the hyperbolic branch property from Definition 4.13
is weakened to only require that the set of true returns produces a collection
of hyperbolic branches with the concatenation property, rather than requiring
such a collection for the (larger) set of almost returns. Branches associated
with almost returns (of A) play a crucial role in the proof of Proposition 11.3
for establishing the saturation property; roughly speaking, once this property
is obtained it is enough to consider true returns.

Proof of Theorem B. As stated before Proposition 11.3, we choose r depend-
ing on χ, λ, ε, � to satisfy the conditions of Theorem D, and thus given a
(χ, ε, �, r)-nice recurrent set A as in the assumptions of Theorem B, Propo-
sition 11.3 yields a nice rectangle Γ ⊂ Γpq that contains A, is T -recurrent,
satisfies the (Q̂e2ε�, λ/3)-hyperbolic branch property, and is saturated. Thus
Proposition 11.5 applies to Γ, and we conclude that Γ supports a first T -return
topological Young tower, which proves the first part of Theorem B. For the sec-
ond part of Theorem B, we will apply Proposition 11.6 to Γ, which requires us
to verify Lebesgue-strong recurrence, the (C0, κ)-hyperbolic branch property
with C0e

−κT < 1, and (11.3) with γ1 < β1κ.
To this end, first observe that since A is Lebesgue-strongly T -recurrent, so

is any set containing A, including Γ. Moreover, with C0 = Q̂e2ε� and κ = λ/3,
we have C0e

−κT = Q̂e2ε�e−λT/3 < 1 by our choice of T in Definition 1.16.
Finally, since Γ is (λ/4, 2ε, � + �′)-regular by Proposition 11.3(6), we see that
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fa(Γ) is (λ/4, 2ε, �+�′+|a|)-regular for every a ∈ Z. We can deduce (11.3) from
Proposition 8.4, and specifically (8.6) (with s replaced by u), where we replace
χ with λ/4. More precisely, regularity guarantees that for all x, y ∈ fa(Γ)
we have (8.7) and (8.8) with C = e2ε(�+�′+|a|) and χ replaced by λ/4, and
moreover �(Es

z , Eu
z ) ≥ C−1 for z = x, y, so that Proposition 8.4 gives Q′

6 > 0
depending only on M , ‖Df±1‖, α, |Df±1|α, and λ/4, such that

d(Eu
x , Eu

y ) ≤ Q′
6(e

2ε(�+�′+|a|))3·2γ′
d(x, y)β′

= Q′
6e

12εγ′(�+�′)e12εγ′|a|d(x, y)β′
,

where β′ and γ′ are obtained by replacing χ by λ/4 in (1.6) to get

γ′ =
λ
4 − c1

2λ
4

=
λ − 4c1

2λ
and β′ =

2λ
4

c3 + λ
4

α =
2λα

4c3 + λ
. (11.4)

It follows that (11.3) holds with C1 = Q′
6e

12εγ′(�+�′), γ1 = 12εγ′, and β1 = β′.
Thus the condition that γ1 < β1κ is equivalent to 12εγ′ < β′λ/3. Using (11.4),
this is equivalent to

6ε
λ − 4c1

λ
<

2λα

4c3 + λ
· λ

3
,

which holds by the fifth inequality in (1.7). This confirms that we can apply
Proposition 11.6 to Γ and completes the proof of Theorem B. �

11.2. Proof of Proposition 11.3

We will define Γ as the “maximal invariant set” for the dynamics generated by
the hyperbolic branches associated with almost returns to A (via Theorem D).
This can be thought of as a generalization of the standard horseshoe where we
define a maximal invariant set as consisting of the points which remain in the
strips for all forward and backward iterations. The key difference is that in the
horseshoe setting we have at most a finite number of branches with pairwise
disjoint stable strips and pairwise disjoint unstable strips, all of which have
the same return time. In our setting, a point x may belong to infinitely many
stable strips with varying return times and therefore we need a more involved
construction. With this in mind, we make the following general definition. Let

C = {f i : Ĉs
ij → Ĉu

ij}ij∈I

be a collection of hyperbolic branches indexed by the set I. Note that so far
we do not assume that these come from almost returns to a nice regular set;
for now we allow an arbitrary collection of hyperbolic branches.

Definition 11.8 (Hyperbolic sequences). A sequence h+ = {imjm}∞
m=0 with

imjm ∈ I is a forward hyperbolic sequence for x ∈ Γpq if for all m ≥ 0 we have

f i0+i1+···+im−1(x) ∈ Ĉs
imjm

. (11.5)

Similarly, h− = {imjm}−1
m=−∞ is a backward hyperbolic sequence for x ∈ Γpq if

for all m < 0 we have

f−(im+···+i−1)(x) ∈ Ĉs
imjm

. (11.6)
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If h− and h+ are backward and forward hyperbolic sequences for x, their
concatenation h = {imjm}m∈Z is called a hyperbolic sequence for x (associated
with the collection of hyperbolic branches C).

A point x may or may not admit a forward or backward hyperbolic
sequence and, if it does, these sequences need not be uniquely defined. Consider
the sets

C+ := {x ∈ Γpq | x has a forward hyperbolic sequence h+},

C− := {x ∈ Γpq | x has a backward hyperbolic sequence h−}.

Lemma 11.9. Given an arbitrary collection C of (C, κ)-hyperbolic branches, the
following set is a nice (C, κ)-rectangle and is T -recurrent:

Γ := C+ ∩ C− = {x ∈ Γpq | x has a hyperbolic sequence h}. (11.7)

Moreover, C+ =
⋃

x∈Γ W s
x and C− =

⋃
x∈Γ Wu

x , so that C+ = Cs(Γ) and
C− = Cu(Γ) in the notation of (2.2).

We think of Γ as the “maximal invariant set” of C.

Proof of Lemma 11.9. To prove that Γ is a rectangle, we use arguments similar
to those in the standard horseshoe setting. Let h = {imjm}m∈Z denote a
hyperbolic sequence for the point x, and h± its forward and backward parts.
For each n ≥ 0, the branches f im : Ĉs

imjm
→ Ĉu

imjm
with m = 0, 1, . . . , n can be

concatenated as in Definition 4.12 to produce a branch of order i0+i1+· · ·+in;
by Proposition 4.10, the intersection (over all n ≥ 0) of the resulting branches
is a local (C, κ)-stable curve that has full length in Γpq. It can be characterized
as

W s
x = {y ∈ Γpq : h+ is a forward hyperbolic sequence for y}. (11.8)

A completely analogous argument shows that every x ∈ Γ has a full length
local (C, κ)-unstable curve

Wu
x = {y ∈ Γpq : h− is a backward hyperbolic sequence for y}. (11.9)

This implies that for any x, y ∈ Γ the intersection W s
x ∩ Wu

y consists of a
single point z. Moreover, x has a forward hyperbolic sequence h+

x and y has a
backward hyperbolic sequence h−

y ; writing h for the concatenation of these two
sequences, it follows from (11.8) and (11.9) that h is a hyperbolic sequence for
z, so z ∈ Γ. This shows that Γ is a rectangle, as claimed.

