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Part I. Statements of Results

The purpose of this paper is to study the connection between analytic, geo-
metric, dynamical, and statistical properties of surface diffeomorphisms. In
particular, we are interested in the way that certain analytic properties, such
as hyperbolicity, imply non-trivial geometric structures which in turn produce
non-trivial dynamics and statistical behavior. Although we consider only the
two-dimensional case, our results on pseudo-orbits and shadowing (Theorems E
and F) should extend to higher dimensions as well.

In Sect. 1 we discuss the general philosophy and theoretical framework
of our study, define Sinai-Ruelle-Bowen (SRB) measure and recall the Viana
conjecture on the existence of SRB measures. In Sect. 1.7 we state Theorem A
which, roughly speaking, says that under some mild recurrence condition,

a fat (non-uniformly) hyperbolic set supports an SRB measure,
thus proving a version of the Viana conjecture in the two-dimensional set-
ting. We note that, unlike most previous results in this direction, our assump-
tions are also necessary, thus giving an interesting geometric characterization
of SRB measures. We give a more detailed review of existing results in Sect. 1.8.

Our construction of the SRB measure uses the technique of Young tow-
ers, which gives additional information about the geometry and structure of
the measure. In Sect. 2.4 we state Theorem B which, roughly speaking, says
that under some mild recurrence condition, a (non-uniformly) hyperbolic set
supports a “topological” Young tower and, more specifically,

a fat (non-uniformly) hyperbolic set supports a Young tower.

This result implies Theorem A but is of independent interest. In Sect. 3
we state Theorem C, which says that the assumptions of Theorems A and B
are necessary for the existence of an SRB measure. The following consequences
are worth highlighting here:

e every SRB measure, and more generally every hyperbolic measure, is
liftable to a topological Young tower (Corollary C.1);

e the towers we produce have the first return property (Theorem B);

e we formulate explicit conditions under which the decay rate of the tail of
the tower can be controlled (Corollary C.2).

Our construction of a Young tower works in a general setting and differs
from other constructions in the literature.! The starting point is a measurable
subset A of a (non-invariant) “uniformly” hyperbolic set bounded by a nice
domain. Using an abstract argument we extend A to a rectangle '—a subset
with product structure of local stable and unstable curves—which is maxi-
mal in a sense, allowing us to build a tower. The key step in producing I' is
Theorem D in Sect. 4, which states that to every almost return to A one can
associate a hyperbolic branch; the total collection of such branches “saturates”
A to the desired rectangle I". The proof of Theorem D is based on two general
results, which we state as Theorems E and F in Sects. 5.3 and 5.4, respec-
tively. Theorems D, E, and F are new results in non-uniform hyperbolicity

1These typically use specific geometric characteristics of the system under consideration.
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theory of independent interest, with Theorem E providing a new version of
Katok’s closing lemma and Theorem F giving a new version of the shadowing
property.

In Part I of the paper we state all our results. In Part II we state and
prove Theorem E and F which, as mentioned above, are general results in the
theory of non-uniform hyperbolicity. Part III is devoted to the proofs of the
remaining results in our more specific setting. These results have a clear logical
interdependence as follows:

E= D =B = A(l) andF = C = A(2).

The letters above refer to the corresponding theorems. Theorem A has two
parts: A(1) states our sufficient conditions for the existence of an SRB mea-
sure, and A(2) states that these conditions are necessary. More details on
organization and the relations between the various results are given at the
beginning of Parts II and III. In an appendix we provide a list of terminology
together with references to the relevant definitions.

See Sects. 1.8 and 2.5 for a discussion of related prior work, especially
that of Young [71,72] and Sarig [65].

1. SRB Measures and the Viana Conjecture: Theorem A

Throughout this paper, let M be a surface—by which we mean a compact
boundaryless smooth two-dimensional Riemannian manifold—and let f: M —
M be a C*+2 diffeomorphism, where a € (0, 1]. Let d(-,-) denote the distance
function on M, and let m denote Lebesgue measure on M; that is, the area
form induced by the Riemannian metric. Given a curve W C M, we write
myy for the one-dimensional Lebesgue measure on W defined by the induced
Riemannian metric. By “measurable” we always mean “Borel measurable”.

1.1. Physical Measures

The first step in the statistical description of the diffeomorphism f is the notion
of the “statistical basin of attraction” of a probability measure u:

n—1
B, = {x € M: lim = Z¢(fka:) = /(bd,u for all continuous ¢: M — R}.
n—oo n
k=0

Equivalently, B,, consists of all points for which %Z:;é dpk(z) converges to
p in the weak* topology, where J, is the Dirac delta measure on y. If p is
f-invariant and ergodic, then p(8,) = 1 by the Birkhoff ergodic theorem, but
since Lebesgue measure is the most natural reference measure, we are most
interested in finding p for which B, is large in the following sense.

Definition 1.1. 1 is a physical measure for f if m(B,) > 0.

Thus a physical measure is a probability measure which describes the
asymptotic statistical behavior of a significant (positive Lebesgue measure)
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subset of the phase space. Not all dynamical systems admit physical measures,?

S0 it is a basic problem to establish the class of dynamical systems which have
physical measures before going on to investigate further questions related to
the possible number of such measures and their structure and properties.

The simplest example of a physical measure is given by the Dirac-delta
measure ¢, at an attracting fixed point p. This easily generalizes to the case
when p is an attracting periodic point. At the other extreme, if p < m is
ergodic, then pu(B,) = 1 gives m(B,) > 0, hence p is physical. Unfortunately
it is relatively rare for such absolutely continuous measures to exist, and thus
the problem of the existence of a physical measure is quite non-trivial.

1.2. Hyperbolic Measures

In the 1970s, Sinai, Ruelle, and Bowen established existence, as well as geo-
metric and statistical properties, of physical measures for uniformly hyperbolic
systems. The theory of Sinai—Ruelle-Bowen measures, or SRB measures, has
since been extended to non-uniform hyperbolicity, in which setting we need
the following definition.

Definition 1.2 (Hyperbolic measures and nonzero Lyapunov exponents). An
invariant probability measure pu is hyperbolic if there exists a set A C M with
f(A) = A and u(A) = 1 which has nonzero Lyapunov exponents, i.e. there
exists a measurable D f-invariant decomposition T, M = EJ @ E? such that

for every x € A and unit vectors e® € EZ, e" € EY we have:

3 1 n S S u s 1 n u
(1) lim —log|[Dfy(e*)ll =: Az <0< Azw= lim —log|Dfy(e")ll;
1 . ,
(2) lim —log £(Eja ey Bfur)) = 0.

The heart of this definition is that the Lyapunov exponents X3 and AY are
nonzero and have opposite signs;> the fact that the limits exist is guaranteed by
Oseledets’ multiplicative ergodic theorem, which also guarantees that although
the angle between the two subspaces is not in general bounded away from
zero, it cannot degenerate at an exponential rate along any given orbit, as
stated in condition (2). We point out that in the two-dimensional case the
Margulis—Ruelle inequality implies that every measure with positive entropy
is hyperbolic.

1.3. Sinai-Ruelle-Bowen (SRB) Measures

A fundamental and crucial property of sets with nonzero Lyapunov exponents
is that every point « € A has a local stable curve V;? and a local unstable curve
V¥ satisfying certain properties which we describe in Definition 1.10.# For the
moment we use these curves to give the formal definition of SRB measure.

2Consider the identity map, for example.

3If both Lyapunov exponents are negative or both are positive, then it can be shown that
the corresponding ergodic component of the measure p is supported on an attracting or
repelling periodic orbit, respectively; we exclude this trivial situation.