To see that C+ = Cs(Γ) it suffices to observe that C+ is a union of curves
W s

x by (11.8), so C+ =
⋃

x∈C+ W s
x ⊃ ⋃

x∈Γ W s
x , while given an arbitrary

x ∈ C+ and y ∈ Γ we have z = [x, y] ∈ Γ and x ∈ W s
z , so C+ ⊂ ⋃

z∈Γ W s
z . A

similar argument gives C− = Cu(Γ).
Finally, the fact that Γ is recurrent follows almost immediately from the

definition; if h = {imjm}m∈Z is a hyperbolic sequence for x ∈ Γ, then f i0(x)
and f−i−1(x) have hyperbolic sequences given by shifting h one index in either
direction; hence, i0 and −i−1 are return times to Γ. �
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Now we restrict ourselves to the case when C arises from almost returns.
Given χ > λ > 0, 0 < ε < ε1(f, χ, λ), and � ∈ N, let r > 0 be given by Theo-
rem D, so that every (χ, ε, �, r)-nice regular set has the (Q̂e2ε�, λ/3)-hyperbolic
branch property. Let A be a (χ, ε, �, r)-nice recurrent set and let C = C(A)
be the corresponding collection of hyperbolic branches associated with almost
returns via Theorem D. Then Lemma 11.9 shows that (11.7) defines a nice
(Q̂e2ε�, λ/3)-rectangle Γ ⊂ Γpq that is T -recurrent, verifying conclusion (2) of
Proposition 11.3. Conclusion (6) on regularity follows from Theorem F. For
conclusion (1), we observe that since A is recurrent, given x ∈ A there are
i0, i1, i2, · · · ∈ N such that xk := f i0+i1+···+ik−1(x) ∈ A for all k ≥ 0; then
f ik(xk) = xk+1 is a return to A that produces a corresponding hyperbolic
branch in C, and the sequence of branches obtained this way is a forward
hyperbolic sequence for x. A backward hyperbolic sequence is produced simi-
larly, and thus x ∈ Γ, verifying (1).

Remark 11.10. Everything in the previous paragraph remains true if we
replace C(A) with the (potentially smaller) collection C0(A) of branches asso-
ciated with true returns. However, in the remainder of the proof it will be
essential that we define Γ using the collection of branches corresponding to
almost returns.

It remains to prove conclusions (3), (4), and (5). In order to prove
these conclusions, we need the following result about hyperbolic branches.
We remark that this is the one and only place in the paper where we use the
assumption from Definition 1.16 that T is even.

Lemma 11.11. Let Γpq be a nice domain. Then for any hyperbolic branch
f i : Ĉs → Ĉu we have Int(fk(Ĉs)) ∩ ∂Γpq = ∅ for all k = 0, . . . , i that are
multiples of T . Moreover, if f i′

: Ĉ ′s → Ĉ ′u is any other hyperbolic branch,
then the corresponding stable (resp. unstable) strips are either nested or dis-
joint.

Proof. The first statement is automatic for k = 0, i. Suppose that there exists
some k ∈ {1, .., i − 1} such that Int(fk(Ĉs)) ∩ ∂Γpq �= ∅. Then we must have
Int(fk(Ĉs)) ∩ (W s

q ∪ W s
p ) �= ∅ or Int(fk(Ĉs)) ∩ (Wu

q ∪ Wu
p ) �= ∅ (or both).

In the first case, iterating forward by i − k iterates, this would imply that
Int(Ĉu) ∩ f i−k(W s

q ∪ W s
p ) �= ∅, contradicting the niceness property of Γpq.

Similarly, in the second case, iterating backwards by k iterates, this would
imply Int(Ĉs) ∩ f−k(Wu

q ∪ Wu
p ) �= ∅, contradicting niceness.

For the second statement, assume without loss of generality that i ≤ i′.
Suppose by contradiction that the two stable strips Ĉs, Ĉ ′s �= ∅ are neither
nested nor disjoint (the argument for unstable strips is exactly the same).
Recall that the stable boundaries of Ĉs, Ĉ ′s are pieces of the global stable
curves of p, q (see Remark 4.9) and therefore cannot intersect unless they
agree; thus the intersection Ĉs ∩ Ĉ ′s is a single stable admissible curve or a
non-empty stable strip.
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Figure 11. Two overlapping branches leads to a contradic-
tion (Lemma 11.11)
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Figure 12. Proving Lemma 11.12

In the first case, we see that f i maps this stable admissible curve γs to the
local stable manifold of either p or q. Due to our choice of T even, Dpf

T and
Dqf

T have positive eigenvalues, and it follows that since i′ ≥ i are multiples of
T , there is an open region U ⊂ Ĉ ′s adjacent to γs such that f i′

(U) ∩ Γpq = ∅,
contradicting the assumption that f i′

: Ĉ ′s → Ĉ ′u is a hyperbolic branch.
In the second case, each stable strip has one of the components of its

stable boundary inside the interior of the other stable strip, see first figure in
Fig. 11. It follows that f i(Ĉ ′s) contains a piece of the stable boundary of Γpq

in its interior, contradicting the first statement proved above. �

To prove conclusion (3), that Γ has the (Q̂e2ε�, λ/3)-hyperbolic branch
property, we start by proving the following lemma, which is illustrated in
Fig. 12.

Lemma 11.12. Suppose that W s and Wu are full length local stable and unsta-
ble curves in Γpq and that τ ∈ TN is such that fτ (W s) ∩ Wu �= ∅. Suppose
moreover that f i : Ĉs → Ĉu and f i′

: Ĉ ′s → Ĉ ′u are hyperbolic branches with
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i, i′ ≥ τ such that W s ⊂ Ĉs and Wu ⊂ Ĉ ′u. Then for any full length local stable
and unstable curves W s

∗ ⊂ Ĉs and Wu
∗ ⊂ Ĉ ′u, we have fτ (W s

∗ ) ∩ Wu
∗ �= ∅.