4In fact, the existence of local stable and unstable curves can be proved under weaker
conditions than those of nonzero Lyapunov exponents, see Definition 1.6 and Theorem 1.12.
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Definition 1.3. (Fat sets). A set A C A is fat if

m( U v;) > 0. (1.1)

z€A

We can now give the definition of SRB measure that we use in this paper.

Definition 1.4. (SRB measures). An invariant probability measure p is an SRB
measure if it is hyperbolic and every set X C A with u(X) =1 is fat.

One of the key properties of V? is that d(f"(y), f"(z)) — 0 as n — oo
for every y € V7. This implies that if x € B, for some measure x then also
y € By, for every y € V;?. Therefore the fatness condition (1.1) together with
Birkhoft’s ergodic theorem implies that any ergodic SRB measure is a physical
measure.® In his plenary lecture at the ICM in Berlin in 1998, Viana formulated
the following natural conjecture.

Conjecture (Viana [69]). If a smooth map has only nonzero Lyapunov expo-
nents at Lebesgue almost every point, then it admits some SRB measure.

Remark 1.5. In the non-uniform hyperbolicity theory a common definition of
SRB measure p requires only that “the conditional measures generated by
© on unstable manifolds are absolutely continuous with respect to the leaf
volume on these manifolds” [49,73]. Such measures may have some zero Lya-
punov exponents in directions transversal to unstable manifolds and hence
need not be hyperbolic. The advantage of this more general definition is that
SRB measures are characterized as the only measures that satisfy the entropy
formula. On the other hand, these “non-hyperbolic” SRB measures may not
be physical, and some authors adopt a different convention beyond uniform
hyperbolicity, in which “SRB measure” simply means “physical measure” [18,
Chapter 11]; this appears to be the intent of the Viana conjecture.

We stress that our definition is in fact equivalent to the requirement
of being “hyperbolic with absolutely continuous conditionals along unstable
manifolds” [68, Theorem C] although we emphasize the fatness condition which
is easier to state and is ultimately the crucial property for proving physicality
of the measure.

In this paper we use the fatness condition to prove a version of the
Viana conjecture for surface diffeomorphisms under the hyperbolicity condi-
tions (H1), (H2), and (H3) (see Definition 1.6; these conditions are weaker
than the nonzero Lyapunov exponents condition in Definition 1.2) but with
the addition of a mild recurrence condition. In Sects. 1.4-1.6 we give the exact
definitions we need for the formal statement of our result in Sect. 1.7; then in
Sect. 1.8 we discuss previous literature on the topic.

5The converse is not true: for example, if p is a hyperbolic fixed point whose stable and
unstable curves form a figure-eight, then §, is a hyperbolic physical measure which is not
SRB [48, p. 140].
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1.4. Hyperbolic Sets

The requirement that the limits in Definition 1.2 exist is somewhat unnatural
in a setting where we do not a priori have an invariant probability measure,
and also obscures a crucial feature of sets with nonzero Lyapunov exponents,
which is the fact that the convergence to the limit can be very non-uniform.
We give here an alternative formulation of hyperbolicity, which is slightly more
technical, but is more general and explicit about the intrinsic non-uniformity.

Definition 1.6 (Hyperbolic set). Given y,e > 0, we say that an f-invariant
measurable set A is (x, €)-hyperbolic if there exists a measurable D f-invariant
splitting T, M = E; ¢ EY for all + € A, and measurable positive functions
C,K: A — (0,00) satisfying

e < K(f(z))/K(x) <e® and e <C(f(2))/Clx) <€ (H1)
such that for every z € A
£(Eg, Ey) > K(x) (H2)
and for all unit vectors e € EZ e € EY and for all n > 1,
IDf (el < Clz)e ™", IDf3 ()] = C(x) " ex™, (H3)
IDfF" ()l = Cla)~ X, 1Dz " (ex)] < Clz)e™".

A set A is x-hyperbolic if it is (x, €)-hyperbolic for all € > 0, and hyperbolic if
it is a union of y-hyperbolic sets over all y > 0.

We will always assume that both ES and E¥ are non-trivial (hence one-
dimensional) and we stress that our definition of hyperbolicity is inherently
non-uniform and the set A is not in general closed. Moreover, observe that if
A is (x, €')-hyperbolic for some 0 < € < ¢, then it is (, €)-hyperbolic.

Remark 1.7. Tt can be shown that a set A with nonzero Lyapunov exponents
(as in Definition 1.2) is hyperbolic (as in Definition 1.6), Indeed, if A has
nonzero Lyapunov exponents then it is a union of f-invariant sets on which
the Lyapunov exponents A\*, A\* are uniformly bounded away from 0. Each such
set is then (, €)-hyperbolic for some x > 0 and for every e > 0, where the
functions K = K, and C = C, clearly depend on e, see [13, §3.3].°

A first advantage of formulating hyperbolicity as above is that we can
write A as a union of nested sets on which we have uniform estimates.

Definition 1.8 (Regular sets). Given a (x, ¢)-hyperbolic set A, for each ¢ > 1
we define the regular level set

Ayeo:={z€A:C(x) <e? and K(z) > e Y. (1.2)

6The converse is not true; the limits in the definition of nonzero Lyapunov exponents need
not exist at every point (only almost every), even in uniform hyperbolicity. Although exis-
tence of these limits is not necessary for our results, the slow variation condition (H1) still
plays a crucial role in Theorem 1.12, and it seems unlikely that it can be removed.
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One can assume without loss of generality that the regular level sets
Ay e.¢ are closed by replacing them with their closures, which still carry the
hyperbolic structure in (H2) and (H3) with C(z) = e and K(z) = e~, and
then taking the union over all ¢ to get a (x,¢)-hyperbolic set containing A.
When the values of yx, e are clear from context, we will often suppress them
in the notation and simply write Ay = A, . ¢. Clearly Ay C Apyq C --- and
A =U;>; A¢ and, by (H1),

fER(Ay) € Apyp forall £,k € N. (1.3)

Note that for a x-hyperbolic set A the regular sets A, are not defined
until we fix a value of € > 0; changing the value of € changes the functions
C, K and hence changes the sets Ay. On the other hand, we can introduce a
useful notation for regular sets independent of an a-priori choice of A.

Definition 1.9 ((x, ¢, £)-regular sets). A set I' C M is (x, ¢, £)-regular if there
exists a (), €)-hyperbolic set A such that I' C Ay.

1.5. Local Stable and Unstable Curves

One of the fundamental consequences of hyperbolicity is the existence of stable
and unstable curves.

Definition 1.10 (Local stable and unstable curves). Given C,\ > 0, we say
that a C! curve V* in M is a local (C,\)-stable curve if for every y,z € V*
and n > 0, we have

d(f"(y), ["(2)) < Ce *"d(y, 2) (1.4)
and if in addition the curve can be written as V* = exp, () for some x € M
and v C T, M satisfying the following conditions:
(1) there is a splitting T, M = E @ F, an interval B C E, and a C! function
¥: B — F such that v := {v+¢(v) : v € B};
(2) 7 lies in the ball around the origin of radius inj(M ), the injectivity radius
of the manifold.

Replacing f™ with f~" in (1.4) gives the definition of a local (C, \)-unstable
curve V*. We will sometimes omit C, A from the notation when their precise
values are unimportant, and refer simply to local stable and unstable curves.

Definition 1.11 (Brackets). A point z € M is said to be the bracket of two
points x,y € M if there is a local stable curve V.7 containing x and a local
unstable curve V' containing y and such that z € V7 NV, and if moreover z
is the only point with this property and the intersection is transversal. In this
case we write [z, y] = z.

The above definitions are slightly more general than those commonly
used in the literature because we make no a priori assumption that the points
involved lie in a (¥, €)-hyperbolic set; this makes certain bookkeeping tasks
more convenient (see Remark 11.4). With that said, we will still restrict our
attention to points satisfying the usual picture provided by the following clas-
sical result; see [13, §7.1] or [56] for a more precise and technical statement
and the proof.
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Theorem 1.12 (Local Stable and Unstable Manifold Theorem). For all x >
A > 0 there exists eg > 0 such that, for any € € (0,¢9) and any £ € N there
exist constants Cy, 8y > 0 such that if A is a (x,€)-hyperbolic set, then there
are families {V2 3 x}zen, and {V¥ 3 x}zen, of CYHWE Jocal (Cy, N)-stable
and (Cy, X)-unstable curves, respectively, such that

(1) Vg and V,* depend continuously on x € Ay in the C topology;

(2) if x,y € Ay satisfy d(z,y) < ¢, then the bracket [x,y] exists and is the

unique point in V; N V,".

Remark 1.13. In fact Theorem 1.12 follows from Theorem F and Corollary 1,
with the small caveat that there we only guarantee that Vi/" are local
(Ce, A/3)-stable and unstable curves. The proof of Theorem 1.12 could be
modified to improve A/3 to A by being more careful with the bounds in (1.6),
(1.7), and (5.9), but this is not necessary for our purposes.

1.6. Definition of Constants
Before proceeding further, we give an explicit bound on how small € must be
in the (x,e¢)-hyperbolic sets we consider. The precise form of this bound is
technical and can be omitted at a first reading; the important thing is that
as with €y in Theorem 1.12, the quantity ¢; depends only on f, x, and A. Fix
constants ¢; < 0 < ¢s, cg such that
C3

1+a

(1.5)

Given x > A > 0, let ¢ be as in Theorem 1.12. Define the following auxiliary
constants:
X—¢c 2x 2(x —A)
,y = ? 6 = a? L = b
2Y cs+ X beoya + (2 + af)ca +2x°  (1.6)
1= 6yaL + 2, ¢ = aft.
Notice that v,n > 1 and §,¢,¢ € (0,1). Let ¢; = e1(f, x, A) be given by

(A A8 X A Ao @
€l =mins —, — € . .
! 18" 7y n—1"2(1+1/a)’ 9(A — dey)(A + 4es) " °

= —¢o < mi -1 < <
¢1 = —¢; < min{log | D, f 7! 7'} < max{log | D, [} < ez <

Throughout the paper, we will consider (x, ¢)-hyperbolic sets where
€ € (0,€e1) and € is given by (1.7).

Remark 1.14. The first bound in (1.7) is used in (5.9), while the next three
are used in the proof of Theorem H in Sect. 8, when we produce a constant
§ > 0 such that for every ¢ € N and every x,y € A, with d(z,y) < de™*¢, the
corresponding Lyapunov charts (Sect. 5.1) are overlapping (Definition 8.1).
More precisely, the second and third bound in (1.7) are used in Lemmas 8.13
and 8.14, and the fourth is used in (8.45). The fifth bound is used in Sect. 11.1
when we prove Theorem B. The last bound, €; < ¢ is used to guarantee that
we can apply the local stable and unstable manifold Theorem 1.12. The bounds

in (1.7) also imply that € < %, which is used in (9.4).
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Vu

q

q
FIGURE 1. A nice domain

Remark 1.15. The precise value of A € (0, x) is not important and the reader
wishing to reduce the number of constants may as well consider A = x/2,
although choosing a different value of A might yield a larger value of ¢;.

1.7. Nice Domains, Recurrent Sets, and SRB Measures

We are now ready to introduce the key definitions we need to state our main
result. To simplify the notation, for a positive integer T' we let TN denote the
set of positive integer multiples of 7'. We also use the notation V;//q“ to refer
simultaneously to V7, V2, Vi, Vi

Definition 1.16 (Nice Domain). Given y,e > 0, £ € N, and r € (0,d), a
(x, € ¢, 7)-nice domain is a topological disk I, satisfying diam(T,) < r whose
boundary is formed by (pieces of) the local stable and unstable curves of
(X, €, ¢)-regular periodic points p, ¢; see Fig. 1. We let T' = T'(T',4) denote the
smallest positive integer such that:

(1) T is a common multiple of the periods of p,q, so that fT(p) = p and
@) =a

(2) T is even, so that all eigenvalues of D pr and D qu are positive; and

(3) T is large enough that 8v/2(1 + e2(A=X))71/2e2ele=AT/3 <

Remark 1.17. The “niceness” condition implies that for all n € TN,

F( ps/q NTp) NIntT,, =0 and f77( z;u/q NTp) NInt Ty, =0;  (1.8)

that is, the stable (respectively, unstable) boundary of I',; never intersects the
interior of I'p, at iterates which are multiples of T" in forward (respectively,
backward) time. This can be thought of as a two-dimensional version of the
notion of “nice interval” in one-dimensional dynamics, which refers to an inter-
val whose boundary points never enter the interval in forward time.” Here (1.8)

7 After this paper was completed we learned of recent work by Chen, Wang, and Zhang that
uses a similar notion for systems with singularities; see Definition 9 in [25, §5.3].
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will play a crucial role by ensuring that certain regions are necessarily nested
or disjoint, see e.g. Remark 4.16 and Lemma 11.11. There is no obvious gener-
alization of this condition to higher dimensions and this is essentially the main
reason for which our main results are restricted to surface diffeomorphisms.

Remark 1.18. The condition that T" be even is used in the proof of Lemma 11.11
to guarantee that the “branches” forming our eventual Markov structure are
disjoint. The condition that T be sufficiently large is used in Sect. 11.4 to
guarantee that the tower we build satisfies the contraction property required
in [71].

Definition 1.19 (Nice regular set). Given x,e > 0, £ € N, and r € (0,0,], a
(x, € £, r)-nice reqular set is a set A that is (x;, €, £)-regular and is contained in
some (x, €, ¢, 7)-nice domain I'p,.

The simplest way to produce a (x,¢,¢,r)-nice regular set is to fix a
(X, € £, r)-nice domain I'y; and then put A = Ay ¢ N Ty, but we do not
require that the set A has this exact form.

Remark 1.20. The definitions above depend on constants x, €, £, which, for
simplicity, are not always reflected in the notation; we will sometimes refer
to a “nice domain” or a “nice regular set” without naming the constants. We
stress, however, that any reference to nice domains or nice regular sets which
does not explicitly refer to a choice of constants means that such a choice is
implicitly clear from the context. The same applies to the constant 7" which
is always associated with a nice domain and therefore to a nice regular set (as
for example in the following definition in which 7" is implicitly given by the
choice of a nice regular set A).

Definition 1.21 (Recurrence). A nice regular set A C A is
(1) recurrent if for all x € A there exist ¢, j € TN such that
fi(x)a fﬁj(m) € A;
(2) Lebesgue-strongly recurrent if it is recurrent and there is a local unstable

curve V% and a set £ C V* N A of positive one-dimensional Lebesgue
measure® such that for every x € E we have

1 .
limsup —#{i € TN, 1 <i<n: f'(z) € A} > 0. (1.9)
n—oo N
Observe that a Lebesgue-strongly recurrent set is fat in the sense of (1.1).

We are now ready to state our main result.

Theorem A. Let f be a C' surface diffeomorphism.

(1) For every x > X >0,0<e < e (f,x,\), and £ € N, there exists v > 0
such that if there exists a (x,¢€,£,r)-nice reqular set A that is Lebesque-
strongly recurrent, then f admits an SRB measure.

80ne could imagine studying other equilibrium measures besides SRB by replacing Lebesgue
measure here with a reference measure such as those studied in [35,36], but we do not pursue
this here.
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(2) Conversely, if f admits an SRB measure, then for every sufficiently small
x > 0 and every e > 0, there exists £ € N such that for every r > 0, there
exists an (X, €, £, 1)-nice reqular set A that is Lebesgue-strongly recurrent.