In particular, if A ∩ Ĉs �= ∅ and A ∩ Ĉ ′u �= ∅, then there exists τj ∈ I(A)
such that the hyperbolic branch fτ : Ĉs

τj → Ĉu
τj from the collection C(A) has

W s ⊂ Ĉs
τj and Wu ⊂ Ĉu

τj.

Proof. Observe that fτ (Ĉs) ∩ Ĉ ′u ⊃ fτ (W s) ∩ Wu �= ∅. Applying f−τ gives

Ĉs ∩ f−τ (Ĉ ′u) �= ∅. (11.10)

This implies in particular that f−τ (Ĉ ′u) ∩ Γpq �= ∅; on the other hand,
Lemma 11.11 gives Int f−τ (Ĉ ′u) ∩ ∂Γpq = ∅, and it follows that

f−τ (Ĉ ′u) ⊂ Γpq. (11.11)

Now we claim that

f−τ (∂sĈ ′u) ∩ Int(Ĉs) = ∅, (11.12)

as shown in Fig. 12. To see this, observe that

f i(f−τ (∂sĈ ′u) ∩ Int(Ĉs)) = f i−τ (∂sĈ ′u) ∩ Int(Ĉu)

⊂ f i−τ (W s
p ∩ W s

q ) ∩ Int Γpq = ∅
since Γpq is a nice domain. Applying f−i gives (11.12), and together with
(11.10) and (11.11) this implies that f−τ (Ĉ ′u) fully crosses Ĉs in the unstable
direction, as shown in Fig. 12. The conclusion about Wu

∗ and W s
∗ follows; these

appear in Fig. 12 in the same configuration as Wu and W s do.
For the final claim in the lemma, choose x ∈ A ∩ Ĉs and y ∈ Ĉ ′u;

then apply the first part of the lemma to deduce that fτ (W s
x) ∩ Wu

y �= ∅. By
Theorem D, the collection C(A) contains a hyperbolic branch fτ : Ĉs

τj → Ĉu
τj

associated with this almost return, which has Ĉs
τj ⊃ Ĉs ⊃ W s and Ĉu

τj ⊃
Ĉ ′u ⊃ Wu as in Fig. 12. �

Observe that the previous two lemmas did not refer to the rectangle Γ;
they are general facts about nice domains and hyperbolic branches. Now we
once again consider the rectangle Γ and prove the hyperbolic branch property
in conclusion (3).

Lemma 11.13. Let Γ be the rectangle constructed in (11.7) using the collection
C(A) of (Q̂e2ε�, λ/3)-hyperbolic branches associated with almost returns of A
by Theorem D. Let z, z′ ∈ Γ and τ ∈ TN be such that fτ (W s

z )∩Wu
z′ �= ∅. Then

there is a branch fτ : Ĉs → Ĉu in the collection C∗(A) such that z ∈ Ĉs.

Proof. A natural idea is to try to apply Lemma 11.12 to W s
z and Wu

z′ and
thus produce an almost return of A that gives the desired hyperbolic branch.
However, the lemma requires us to choose branches for z and z′ with order at
least τ ; we can find such branches in C∗(A) but not necessarily in C(A), and
there is no guarantee that these branches will contain any elements of A (see
Remark 11.1).
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Thus before applying Lemma 11.12, we first observe that z has a forward
hyperbolic sequence h+ = {imjm}∞

m=0, and let n ≥ 0 be such that
∑n−1

m=0 im ≤
τ <

∑n
m=0 im. Let k =

∑n−1
m=0 im and observe that by the definition of a

forward hyperbolic sequence, we can concatenate the branches f im : Ĉs
imjm

→
Ĉu

imjm
for 0 ≤ m ≤ n−1 to get a hyperbolic branch fk : Ĉs

z → Ĉu
z from C∗(A)

such that z ∈ Ĉs
z .

Similarly, z′ has a backward hyperbolic sequence h− = {i−mj−m}∞
m=1,

and choosing n′ ≥ 1 such that
∑n′−1

m=1 i−m ≤ τ − k <
∑n′

m=1 i−m, we can write
� =

∑n′−1
m=1 i−m and do a similar concatenation to get a hyperbolic branch

f � : Ĉs
z′ → Ĉu

z′ from C∗(A) such that z′ ∈ Ĉu
z′ .

Now we observe that

fτ−k−�(W s
fkz) ∩ Wu

f−�z′ ⊃ fτ−�(W s
z ) ∩ f−�(Wu

z′) = f−�(fτ (W s
z ) ∩ Wu

z′) �= ∅
by the invariance properties of local stable and unstable curves, and so the
point fk(z) ∈ Γ has an almost return at time τ − k − � via f−�(z′) ∈ Γ.
Moreover, fk(z) ∈ Ĉs

injn
and f−�(z′) ∈ Ĉu

i′
−n′j′

−n′
, where in, i′−n′ ≥ τ −k−� by

our choice of n and n′. The corresponding branches are in C(A), so each of Ĉs
injn

and Ĉu
i′
−n′j′

−n′
contains an element of A, and we can apply Lemma 11.12 to get

a hyperbolic branch fτ−k−� : Ĉs
(τ−k−�)j → Ĉu

(τ−k−�)j such that z ∈ Ĉs
(τ−k−�)j .

Concatenating this with the branches fk : Ĉs
z → Ĉu

z and f � : Ĉs
z′ → Ĉu

z′ gives
a hyperbolic branch from C∗(A) whose stable strip contains z. �

Lemma 11.13 shows that every almost return of Γ is associated with
a hyperbolic branch from the collection C∗(A), and thus any concatenation
of such branches lies in this collection as well. Since these branches are all
(Q̂e2ε�, λ/3)-hyperbolic by Theorem D, we have proved conclusion (3).

In fact, we have also proved that

C0(Γ) ⊂ C(Γ) ⊂ C∗(Γ) ⊂ C∗(A).

To prove conclusion (4) it suffices to show that C∗(A) ⊂ C0(Γ). For this,
observe that any branch in C∗(A) is obtained by concatenating a finite sequence
of branches from C(A), and repeating this finite sequence periodically in both
directions produces a bi-infinite hyperbolic sequence. This hyperbolic sequence
determines a unique point x ∈ Γ, which is periodic, and the hyperbolic branch
associated with this periodic return is exactly the branch from C∗(A) that
we began with. This establishes conclusion (4), and then the proof of Propo-
sition 11.3 is completed by the following result, which establishes conclusion
(5).

Lemma 11.14. Γ is saturated.