In addition to the explicit bounds in (1.7) on €, we refer to equation (10.1)
for relatively explicit conditions on 7.

Remark 1.22. Theorem A provides (in the two-dimensional case) natural geo-
metric conditions which are necessary and sufficient for the existence of an SRB
measure, which is a highly non-trivial feature of a dynamical system. Part 1
of the theorem can be interpreted as a version of Viana’s conjecture. The con-
dition of Lebesgue-strongly recurrent includes a “fatness” requirement, which
is definitely necessary as it is built into the definition of SRB measures (see
also Remark 2.13). Beyond this, the theorem requires “niceness” and “(strong)
recurrence”. While our proof uses the niceness property in an essential way,
we believe that with some new ideas it should be possible to remove this
technical requirement. In addition, part 2 of the theorem indicates that this
requirement is not too strong. This leaves us with the requirement of strong
recurrence which is not explicit in the statement of Viana’s conjecture, but we
believe is needed to establish existence of an SRB measure. Here again part 2
of the theorem indicates that strong recurrence is not too much to ask for.

We stress that the proof of Theorem A includes a number of new results
in non-uniform hyperbolicity theory (such as results about almost returns and
shadowing) which are of independent interest. We will discuss these in more
detail in the next sections.

1.8. Historical Background

We review here some of the main results on the existence of SRB measures for
diffeomorphisms. To avoid getting too technical we will not be overly specific
about the precise technical assumptions, emphasizing instead the general ideas.
We refer the reader to [33] for more details and a discussion of the various
techniques which have been used in different settings. Most results mentioned
below hold in arbitrary dimension.

1.8.1. Uniformly Hyperbolic Sets. In the 1970s, Sinai, Ruelle, and Bowen con-
structed (in fact invented!) SRB measures for fat, uniformly hyperbolic sets A
(attractors) under the additional assumption that A has a dense set of periodic
points (Aziom A) or, equivalently, that A has local product structure or that A
is locally maximal (see [67] for a proof that these three properties of uniformly
hyperbolic sets are equivalent).

1.8.2. Partially Hyperbolic Attractors. In 1982, Pesin and Sinai [59] developed
a new “push-forward” technique for constructing what they called “u-Gibbs”
measures (also called simply u-measures), which share a lot of geometric char-
acteristics of SRB measures but are not necessarily physical measures. They
applied their construction to partially hyperbolic attractors. In 2008, Burns,
Dolgopyat, Pesin, and Pollicott [24] showed that under some “transitivity”
assumptions, a u-measure that has negative Lyapunov exponents for vectors
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in the central direction on a set of positive measure is a unique SRB measure.
In 2000, Bonatti and Viana [19] considered a variation of this setting with a
continuous splitting E* & E"" with uniform expansion estimates in E** and
non-uniform contraction estimates in E*, and proved the existence of genuine
SRB measures.

Around the same time, Alves, Bonatti, and Viana [1] considered the more
difficult setting of a continuous splitting F** & E* with uniform contraction
and non-uniform expansion estimates. The construction of the SRB measure in
this case required a significantly more sophisticated version of the push-forward
technique. An alternative construction of the SRB measure using Young towers
was carried out more recently in [5] under some slightly weaker expansivity
assumptions.

1.8.3. Non-uniformly Hyperbolic Sets. Relaxing the continuity of the split-
ting E* @ E* and the uniform lower bound on the angle £(E?, E¥) seems to
bring the level of difficulty of the problem to another level. The first result for
a system with this kind of hyperbolic set is due to Benedicks and Young who
constructed SRB measures for certain two-dimensional “Hénon” maps, first
using the push-forward technique [16] and then using Young towers [17,71],
in both cases taking significant advantage of the specific geometric and ana-
lytic properties of the maps. These results were extended to more general
“Hénon-like” maps in [70] but still only apply to some quite restrictive classes
of systems.

More recently, [30] significantly generalizes the techniques of [1] to suc-
cessfully construct SRB measures for systems in which the splitting E* & E*
is only measurable, with angle £(E2, E¥) not bounded away from zero, and
with non-uniform contraction and expansion estimates which, however, need
to satisfy a non-trivial “synchronization” assumption.

1.8.4. Necessary and Sufficient Conditions. Theorem A is in some sense an
optimal result, because the conditions stated there are both necessary and
sufficient for the existence of an SRB measure. In contrast, the prior results
mentioned above all established sufficient conditions for existence of SRB mea-
sures, without addressing the question of whether the conditions are also nec-
essary.”

We mention three notable exceptions, where some set of conditions was
demonstrated to be both necessary and sufficient for existence of an SRB
measure. First is work of Tsujii [68], in which a point z is called “regular”
if its empirical measures u, = %ZZ;S d ¢k, weak*-converge to an ergodic
measure p whose Lyapunov exponents agree with the exponents of x; then
existence of an SRB measure is shown to be equivalent to existence of a positive
volume set of regular points with nonzero Lyapunov exponents. More recently,
Burguet [22] has proved a similar result, using a different definition of “regular”
that is related to the “tempered” property, and that does not require one to

9 As we will see in the next section, for surfaces Young’s tower conditions from [71] turn out
to be necessary as well as sufficient, but this was not proved in that paper.
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determine in advance whether empirical measures from a point converge to a
given measure.

Finally, we mention a paper of Snir Ben Ovadia [15] that appeared after
our results were completed. This work is most closely related to ours as it estab-
lishes existence of an SRB measure under conditions of hyperbolicity, fatness
and strong recurrence which are very similar to ours. Moreover, Ben Ovadia’s
proof works in any dimension, not just for surfaces, and does not require the
use of nice domains. However, while our method is pretty much geometrical,
his approach is completely different and is based on Markov coding which he
developed in his earlier work on countable Markov partitions [14], building on
work of Sarig [65]. This Markov coding is in general, non-uniformly bounded-
to-one, and thus the tower which can be obtained by inducing on a single state
need not be a first T-return Young tower for any 7', in contrast to the one we
build; see Sect. 11.5 for a discussion of how the first return property is related
to the saturation property of the rectangle that we build as the base of the
Young tower. Moreover, as we will see in Corollary C.2, our construction per-
mits us to formulate a condition under which the tower has exponential tails,
which appears to have no analogue in the abstract Markov partition approach.
We believe that this opens up a possibility to study various properties of SRB
measures such as the decay of correlations and the central limit theorem using
recently available techniques involving Young towers.

2. Young Towers: Theorem B

Our strategy for producing the SRB measure in Theorem A consists of a
new technique for the construction of a Young tower. The latter has a non-
trivial geometric and dynamical structure, and it is rather remarkable that its
existence can be deduced using only a nice regular set that is Lebesgue-strongly
recurrent.

2.1. Rectangles

Recall that Theorem 1.12 guarantees that given x > A > 0 and a (x,é€)-
hyperbolic set A, any two sufficiently close points x,y € Ay, have a unique
bracket [z,y] = V;7 N V,*. This point need not be contained in A, or even in
A; for example, this occurs when A consists of two hyperbolic periodic orbits
that pass sufficiently close to each other.

Nevertheless, we will see in Theorem F and Corollary 1 that z = [z, y]
always belongs to some hyperbolic set, and indeed more precisely to a
(M\/4,2¢, £4+0')-regular set, where ¢’ depends only on x, A, e. One could then pro-
duce local stable and unstable curves V;’ and V}* by applying Theorem 1.12;
however, a priori these may be shorter than V' and V;*. We will generally
write V' = V7 and V* = V| for the longer curves, even though these may
not be “centered” at z. Indeed, we can write V7 = V7 for any z € V7, and
similarly for unstables.
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Brackets play a very important role in describing the geometry of hyper-
bolic sets. In particular we will be interested in sets which are closed with
respect to the bracket operation.