Proof. Given a branch f i : Ĉs
ij → Ĉu

ij from C0(Γ) = C∗(A), for every w ∈
f−i(Ĉu

ij ∩ Cs) we have f i(w) ∈ Cs and therefore f i(w) has a forward hyper-
bolic sequence {imjm}m≥0. The branch f i : Ĉs

ij → Ĉu
ij is a concatenation of
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finitely many branches from C(A); adding these branches to the start of the
forward hyperbolic sequence for f i(w) produces a forward hyperbolic sequence
for w. It follows that w ∈ Cs, thus proving the first inclusion in (11.2). A com-
pletely analogous argument works for the unstable leaves to show that Γ is
saturated. �
11.3. Proof of Proposition 11.5

Let Γ = Cs ∩ Cu be a nice T-recurrent saturated rectangle satisfying the
(C, κ)-hyperbolic branch property and let C0 = C0(Γ) denote the collection
of hyperbolic branches associated with returns to Γ, indexed by I0. Recall
the definition of s-subsets and u-subsets from Definition 2.4. To each branch
f i : Ĉs

ij → Ĉu
ij in C0 we will associate an s-subset Γs

ij ⊂ Ĉs
ij ∩Γ and a u-subset

Γu
ij ⊂ Ĉu

ij ∩ Γ such that f i : Γs
ij → Γu

ij is a bijection. We stress that both
inclusions are in general proper; roughly speaking, the reason for this is that
there may be some x ∈ Ĉs

ij ∩ Γ for which f i(x) /∈ Γ, and such points must be
excluded from Γs

ij ; similarly for x ∈ Ĉu
ij and f−i(x). To define Γs,u

ij , first recall
from (11.2) that for ij ∈ I0 we write

Cs
ij = f−i(Ĉu

ij ∩ Cs) = Ĉs
ij ∩ f−i(Cs),

Cu
ij = f i(Ĉs

ij ∩ Cu) = Ĉu
ij ∩ f i(Cu);

(11.13)

then let

Γs
ij := Cs

ij ∩ Cu, Γu
ij := Cu

ij ∩ Cs. (11.14)

Notice that Cs
ij , C

u
ij are collections of stable and unstable leaves, respectively,

whereas Γs
ij ,Γ

u
ij may be Cantor sets.

Lemma 11.15. For every ij ∈ I0, Γs
ij ,Γ

u
ij are s-subsets and u-subsets, respec-

tively, of Γ and f i(Γs
ij) = Γu

ij . Moreover, if x ∈ Γ and i ∈ TN are such that
f i(x) ∈ Γ, then x ∈ Γs

ij for some ij ∈ I0; in particular this implies that
Γ =

⋃
ij∈I0

Γs
ij =

⋃
ij∈I0

Γu
ij.

Proof. By the saturation assumption, Cs
ij ⊆ Cs, Cu

ij ⊆ Cu and therefore Γs
ij :=

Cs
ij ∩Cu ⊆ Cs∩Cu = Γ and Γu

ij := Cu
ij ∩Cs ⊆ Cu∩Cs = Γ and so Γs

ij ,Γ
u
ij ⊆ Γ.

Since Cs
ij is a union of stable leaves and Cu

ij is a union of unstable leaves,
the sets Γs

ij := Cs
ij ∩ Cu and Γu

ij := Cu
ij ∩ Cs are s-subsets and u-subsets,

respectively, of Γ. Moreover, directly from the definitions we have

f i(Γs
ij) = f i(Ĉs

ij) ∩ Cs ∩ f i(Cu) = f i(Ĉs
ij ∩ Cu) ∩ Cs = Γu

ij .

For the second statement, let x ∈ Γ and i ∈ TN be such that f i(x) ∈ Γ.
Since Γ has the (C, κ)-hyperbolic branch property, there is a hyperbolic branch
f i : Ĉs

ij → Ĉu
ij in C0 such that x ∈ Ĉs

ij ∩ Γ and f i(x) ∈ Ĉu
ij ∩ Γ. Since Γ ⊂ Cs,

the definition of Cs
ij gives

x = f−i(f i(x)) ∈ f−i(Ĉu
ij ∩ Γ) ⊂ f−i(Ĉu

ij ∩ Cs) = Cs
ij .

Since we also have x ∈ Γ = Cs ∩ Cu ⊆ Cu it follows that x ∈ Cs
ij ∩ Cu = Γs

ij .
The final assertion follows because Γ is recurrent and so every x ∈ Γ has some
i, i′ ∈ TN such that f i(x), f−i′

(x) ∈ Γ. �
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p

q

p

q

p

q

Cs
ij

Cs

Cu
ij

Cs
mn

Cu
mn

Cu
f i

fm

f i(Cs ) = f−m(Cu )

y = f i(x)
x

fk(x) = fm(y)

Figure 13. Proof of Sublemma 11.18

Lemma 11.15 shows that there exists a cover of Γ by s-subsets and
another by u-subsets satisfying the Markov property Y0 required in the def-
inition of topological Young tower. It does not however claim that this cover
is a partition of Γ as required by the definition, i.e. that the s-subsets of the
cover are disjoint which in fact they may not be. The following lemma shows,
however, that they are pairwise either nested or disjoint, and this will then
allow us to choose a sub-cover made up of pairwise disjoint sets (see the proof
of Proposition 11.5 below).

Lemma 11.16. Let k� ∈ I0 and suppose there exists x ∈ Γs
k� and 0 < i < k

such that f i(x) ∈ Γ. Then there exist ij ∈ I0 such that Γs
k� ⊆ Γs

ij . In particular
all {Γs

ij}ij∈I0 are pairwise either nested or disjoint.

We will prove this lemma momentarily.

Remark 11.17. Notice that the last statement in Lemma 11.16 does not follow
directly from Lemma 11.11. Indeed, the fact that two stable strips Ĉs

ij , Ĉ
s
k� are

nested does not a priori imply that the corresponding sets Cs
ij , C

s
k� are either

disjoint or nested, recall (11.2), and therefore also does not a priori imply that
Γs

ij ,Γ
s
k� are either disjoint or nested, recall (11.14).

Sublemma 11.18. In the setting of Lemma 11.16, letting m = k − i, there
exist ij,mn ∈ I0 such that Ĉs

k� ⊆ Ĉs
ij, Ĉu

k� ⊆ Ĉu
mn, and such that f i(Ĉs

k�) =
Ĉu

ij ∩ Ĉs
mn = f−m(Ĉu

k�).