Definition 2.1 (Rectangles). Given C, A > 0, a (C, A)-rectangle is a set I" such
that for every z,y € T there is a (C, A)-local stable curve V;? containing = and
a (C, A)-local unstable curve V' containing y with the property that [z,y] :=
V2 NV, is a single point, and [z, y] € I. When the precise values of C, A are
unimportant, we will refer to I' simply as a rectangle.

Remark 2.2. Rectangles are also sometimes referred to in the literature as
sets with local product structure or hyperbolic product structure, though this
is usually in the more restrictive uniformly hyperbolic setting. The discussion
above shows that rectangles are very natural structures also in our more general
(non-uniformly) hyperbolic setting. Indeed, if A is a (x,¢,¢)-regular set of
sufficiently small diameter then the bracket [z, y] is well defined and consists of
a single point for every pair of points z,y € A. In this case then [[z,y], [/, ] =
[z,y'] € T for all z,y,2’,y’ € A and therefore the set

= {[z,y] :z,y € A} (2.1)
is closed under the bracket operation, so I is a (Cy, A)-rectangle.

2.2. Topological Young Towers
To describe the notion of Young tower that we use, we first recall some standard
and some slightly non-standard definitions.

Definition 2.3. (Nice Rectangles). A rectangle I is a nice rectangle if I' C T'p,
for some nice domain I',, and if the local stable and unstable curves of every
point z € I' are “full length” in I',, in the following sense: V* intersects both
V,y and V', and V7 intersects both V' and V.

A nice rectangle is not assumed a priori to be a nice regular set (although
it is assumed to have stable and unstable curves through every point); the
word “nice” in both cases emphasizes the geometry of the situation. We want
to restrict our attention to the pieces of local stable and unstable curves which
are inside the nice domain and so, for any x € T'U {p, ¢}, let

We/t =Vt N Ty,

Then a nice rectangle I' C I',; has the structure

'=Cc°NnC" where C°:= U Wy and C“:= U Wi (2.2)

zel zel
Definition 2.4 (s-subsets and u-subsets). If I" is a rectangle, we say that I'* C T’
is an s-subset of I' if x € I'* implies V) NI' C I'* and I'* C I is a u-subset of
I'if x € I'™ implies V* NI C I'.
Definition 2.5 (T-return times). For a T-recurrent set A C I',, and x € A, let
7(x) ;= min{i € TN : fi(z) € A}

be the first T-return time to A.
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Definition 2.6 (Topological Young Tower). A nice T-recurrent rectangle I" sup-
ports a first T-return topological Young tower if for each i € TN we can sub-
divide I'f := {z € " : 7(x) = i} into pairwise disjoint s-subsets

r,.... T3, suchthat T} := f'(T3) (Y0)

im;

is a u-subset of I' for every j =1,...,m;. If I'] is empty we put m; = 0.

This definition in particular requires that I'} is an s-subset, so that for
each € T with 7(z) = i we have f{(WSNT) C Wi, N T this Markov
condition, and the analogous one for u-subsets, is often formulated explicitly
as part of the definition of a Young tower.

Remark 2.7. We remark that the “first T-return” part of the definition comes
from the fact that 7(x) is the first T-return time. A similar definition can be
used for a general return time function that is constant on local stable leaves
to give a more general topological Young tower.

Remark 2.8. As mentioned in Remark 1.20, several constants, including T,
are implicit in these definitions. We will sometimes include T explicitly in the
associated terminology, for example in the notions of “T-return times” and
of “first T-return” in Definitions 2.5 and 2.6 above, when it helps maintain
clarity.

2.3. Young Towers

We call the above a topological Young tower because YO captures only the
topological structure of a Young tower which is often, including in the present
setting, the most difficult part of the construction. To state the other properties
of a Young tower we need to introduce the induced map to I'.

Definition 2.9 (Induced map). For a rectangle T" which supports a first T-
return topological Young tower, we define the induced map

F:T—T by Fp.;::fi

and refer to I as the base of the tower. We also let Jac" F(x) := |det D f7(*) | B
denote the unstable Jacobian of this induced map, where EY = T, W'

Definition 2.10. (Young Tower). Let T" be a rectangle which supports a first
T-return topological Young tower. We say that I' supports a first T-return
Young tower if there exist constants k1, ke € (0,1) and ¢ > 0 such that
(Y1) for every i € TN, j € {1,...,m;}, x € I'}:

(8) d(F(z), F(y)) < rad(z,y) for every y € V2

(b) d(x,y) < k1d(F(z), F(y)) for every y € V* NI,
(Y2) for every z € T and n > 0:

(a) For all y € V7, we have

JacF(F™(z))

8 Tac P (7 (y)

< chy;
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(b) If y € V.* has the property that for all 0 < k < n there are iy, € TN
and ji € {1,...,m;, } such that F*(z), F*(y) € I'{ . , then we have

Jac"F(F"F(x)) |
Jac" F(F"=*(y))

Remark 2.11. The additional geometric estimates required for a topological
Young tower to be a Young tower are non-trivial and are not consequences of
the topological structure. Indeed, it is easy to construct a topological Young
tower which has a neutral fized point, i.e. a fixed point at which the derivative
has both eigenvalues equal to 1. An easy and intuitive model of this, albeit in
the one-dimensional non-invertible setting, is the map f(z) = = + 2 mod 1
which is topologically a full branch map with two branches but does not satisfy
uniform expansion or bounded distortion. Similarly, a topological Young tower
with a neutral fixed point cannot satisfy conditions (Y1) and (Y2).

§cn§ forall 0 < k <n.

Definition 2.12 (Integrable return times). A fat rectangle I" which supports a
first T-return Young tower has integrable return times if there is = € I" such
that

/ Tdmy. < oo.
vgnr

2.4. Existence of Young Towers

Young towers are non-trivial geometric structures and their construction gen-
erally requires substantial work. A key part of our argument is to show that
they are part of the intrinsic structure of hyperbolic sets.

Theorem B. Let f: M — M be a C'*® surface diffeomorphism. For every
X>A>0, every 0 < e < e1(f,x,A), and every £ € N there exists v > 0 such
that if A is a (x, €, £, r)-nice reqgular set that is recurrent, then

(1) A is contained in a nice rectangle I' C T'yq that is recurrent and supports
a first T-return topological Young tower;

(2) if the set T of part (1) is Lebesgue-strongly recurrent, then T' supports a
first T-return Young tower with integrable return times.

Remark 2.13. Since the rectangle I' provided by Theorem B(1) is recurrent
and contains A, it follows from Definition 1.21 that if A is Lebesgue-strongly
recurrent, then I' is Lebesgue-strongly recurrent as well. However, it is possible
that the set A is not fat (and hence not Lebesgue-strongly recurrent) but still
produces a Lebesgue-strongly recurrent (hence fat) rectangle I'. In particular
the assumptions in part 1 of Theorem A can be relaxed to require that the
construction which we will use in the proof of part (1) of Theorem B produces
a Lebesgue-strongly recurrent rectangle. A simple setting in which this dis-
tinction may be seen to be potentially relevant is that of a two-dimensional
Anosov diffeomorphism. Then we can easily find a small nice domain I',, and
may choose A as a countable dense set of points in I',, which means in par-
ticular that A is not fat, but we shall see from the proof of Theorem B that
this gives rise to a Lebesgue-strongly recurrent rectangle T'.
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Remark 2.14. We will see in the proof (see Proposition 11.3) that the rectangle
I produced by Theorem B(1) is (A/4,2¢, £ + ¢')-regular for a value of ¢ that
depends only on x, A, €.

2.5. Historical Background

The Young tower approach for constructing invariant measures is a particular
case of a general and classical method in ergodic theory, that of inducing. This
is based on the construction of a return map to some subset of the phase
space which is simpler to study and more amenable to the construction of an
invariant measure; this invariant measure can then be extended to the whole
phase space by an elementary argument.

The specific inducing structure defined above, which is pertinent to the
study of systems with hyperbolic behavior, was introduced by Young [71]
as a framework for studying the existence and ergodic properties of SRB
measures.'® Since then, it has been applied to a variety of cases, includ-
ing billiards [11,26,27,52,71], certain Hénon maps [17], and partially hyper-
bolic diffeomorphisms [5,7,9,10]. A non-invertible version of a Young tower
was also introduced by Young in [72] and has proved extremely powerful in
studying non-invertible maps satisfying non-uniform expansivity conditions
[6,8,21,34,39,41,46,61].

A quite remarkable feature of the method of Young towers is that it
associates, by construction, a non-trivial geometric structure to the measure;
a structure which moreover can be used effectively to study several statistical
and ergodic properties of the measure, see [2,3,28,38,42,43,47,53-55,63,71,72]
as well as the other references mentioned above. This leads naturally to the
question of the domain of applicability of this method: if it implies so much
structure then maybe it can only be applied to a limited number of special
cases which have this structure? This legitimate doubt is partly supported
by the observation that all the constructions of Young towers so far have
relied heavily on specific, assumed a-priori, geometric properties of the systems
under consideration. This question has therefore led to the so-called liftability
problem, which is the question of which measures have, or “lift to”, a Young
tower structure, see Definition 3.2, and therefore can in principle be obtained
by the method of Young towers.

For the non-invertible non-uniformly expanding case this has been
addressed in several papers and in particular it is shown in [4] that essen-
tially every invariant probability measure which is absolutely continuous with
respect to Lebesgue lifts to a Young tower. One consequence of our results,
stated formally as Corollary C.1, is that for surface diffeomorphisms, every
hyperbolic measure (in particular, every SRB measure) lifts to a Young tower,
which means that the geometric structure of Young towers is intrinsic to all
hyperbolic (and in particular, all SRB) measures. Moreover, we show that
every hyperbolic measure lifts to a first return Young tower for some iterate
of the map, which is perhaps surprising because in most other applications of

10A more general inducing structure was introduced in [57]; it can be used to study the
existence and ergodic properties of equilibrium measures, which include SRB measures.
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Young’s work the towers do not have the first return property. Using this, we
obtain a way of controlling the tail of the tower, see Corollary C.2.

A related result in this direction is Sarig’s result [65] that every hyperbolic
measure for a surface diffeomorphism can be lifted to a countable-state topo-
logical Markov shift, which is closely related to a Young tower. The results
of [65] have been extended to higher dimensions [14], to three-dimensional
flows [51] and to non-uniformly hyperbolic surface maps with discontinuities
[50]. It seems natural to expect that our results admit similar extensions,
although for the extension to higher dimensions one must confront a major
technical obstruction, which is that the nice domains we use are inherently
two-dimensional.

3. Lifting Hyperbolic Measures to Towers: Theorem C

Statement 1 of Theorem A follows immediately from Statement (2) of The-
orem B and the results in [71] on the existence of SRB measures for Young
towers. Statement 2 of Theorem A follows immediately from our next result,
which states that nice Lebesgue-strongly recurrent rectangles are necessary for
the existence of hyperbolic (SRB) measures.

Theorem C. Let f be a C*T< surface diffeomorphism. If p is a non-atomic
ergodic hyperbolic measure for f, then for every sufficiently small x > 0 and
every € > 0, there is an integer £ € N such that for every r > 0, there exists a
(x, € £, r)-nice reqular set A with 1(A) > 0 such that every x € A has positive
frequencies of returns as in (1.9), and continues to satisfy this property with
f¥ replaced by f~%. In particular, A is recurrent, and if i is an SRB measure,
then A is Lebesgue-strongly recurrent.

Remark 3.1. As will be seen in Proposition 12.1, the condition on ¢ in The-
orem C is merely that it be sufficiently large that p(Ay.,) > 0 for some
(x, €)-hyperbolic set A.

The rest of the paper is therefore devoted to the proofs of Theorems B
and C, which we will carry out through the development of some non-trivial
technical results of independent interest. We first conclude this section with two
almost immediate corollaries of Theorems B and C, also of independent inter-
est. The first is an observation concerning the geometric structure of hyper-
bolic measures, formalized in the notion of liftability which is relevant in many
applications and studies of the ergodic properties of invariant measures, see
e.g. [58].

Definition 3.2. (Liftable measures). An invariant probability measure p is
liftable (to a topological Young tower) if there exists a recurrent rectangle
I which supports a topological Young tower and a probability measure & on
I" which is invariant for the corresponding induced map F : I' — T, such that

E; ::/FTd/l<oo and u:%Zﬁ(ﬂ|{T>i}). (3.1)

Hoi=0
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The following is an immediate consequence of Theorem C and [74].

Corollary C.1. Let f be a C'T° surface diffeomorphism. Then every ergodic
non-atomic hyperbolic (invariant) probability measure lifts to a first T-return
topological Young tower for some T > 0.

Before stating our second corollary, we emphasize that we have a first
T-return tower which is, to all intents and purposes, essentially as good as
if it was a first return time tower. Existence of a first T-return tower in this
generality is a rather surprising result and has important consequences. For
example, because every return to I'pg M Ay is a return to the base of the tower,
we can relate the size of the tail of the tower to the return rate to regular level
sets.

Corollary C.2. Let f be a C't* surface diffeomorphism, ju an ergodic non-
atomic x-hyperbolic measure, and A a x-hyperbolic set with pu(A) > 0. Suppose
that for every e > 0 there is £ € N such that for every open set U C M with
w(U N Ag) >0 and every £/, T € N, we have

— 1
lim flog,u{x cUNApy: f*T(x) ¢ UN Ay for every 1 < k < n} < 0.
n—oo N

(3.2)

Then p lifts to a first T-return topological Young tower for some T > 0, whose
tail decays exponentially in the sense that

— 1
lim - logjfi{z € T : 7(x) >n} <O0. (3.3)

Proof. Without loss of generality, assume that y > 0 is sufficiently small that
Theorem C applies. Fix A € (0, x) and let €; be given by (1.7). Fix € € (0,¢€1),
and let £ € N be as in the hypotheses of Corollary C.2, so that (3.2) holds for
all open U C M with u(U N Ay) > 0 and every ¢/, T € N. Note that ¢ can also
be chosen large enough to guarantee that p(Ag) > 0.

With this value of ¢, let » > 0 be given by Theorem B, and let U’ ¢ M
be an open set with diameter less than r such that u(U’' N Ag) > 0. Note that
by Remark 3.1 this value of ¢ works for the conclusion of Theorem C (and in
particular Proposition 12.1), which guarantees the existence of a nice domain
Iy such that p(IntT,, N Ag) > 0. Let U = Int(T',,) and let

Zt={zeUnAp:#{keN: f*(x) e UNAs} < 00}

Define Z~ similarly with f=*7 in place of f*7, and let Z = Z~ U Z*. Note
that ©(Z) = 0 by the Poincaré recurrence theorem. Let A = (U N Ay)\Z,
and observe that A is a (x,¢,¥¢,r)-nice regular set that is recurrent, so by
Theorem B it is contained in a nice rectangle I' C I'y, that is recurrent and
supports a first T-return topological Young tower.

Just as in Corollary C.1, the measure p lifts to this tower by [74]. It
remains to prove (3.3). Observe that

{zel:7(x)>n} Cc{zel: ffT(x) ¢ T for every 1 < k < n}
c{zel: f*(z) ¢ Afor every 1 < k <n}.