Proof. From Lemma 11.15 we have x ∈ Γs
ij for some ij ∈ I0. Therefore x ∈

Γs
ij ∩ Γs

k� and so x ∈ Ĉs
ij ∩ Ĉs

k� and in particular Ĉs
ij ∩ Ĉs

k� �= ∅ and therefore,
by Lemma 11.11, Ĉs

k� ⊆ Ĉs
ij , as shown in Fig. 13. Also, from Lemma 11.15,

x ∈ Γs
k� implies x ∈ Γ and fk(x) ∈ Γ and therefore, letting y = f i(x) ∈ Γ

we have fm(y) = fm(f i(x)) = fk(x) ∈ Γ. Thus there exists mn ∈ I0 such
that y ∈ Ĉs

mn. We therefore have fm(y) ∈ fm(Ĉs
mn) = Ĉu

mn and also fm(y) =
fk(x) ∈ Γu

k� ⊆ Ĉu
k�, and therefore Ĉu

mn ∩ Ĉu
k� �= ∅ and thus, since m < k,

Ĉu
k� ⊆ Ĉu

mn. Then, since Ĉs
k� ⊆ Ĉs

ij are both full height vertical (stable) strips
and Ĉu

k� ⊆ Ĉu
mn are both full length horizontal (unstable) strips, it follows that
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f i(Ĉs
k�) is “full height” relative to the horizontal strip Ĉu

ij and f−m(Ĉu
k�) is

“full width” relative to the vertical strip Ĉs
mn. Since f i(Ĉs

k�) = f−m(Ĉu
k�) we

complete the proof. �

Proof of Lemma 11.16. Let m = k − i. Directly from the definitions,

Cs
k� = f−k(Ĉu

k� ∩ Cs) = f−i(f−m(Ĉu
k� ∩ Cs)). (11.15)

From Sublemma 11.18 we have f−m(Ĉu
k�) = Ĉu

ij ∩ Ĉs
mn and thus (11.13) gives

f−m(Ĉu
k� ∩ Cs) = Ĉu

ij ∩ Ĉs
mn ∩ f−m(Cs) = Ĉu

ij ∩ Cs
mn.

Substituting this into (11.15) and using the saturation condition which implies
Cs

mn ⊆ Cs, we get Cs
k� = f−i(Ĉu

ij ∩Cs
mn) ⊆ f−i(Ĉu

ij ∩Cs) =: Cs
ij , which implies

the statement since Γs
k� = Cs

k� ∩ Cu ⊆ Cs
ij ∩ Cu = Γs

ij by (11.14). �

Proof of Proposition 11.5. Since the family of sets {Γs
ij}ij∈I0 are pairwise

either nested or disjoint, they are partially ordered by inclusion. We can there-
fore define the set I ′

0 ⊂ I0 of indices ij which are maximal with respect to this
partial order. We then let P := {Γs

ij}ij∈I′
0
. By Lemma 11.15, every point x ∈ Γs

belongs to some Γs
ij for some ij ∈ I0 and therefore must also belong to some

maximal element Γs
ij for some ij ∈ I ′

0. Thus P is a partition of Γ into pairwise
disjoint s-subsets whose images are u-subsets. This gives the Markov–Young
structure. To see that it is a first return topological Young tower we suppose
by contradiction that there exists some k� ∈ I ′

0, x ∈ Γs
k� and 0 < i < k such

that f i(x) ∈ Γ. Then Lemma 11.16 implies that there exists some ij ∈ I0 such
that Γs

k� ⊂ Γs
ij , contradicting the maximality of Γs

k�. �

11.4. Proof of Proposition 11.6

We split the proof into two independent parts, one to prove the hyperbolicity
and distortion conditions (Y1)–(Y2) using the hyperbolic branch property and
Hölder estimate (11.3), and the second to prove the integrability of the return
times, which follows from the Lebesgue-strong T-return property.

11.4.1. Hyperbolicity and Distortion Properties of the Tower. We will verify
Conditions (Y1) and (Y2) in Definition 2.10. Fix i ∈ TN, j ∈ {1, . . . , mi}, and
x ∈ Γs

ij . Note that the map F = f i : Γs
ij → Γu

ij has the (C, κ)-hyperbolic branch
property with constant C > 0 and κ > 0 independent of x. Since the number T
is large enough, (see Condition 3 in Definition 1.16) it ensures that Ce−κT < 1
and Condition (Y1)(a) follows with κ1 = Ce−κT . Condition (Y1)(b) can be
shown by a similar argument.

We now prove Condition (Y2)(a), the proof of Condition (Y2)(b) is sim-
ilar. It suffices to show that there are constants c > 0 and α1 > 0 such that
for any z ∈ Γ and w ∈ V s

z we have∣∣∣ log
JacuF (z)
JacuF (w)

∣∣∣ ≤ cd(z, w)α1 . (11.16)

Indeed, setting z = Fn(x) and w = Fn(y), the desired bounded distortion
estimate follows from (11.16) and Condition (Y1)(a).
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To show (11.16) notice that z ∈ Γs
ij for some i ∈ TN and j ∈ {1, . . . , mi}

and hence,

∣∣∣ log
JacuF (z)
JacuF (w)

∣∣∣ =
∣∣∣ i−1∑

a=0

log
Jacuf(fa(z))
Jacuf(fa(w))

∣∣∣. (11.17)

Since Γ is a (C0, κ)-rectangle, we see that for any z ∈ Γ, w ∈ V s
z , and 0 ≤ a ≤

i − 1, we have fa(w) ∈ V s
fa(z) and

d(fa(z), fa(w)) ≤ C0e
−κad(z, w). (11.18)

Moreover, using the assumption that Γ satisfies (11.3), we see that

d(Eu
fa(z), E

u
fa(w)) ≤ C1e

γ1ad(fa(z), fa(w))β1

≤ C1e
γ1aCβ1

0 e−κaβ1d(z, w)β1 = C1C
β1
0 e(γ1−κβ1)ad(z, w)β1 .

(11.19)

Since f is C1+α, it follows that there is C2 > 0 such that∣∣∣ Jacuf(fa(z))
Jacuf(fa(w))

− 1
∣∣∣ =

∣∣∣Jacuf(fa(z)) − Jacuf(fa(w))
Jacuf(fa(w))

∣∣∣
≤ C2d(Eu

fa(z), E
u
fa(w))

α

≤ C2C
α
1 Cβ1α

0 eα(γ1−κβ1)ad(z, w)β1α.

(11.20)

If Jacuf(fa(z)) ≥ Jacuf(fa(w)) this gives

log
Jacuf(fa(z))
Jacuf(fa(w))

≤ Jacuf(fa(z))
Jacuf(fa(w))

− 1 ≤ C2C
α
1 Cβ1α

0 eα(γ1−κβ1)ad(z, w)β1α.

The same bound holds with z and w exchanged, by exchanging their roles in
(11.20). Then by (11.17) we get

∣∣∣ log
JacuF (z)
JacuF (w)

∣∣∣ ≤
i−1∑
a=0

C2C
α
1 Cβ1α

0 eα(γ1−κβ1)ad(z, w)β1α. (11.21)

Since we assumed γ1 < β1κ, we see that γ1 −κβ1 < 0, and thus (11.21) implies
(11.16), which proves Condition (Y2)(a).

11.4.2. Integrability of the Return Times. Let F : Γ → Γ be the induced map
to the base of the topological first T-return Young tower where F (x) = fτ(x)(x)
and τ(x) is the first return time to Γ which is a multiple of T .

For every n ≥ 0 let

Rn(x) :=
n−1∑
j=0

τ(F j(x)) and vn(x) := #{0 < i ≤ n/T : f iT (x) ∈ Γ}

where we define R0(x) = 0 by convention. Notice that Rn, vn are on quite
different time scales, the index n in vn refers to the iterates of the original
map f , whereas in Rn it refers to the iterates of the induced map F . The
following relation between the two quantities is not surprising but neither is it
completely trivial, we thank Vilton Pinheiro for explaining it to us.
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Lemma 11.19. (Pinheiro [62]). Let x ∈ Γ and suppose limn→∞ Rn(x)/n exists.
Then

lim
n→∞

vn(x)
n

=
(

lim
n→∞

Rn(x)
n

)−1

.

In particular limn→∞ vn(x)/n exists and is equal to 0 if limn→∞ Rn(x)/n = ∞.

Proof of Lemma 11.19. For any x ∈ Γ, by definition of vn(x) we have

vn(x) := #{0 < i ≤ n/T : f iT (x) ∈ Γ} = max

{
k ≥ 0 :

k−1∑
j=0

τ(F j(x)) ≤ n

}

and so, for every n ≥ τ(x), so that vn(x) ≥ 1, we have

Rvn(x)(x) :=
vn(x)−1∑

j=0

τ(F j(x)) ≤ n <

vn(x)∑
j=0

τ(F j(x)) =: Rvn(x)+1(x).

Dividing through by vn(x) this gives

Rvn(x)(x)
vn(x)

≤ n

vn(x)
<

vn(x) + 1
vn(x)

Rvn(x)+1(x)
vn(x) + 1

(11.22)

Since (vn(x) + 1)/vn(x) → 1 as n → ∞ and the limit of the sequence Rn(x)/n
exists, the subsequences on the left and right hand side of (11.22) also converge
to the same limit. It follows that the n/vn(x) converges and therefore also
vn(x)/n to a limit as in the statement. �

Lemma 11.19 leads to the integrability of the return times stated in Def-
inition 2.12. Indeed, by the results in [71] the induced map F : Γ → Γ admits
an SRB measure μ̂ whose conditional measures μ̂z on unstable curves of points
of Γ are equivalent to the Lebesgue measure mV u

z
on these same curves. It is

therefore sufficient to show the integrability with respect to one of these con-
ditional measures. For μ̂-a.e. z ∈ Γ there is Ez ⊂ V u

z with μ̂z(Ec
z) = 0 such

that

lim
n→∞

Rn(x)
n

=
∫

Γ

τ dμ̂ =
∫

Γ

∫
τ dμ̂z dμ̂(z) for all x ∈ Ez, (11.23)

where a priori these quantities may be infinite. However, since Γ is Lebesgue-
strongly T -recurrent, there is a local unstable curve V u and a set E ⊂ V u ∩ Γ
of positive one-dimensional Lebesgue measure such that for every x ∈ E we
have lim supn→∞ vn(x)/n > 0 (see (1.9)). Now Lemma 11.19 implies that if
x ∈ E is such that limn→∞ Rn(x)/n exists, then this limit is finite.

Observe that for each n ≥ 1 and y ∈ Γ, the function x �→ Rn(x)/n is
constant on V s

y ∩Γ. In particular, fixing z ∈ Γ and writing E′
z =

⋃
y∈E V s

y ∩V u
z ,

we see that E′
z ⊂ V u

z has μ̂z(E′
z) > 0 and that limn→∞ Rn(x)/n is finite for

every x ∈ E′
z such that the limit exists.

Choosing z ∈ Γ such that μ̂z(Ec
z) = 0, we get μ̂z(E′

z ∩ Ez) > 0. For any
point x ∈ E′

z ∩ Ez, (11.23) gives
∫
Γ

τ dμ̂ < ∞, and it follows that
∫

τ dμ̂z < ∞
for μ̂-a.e. z. This completes the proof of the integrability of the return times
and thus the proof of Proposition 11.6.
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11.5. Discussion of the Saturation Condition

The saturation condition in Definition 11.2 is crucial to our construction of a
first T -return Young tower, but may appear mysterious at first glance, so we
give some general discussion here of the role it plays; this section is not part
of the proofs.

The strategy in the proof of Theorem B was to use a collection of hyper-
bolic branches C to produce a rectangle Γ (Proposition 11.3), and then to
build a Young tower that has Γ as its base (Propositions 11.5 and 11.6). In
Sect. 11.2, Proposition 11.3 was proved by taking C to be the collection of
branches associated with almost returns of some nice regular set A ⊂ Γpq, but
Lemma 11.9 shows that the construction of a nice rectangle Γ that is recurrent
works if we begin with any collection C of hyperbolic branches.

The proof of conclusions (3), (4), and (5) in Proposition 11.3, however,
required us to work with the specific choice of C given by the collection of
almost returns. To illustrate why this was important, consider the following
example, which shows how (4) and (5) can fail for a general collection C, where
the collection of hyperbolic branches associated with returns of Γ may contain
some branches that do not appear as concatenations of branches from the
generating set C.

Example 11.20. Suppose that p, q are fixed points and that Γpq contains two
hyperbolic branches f : Ĉs

0 → Ĉu
0 and f : Ĉs

1 → Ĉu
1 . Define a map π : {0, 1}Z →

Γpq by π(x) =
⋂

n∈Z
f−n(Ĉs

xn
). To each finite word w = w0w1 · · · wn−1 ∈

{0, 1}n we can associate the cylinder [w] = {x ∈ {0, 1}Z : xj = wj for all
0 ≤ j < n}, and π[w] is the stable strip for a hyperbolic branch of order n
(recall Definition 4.8) associated with the word w.