(3.4)
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where the first inclusion uses the first T-return property, and the second uses
the fact that A C T. If f*7(z) ¢ A, then we either have f*T(x) ¢ U N Ay or
f*T(x) € Z, and thus the sets in (3.4) are contained in

{zel: ff(z) ¢ UN A, for every 1 <k <n}U U (7).
k=1
Now we can use the fact that u(Z) = 0 and that I' C U N Ay for some ¢ € N
(recall Remark 2.14) to deduce that

plr €T 7(x) >n} <p{x e UN Ay : f*(2) ¢ UN Ay for every 1 < k < n}.

From (3.1) we see that p(B) > fi(B)/E} for all Borel sets B. Combining this
observation and the previous inequality with (3.2) yields (3.3). O

Remark 3.53. A similar result can easily be formulated for rates of decay other
than exponential. What the proof above actually shows is the following: let

X ={(an)y>y :a, >0 for all n and a,, — 0 as n — oo}

and suppose that A C X has the property that for every open set U C M
with (U NAy) > 0 and every ¢/, T € N, there is (a,), € A such that

p{z e UNAp : fFT(z) ¢ UN A, for every 1 < k <n} < a, for all n.

Then p lifts to a first T-return topological Young tower for some T > 0 whose
tail is governed by one of these sequences (a,), € A in the sense that

f{z e :7(z) >n} < Eza, for all n.
When A = {(a,)32, € X : lim, . = loga, < 0}, this yields Corollary C.2.

Remark 3.4. If p is a hyperbolic measure whose log Jacobian along unstable
leaves is sufficiently regular, then control of the tail of the tower implies results
on decay of correlations and other statistical properties; see [37,53,57,66,71,
72] for upper bounds on correlations, [40,64,66] for lower bounds, and [54,55]
for some other statistical properties (this list is far from comprehensive).

The condition on regularity of the log Jacobian is often satisfied when p is
an equilibrium measure for a sufficiently regular potential function. We remark
that the results in [23,31,32] provide techniques for studying equilibrium states
for some classes of non-uniformly hyperbolic systems, which suggest a method
for establishing the hypothesis of Corollary C.2. (Note that those systems are
not surface diffeomorphisms, so the results here do not apply directly.)

4. Hyperbolic Branches from Almost Returns: Theorem D

A remarkable feature of Theorem B is that its hypotheses contain only a
minimal amount of structure, whereas the conclusions produce a great deal of
non-trivial structure. The fundamental ingredient which we will use to build
this structure is that of a hyperbolic branch which we proceed to define. The
main result of this section, Theorem D, is then a statement on the existence
of hyperbolic branches under very mild recurrence conditions.
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We assume throughout this section that I, is a nice domain as in Defini-
tion 1.16 and Fig. 1 and that A C I'j, satisfies the following condition (which
in particular is true if A is a nice regular set or a nice rectangle).

Definition 4.1. Say that A C I'y, has full length local stable and unstable curves
if every = € A is contained in a local stable curve W C I';,, whose endpoints
are on Wi and W', and in a local unstable curve W whose endpoints are on
W and W .

The following definitions will allow us to discuss analogues of stable and
unstable curves through points in I'y, that do not necessarily lie in A.

Definition 4.2 (Cones). Given a normed vector space V', a cone in V is any
subset K C V for which there is a decomposition V = E & F and w > 0 such
that

K={0tU{v+w:veE weF,|uw|<w|v|}

Say that two cones K and K’ are transverse if K N K’ = {0}. Note that we
do not require K and K’ to be defined in terms of the same decomposition
EDF.

Definition 4.3 (Conefields). A conefield over T'y, is a family of cones K =
{K, C TyM},er,,; it is continuous if K, can be defined via decompositions
E, @& F, and widths w, such that E,, F,,w, vary continuously in z.

Definition 4.4 (K-admissible curves). Given a conefield K = {K}zcr,,,
say that a C' curve v C T, is K-admissible if for every x € v we have
T.v C K.

we

Definition 4.5 (Adapted conefields). Let A C T',, have full length stable and
unstable curves. We say that two transverse continuous conefields K* = {K$}
and K" = {K}} over I, are adapted for A if W is K*-admissible and W} is
K“-admissible for every x € AU {p, q}.

Now we can define the broader family of curves that generalizes the “true”
stable and unstable curves through points in A.

Definition 4.6 (Admissible curves in a nice domain). Given adapted conefields
K¢ and K" for a set A C I'yq as in the previous definition, we refer to a K-
admissible curve as a stable admissible curve, and a K*-admissible curve as an
unstable admissible curve. We say that a stable admissible curve is full length
if its endpoints lie on W' and W, and an unstable admissible curve is full
length if its endpoints lie on W7 and W;.

Definition 4.7 (Strips in a nice domain). Given A C ', and K*/* as above,
a closed region Cs C I'pq is a stable strip if it is bounded by two pieces of
W, Wy and two full length stable admissible curves; see Fig. 2. Similarly, a
closed region cv ¢ I'pq is an unstable strip if it is bounded by two pieces of
Wy, W3 and two full length unstable admissible curves.
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FIGURE 2. Stable strips and unstable strips in I')q

The stable and unstable strips we consider will typically be bounded by

admissible curves of the form W;f/ “ for some x, but we do not require this as
part of the definition.

Definition 4.8 (Hyperbolic Branches). Let K%, K* be adapted conefields for
A CT'pq. Let C*,C* C Ty be a stable and an unstable strip, respectively, and
suppose that there exists i > 0 such that fi(C*) = C*. The map
fii 0 (4.1)
is a (C, k)-hyperbolic branch if for every z € C* and y = fi(z) € C* we have
Dfiy(Ky) C Ky and Df " (K;)C K} (4.2)
and if for every v" € K and v* € K, the vectors defined for 0 < j < by
v¥ == DfI(v") and v := nyf(i*j)(vs) satisfy
loy]l < Ce™™ Do and  [jvf]| < Ce™||ug]. (4.3)
We call i the order of the hyperbolic branch.

Remark 4.9. Stable and unstable strips which form a hyperbolic branch have
the special property that their boundaries are pieces of the global stable and
unstable manifolds of the points p, q.

The following result plays no role in Theorem D, but is natural to state
at this point and is important in Sect. 11.2. See Sect. 9.2 and Remark 9.1 for
its proof.

Proposition 4.10. Suppose that I C N is infinite and that {f*: 53 — 6“}161
is a family of (C, Ii) hyperbolic branches whose stable stmps are nested in the
sense that C’S > CS for alli,j € I with j > i. Then ) CS is a local (C,K)-
stable curve that has Jull length in I'pq.

el
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FicURE 3. Concatenating hyperbolic branches

Similarly, if the unstable strips are nested in the sense that C’\;‘ D é]“ for

all 4,5 € I with j > i, then (¢, @“ is a local (C, k)-unstable curve that has
full length in I'p,.

Definition 4.11. If fi: C3 — C" and f7: C§ — C¥ are hyperbolic branches,
then C% := f*i(afﬂag) is the stable strip for a hyperbolic branch fi+7: Cs —
Cu = fj(éf N 625) We refer to this new branch as the concatenation of the
original two branches. Observe that C* consists of the points in the stable
strip of the first branch that are mapped by f* to the stable strip of the
second branch, as shown in Fig. 3.

If we start with two (C, k)-hyperbolic branches, then the concatenation

of the two has the property that for every = € C* and v* € foq(ff(i K;iﬂ(z),

the vectors v := DfF(v®) for 0 < k < i+ j satisfy |[v] < Ce™"*||v3| when
0<k<i,and

loill < Ce™* = lug|| < C2e™*||ug]|

when k > i, with similar estimates on v¥; thus fit7: C* — C* is a (C2, k)-
hyperbolic branch. The fact that C' is replaced with C? can be a problem as
the constant would continue to grow with each repeated concatenation.