Let C be the collection of two hyperbolic branches associated with the
words v = 01 and w = 10. Applying Lemma 11.9 to C produces the rectangle Γ
consisting of all points π(x) for which x2nx2n+1 ∈ {v, w} for all n ∈ Z. Observe
that for x = 10.10 ∈ {0, 1}Z (where the overline denotes infinite repetition
to either the left or the right), we have π(x) ∈ Γ and f(π(x)) ∈ Γ (this is
a period-2 orbit), but the hyperbolic branch corresponding to this return is
f : Ĉs

1 → Ĉu
1 , which is not a concatenation of branches from C, so conclusion

(4) fails. Moreover, the rectangle Γ is not saturated, because z = π(01.10) ∈ Γ
has

f−1(Ĉu
1 ∩ W s

z ) = {π(y) : y0y1y2 · · · = 110},

which is a full-length local stable curve that is disjoint from Γ and thus does
not lie in Cs, violating (11.2). Then the construction of a topological Young
tower in Sect. 11.3 fails: Lemma 11.15 does not go through because the sets
defined in (11.14) are not contained in Γ.

In fact one can still build a “not first return” topological Young tower
over Γ by writing Γs

v = {π(y) : y0y1 = v} and Γs
w = {π(y) : y0y1 = w}, then

setting the inducing time τ to be equal to 2 everywhere so that Γu
v = f2(Γs

v) =
{π(y) : y−2y−1 = v}, and similarly for Γu

w. This gives the Markov structure
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in Y0, but is not a first return tower because some points, such as the point
π(x) given in Example 11.20, return before time 2.

One might reasonably object that the rectangle in Example 11.20 is
indeed saturated if we take T = 2 and only consider returns at even times,
since then every T -return is associated with a concatenation of the branches
in C, and thus Γ supports a first 2-return topological Young tower. This phe-
nomenon occurs if we start with any finite collection of branches C: taking T
to be any common multiple of their lengths will guarantee that the rectangle
is saturated (for T -returns) and produces a first T -return topological Young
tower. This simple solution fails when C is infinite, as in the next example.

Example 11.21. Given three hyperbolic branches {f : Ĉs
j → Ĉu

j }j∈{0,1,2},
define π : {0, 1, 2}Z → Γpq as in Example 11.20, and let C be the infinite col-
lection of hyperbolic branches associated with words of the form 210n1 and
10n12 for n ≥ 0. Then given any i ≥ 4, we observe that x = 210i−41.210i−41
has the property that π(x), f i(π(x)) ∈ Γ, so for w = 210i−412 ∈ {0, 1, 2}i, the
branch f i : Ĉs

w = Ĉu
w is associated with a return to Γ, but is not a concatena-

tion of branches from C. Putting z = π(10i−412.210i−41) one can check that
f−i(Ĉu

w ∩W s
z ) �⊂ Cs, so (11.2) fails and Γ is not saturated for any choice of T .

Because the stable strips associated with the branches in C are disjoint, one
can still build a topological Young tower (with infinitely many branches) as
in the paragraph following Example 11.20, but it will not be a first T -return
tower for any choice of T .

The reason we can avoid these problems in Proposition 11.3 is that the
collection of branches we use there is not arbitrary: rather, it is the collec-
tion of all hyperbolic branches associated with almost returns to a particular
nice regular set A. For such a collection, Lemmas 11.12 and 11.13 guarantee
that any T -return for the rectangle Γ corresponds to an almost return for the
original set A, and thus to a branch from the original collection. Thus one
may interpret the saturation condition as the requirement that the original
collection of branches be “large enough” that no new branches are created by
“accidental returns”.

For a discussion of a related issue in the setting of coded shift spaces, see
[29, §3], and specifically condition [III*] of that paper, which plays the same
role there as saturation does here, guaranteeing that a certain Markov coding
is 1-1. Example 3.6 of that paper could be translated into the setting of Exam-
ples 11.20 and 11.21 by letting C be the collection of four hyperbolic branches
associated with the words {0, 10, 01, 101}; then the associated rectangle is not
saturated, and moreover the procedure described after Example 11.20 does not
produce a topological Young tower at all since the s-sets Γs

w are not disjoint.
One can still obtain a Markov coding but it is uncountable-to-1. Together
with the previous two examples, this illustrates how important the saturation
condition is for our results.
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12. Hyperbolic Measures Have Nice Regular Sets: Proof of
Theorem C

In this section we prove Theorem C. The non-trivial part of the proof is to
show that we can find arbitrarily small domains Γpq with μ(Γpq ∩ Λ�) > 0
where p, q ∈ Λ� are periodic points. Then letting T > 0 be any common
multiple of the periods of p and q, it follows that p, q are fixed points for fT

and therefore Γpq is a nice domain with T (Γpq) = T . Moreover, μ is also fT -
invariant and therefore μ-a.e. x ∈ Γpq ∩ Λ� returns to Γpq ∩ Λ� with positive
frequency for iterates which are multiples of T , in both forward and backward
time. The set A of such points is T -recurrent, and if μ is an SRB measure, it
is Lebesgue-strongly T -recurrent. Thus Theorem C follows from the statement
below.

Proposition 12.1. Let f be a C1+α diffeomorphism, μ an ergodic non-atomic
χ-hyperbolic measure, and Λ a χ-hyperbolic set. Fix λ ∈ (0, χ) and ε ∈
(0, ε1(f, χ, λ)). Let U ⊂ M be an open set and � ∈ N such that μ(U ∩ Λ�) > 0.
Then with �′ as in Theorem F, there are (λ/4, 2ε, �+ �′)-regular periodic points
p, q such that Γpq is defined, contained in U , and satisfies μ(Γpq ∩ Λ�) > 0.
Since Γpq ⊂ U , diam Γpq can be made arbitrarily small.

Before proving Proposition 12.1, we use Theorem F to establish a result
reminiscent of the Katok closing lemma. Say that y ∈ B(x, δ) ∩ Λ� is Λ�-
non-wandering if there is a sequence nk → ∞ and yk ∈ Λ� ∩ f−nkΛ� such
that yk, fnk(yk) k→∞−−−−→ y. Observe that by Poincaré Recurrence, every point
in supp(μ|Λ�) is Λ�-non-wandering.

Lemma 12.2. Given δ > 0 as in Theorem E, �′ ∈ N as in Theorem F, and any
� ∈ N, for all Λ�-non-wandering points y, z ∈ B(x, δe−λ�/3) ∩ Λ� there is a
sequence of (λ/4, 2ε, � + �′)-regular periodic points pk

k→∞−−−−→ V s
y ∩ V u

z .

Proof. Suppose y, z are as in the hypothesis. Choose nk → ∞ and yk ∈ Λ� ∩
f−nkΛ� such that yk, fnk(yk) → y. Choose mk, zk similarly for z. For suitably
large k, we have

yk, fnk(yk), zk, fmk(zk) ∈ B(x, δe−λ�/2)

and thus in particular

d(fnk(yk), zk) ≤ δe−λ� and d(fmk(zk), yk) ≤ δe−λ�.

It follows that yk, f(yk), . . . , fnk−1(yk), zk, f(zk), . . . , fmk−1(zk), yk is a (�̄, δ, λ)-
pseudo-orbit with

�i = � +

{
min(i, nk − i) 0 ≤ i ≤ nk,

min(i − nk, nk + mk − i) nk ≤ i ≤ nk + mk.

Repeating this finite pseudo-orbit x̄ periodically gives a periodic bi-infinite
pseudo-orbit to which we can apply Theorem F and obtain a (λ/4, 2ε, � + �′)-
regular periodic shadowing point pk. Note that pk ∈ N 0

x̄ ∩ N nk+mk
x̄ , and that

the intersections converge to V s
y ∩V u

z as k → ∞ because yk ∈ N 0
x̄ and fmkzk ∈

N nk+mk
x̄ . Thus pk → V s

y ∩ V u
z . �
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Figure 14. Proving Proposition 12.1

Proof of Proposition 12.1. Fix x ∈ U ∩ supp(μ|Λ�). Since Λ� is closed, we have
supp(μ|Λ�) ⊂ Λ�. Choose δ′, δ > 0 sufficiently small that B(x, δ′) ⊂ U , and
such that for every y, z ∈ B(x, δ) ∩ Λ�, the intersection V s

y ∩ V u
z is a single

point and lies in B(x, δ′)∩Λ�′ . Assume also that δ is chosen small enough and
�′ large enough to satisfy Lemma 12.2.

Let Z := B(x, δ) ∩ supp(μ|Λ�). Observe that Z is compact, and that
μ(Z) > 0 by our choice of x. Let πs : Z → V u

x and πu : Z → V s
x be projec-

tion along local stable and unstable leaves, respectively. Since V s,u
x are one-

dimensional we can equip each with a total order, and by compactness we can
choose a, b, c, d ∈ Z such that

πs(a) = inf πs(Z), πs(b) = supπs(Z),
πu(c) = inf πu(Z), πu(d) = supπu(Z).

Let Γ0 be the region bounded by V s
a , V s

b , V u
c , and V u

d , as shown in Fig. 14.
Observe that Γ0 ⊃ Z and thus μ(Γ0 ∩ Λ�) > 0. By Lemma 12.2 there are
periodic points pk, qk ∈ Λ�′ such that pk → V s

a ∩ V u
c and qk → V s

b ∩ V u
d .

It is possible that none of the domains Γpkqk
contains x (this can occur, for

example, if a ∈ V u
x , as in Fig. 14b); on the other hand, the union

⋃
n Γpnqn

covers all of Z except possibly for Z∩V s
a ∪V s

b ∪V u
c ∪V u

d . Since μ is non-atomic,
a single local stable or unstable curve always has zero measure, thus this subset
is μ-null. Using the fact that μ(Z) > 0, we conclude that there is some n such
that μ(Γpnqn

∩ Z) > 0. This completes the proof of the proposition. �
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Appendix A: List of Terminology and Notation

(1) Almost returns, Definition 4.13 on page 23
(2) Brackets, Definition 1.11 on page 7
(3) Branch

– (C, κ)-hyperbolic, Definition 4.8 on page 22
– �̂-regular, Definition 5.6 on page 29
– (C, κ)-hyperbolic branch property, Definition 4.14 on page 24

(4) Overlapping charts, Definition 8.1 on page 40
(5) Concatenation property, Definition 4.12 on page 23
(6) Cones, Definition 4.2 on page 21

– in regular neighbourhoods, Definition 5.10 on page 27
(7) Conefield, Definition 4.3 on page 21

– adapted, Definition 4.5 on page 21
(8) Curves

– local (C, λ)-stable (unstable), Definition 1.10 on page 7
– K-admissible, Definition 4.4 on page 21
– stable and unstable admissible, Definition 4.6 on page 21
– in regular neighbourhoods, Definition 5.2 on page 27
– full length stable and unstable admissible, Definition 4.6 and Defi-

nition 5.2
(9) (χ, ε, �, r)-nice domain, Definition 1.16 on page 9

(10) Measure
– hyperbolic, Definition 1.2 on page 4
– physical, Definition 1.1 on page 4
– SRB, Definition 1.4 on page 5

(11) Nice
– domain, Definition 1.16 on page 9
– regular set, Definition 1.19 on page 10
– rectangle, Definition 2.3 on page 14

(12) Pseudo-orbit
– finite (�̂, δ, λ)-, Definition 5.4 on page 28
– bi-infinite (�̂, δ, λ)-, Definition 5.9 on page 30

(13) Rectangle
– (C, λ), Definition 2.1 on page 13
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– nice, Definition 2.3 on page 14
– saturated, Definition 11.2 on page 62

(14) Recurrence (recurrent)
– recurrent and Lebesgue-strongly recurrent, Definition 1.21 on page

10
– almost recurrent, Definition 4.13 on page 23

(15) Regular
– level sets, Definition 1.8 on page 7
– (χ, ε, �)-regular set, Definition 1.9 on page 7
– (χ, ε, �, r)-nice regular set (nice regular), Definition 1.19 on page 10
– �̂-regular branch, Definition 5.6 on page 29

(16) Sequences, hyperbolic, Definition 11.8 on page 65
(17) Set

– fat, Definition 1.3 on page 5
– (χ, ε)-hyperbolic, Definition 1.6 on page 6
– regular level, Definition 1.8 on page 7
– (χ, ε, �)-regular, Definition 1.9 on page 7
– s/u-subsets, Definition 2.4 on page 14
– (χ, ε, �, r)-nice regular (nice regular), Definition 1.19 on page 10

(18) Stable and unstable strips,
– in a nice domain, Definition 4.7 on page 21
– in regular neighbourhoods, Definition 5.3 on page 28

(19) T -returns time, Definition 2.5 on page 14
(20) Tower

– topological Young, Definition 2.6 on page 15
– Young, Definition 2.10 on page 15
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[40] Gouëzel, S.: Sharp polynomial estimates for the decay of correlations. Isr. J.
Math. 139, 29–65 (2004)
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