In the uniformly hyperbolic setting, one can deal with this problem by
passing to an adapted metric, or Lyapunov metric, in which C' = 1. In non-
uniform hyperbolicity this procedure does not give a continuous metric on M,
and one must restrict to regular level sets. In the next section we use this idea
to produce a family of branches that has the following property.

Definition 4.12 (Concatenation property of hyperbolic branches). We say that
a collection of (C, k)-hyperbolic branches has the concatenation property if any
finite concatenation of these branches is still a (C, k)-hyperbolic branch.

Given a nice regular set A C I',q, it would be a fairly routine exercise in
non-uniform hyperbolicity theory (and the geometry of nice domains) to show
that for every € I' and i € N such that fi(z) € I, there is a hyperbolic
branch f: C*¢ — C" such that z € 65, and that the collection of branches
associated with all returns to A has the hyperbolic branch property. However,



Vol. 23 (2022) SRB Measures and Young Towers on Surfaces 997

FIGURE 4. An almost return and the associated hyperbolic
branch

when we prove Theorem B in Sect. 11, it will become important to work with
a larger collection of branches associated with a weaker kind of return.!!

Definition 4.13 (Almost Returns). Let A C I'j; have full length stable and
unstable curves. A point & € A has an almost return to A at time i € TZ (see
Fig. 4) if f(z) € I'py and there is y € A such that

3 S u M ;
(w0 £0  where [z,9,1] := {;E%ZVVVV -
T Yy .

Note that actual returns, where z, fi(z) € A, are special cases of almost
returns and thus if A is recurrent, then every x € A has infinitely many almost
returns in both forward and backward time. In Sect. 11 we will construct a
rectangle using hyperbolic branches associated with almost returns, for which
we need the following definition and result. (These become vacuous for a set
without almost returns.)

Definition 4.14 (Hyperbolic branch property). The set A C T, has the (C, k)-
hyperbolic branch property if there exist adapted conefields K5/* such that the
following are true:

(1) whenever x € A has an almost return to A at a time ¢ € TN, there exists
a (C, k)-hyperbolic branch f*: C* — C*“ such that z € C?;
(2) the collection of such branches has the concatenation property.

Theorem D. Let f be a C*t® surface diffeomorphism. For every x > X > 0,
every 0 < € < e1(f,x, ), and every ¢ € N, there is v > 0 such that every
(x, € £, r)-nice reqular set has the (C,\/3)-hyperbolic branch property for C =

8\/5(1 _ 62(/\7)())71/2626@'

11We need the larger collection to guarantee that the rectangle we build is “saturated”, see
Remark 11.10 and Sect. 11.5.
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The constant C' in Theorem D is equal to QeQd where @ is as in (5.3)
below. The constant r determined by Theorem D is the same constant which
appears in the statements of Theorem B and Theorem A, and is given rela-
tively explicitly in (10.1). In Sect. 11 we use Theorem D, together with some
regularity estimates from Sect. 5.4 and Sect. 8.2, to prove Theorem B, and
thus part 1 of Theorem A. Most of that proof only relies on Theorem D and
can be read independently of the other sections; the regularity results are only
needed for the proof of part (2) of Theorem B.

Theorem D implies that every almost return corresponds to a hyperbolic
branch. Such branches can be concatenated as in Definition 4.11, and we point
out that the concatenated branches themselves may or may not correspond to
almost returns; see Remark 11.1.

Remark 4.15. Our construction of a first T-return topological Young tower in
Sect. 11 is solely based on the hyperbolic branch property. Theorem D ensures
this property in the setting of a global invariant hyperbolic set A although
one could imagine verifying this property in other situations using alternate
arguments. In this case one would still require some extra information on
bounded distortion in order to get the analogue of Theorem B(2) about a
genuine Young tower.

Remark 4.16. The proof of Theorem D in Sect. 10 relies on the notion of “reg-
ular branch” that we introduce in the next section. The hyperbolic branches
we seek are restrictions of these regular branches to a nice domain I'j, (see
Fig. 10), and Lemmas 10.3 and 10.4 use the niceness property in a crucial way
to show that the restricted branch has stable and unstable strips that are actu-
ally contained in I'p;. One could attempt to mimic the restriction procedure
for a domain I',; without the niceness property, but in that case there would
be no way to guarantee this containment.

5. Pseudo-orbits: Theorems E and F

The proofs of Theorems C and D are ultimately based on a new and non-trivial
result, Theorem E, in the general theory of (non-uniformly) hyperbolic sets,
which is a generalization of the Katok closing lemma. This result is of inde-
pendent interest, and we expect it to have further applications beyond those
presented here. For simplicity, and in view of the setting of our main theorems,
we state it for two-dimensional diffeomorphisms, but it should generalize in a
relatively straightforward way to arbitrary dimension.

In Sect. 5.1 we introduce the basic notion of a Lyapunov chart, following
the approach of Sarig in [65], and use this to define the notion of stable and
unstable strips in Sect. 5.2 and of regular branch for pseudo-orbits in Sect. 5.3.
In Sect. 5.3 we state our main result about regular branches for pseudo-orbits,
and in Sect. 5.4 a useful consequence about shadowing orbits.
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R? .M M
Bac €2
Ly exp,
0 e e*
—b(x) b(x)

F1GURE 5. The Lyapunov chart at z

5.1. Lyapunov Charts
Let A be a (x, €)-hyperbolic set. We fix some

b>0

sufficiently small to be determined in the course of the proof. This is the
only constant which we cannot give explicitly in terms of properties of f and
the constants associated with the hyperbolic set A, however see equations
(5.15), (7.13), (7.14), and Lemma 8.15 for the key places in which conditions
on b appear. For z € A, let e € E3, et € EY be unit vectors and define
s,u: A — [1,00) by

s(x)® =2 D fres|?,
=0 (5.1)
u(@)? =2 D f e,

n=0

By (H3), for A < x, the sums above converge and therefore s(x),u(z) are
well defined, though note that they are not uniformly bounded in z. Letting
e1 = (1,0),ea = (0,1) denote the standard basis vectors in R?, define the
linear map L,: R? — T, M, by letting

Lo(e1) :=u(z) ‘e and L,(es) :=s(z) el (5.2)

and extending to R? by linearity. We call L, the Lyapunov change of coordi-
nates at x.

In Lemma 6.4 we prove the following standard relation between the Rie-
mannian metric and the metric induced by the Lyapunov coordinates: for any



1000 V. Climenhaga et al. Ann. Henri Poincaré

0< A< ylet!?

00 1/2
~ : 2
QO = 1/8 and Q = Qal (2262(>\—X)1 ) — 18\/>
=0

—e20=x)’
(5.3)
then, for every £ € N and x € Ay, we have
1< |L; Y < 3QoQe™”. (5.4)
For every x € A let

_1

o0 a

b(z) =10 ( > 63|k€|L;kl(x)||> : (5.5)
k=—oc0

Notice that the sum converges by (1.3) and (5.4). For £ > 1 let

1

be ::b(?,QO@eM f: e_|k|€> ) (5.6)

k=—o00

It follows immediately from the definition that bei1/by = e=2¢/ and b >
b(x) > by > 0, and it follows from (5.4) (we give a formal proof in Lemma 6.5)
that e3¢/ < b(z)/b(f(x)) < €3¢/, Then, for every z € A, we define

B = [=bg, be)? C [~b(z), b(x)]* =: B, C R2 (5.7)
Letting exp,,: T, M — M be the exponential map, define ¥,: B, — M by
U, :=exp, o L.

The map VU, is called a Lyapunov chart at x; see [13] for a more general
notion.'® We write

NG =0, (BY) C U, (B,) = N,. (5.8)

Notice that ¥, (0) =  and therefore ./\/’CL(-Z),J\Q are neighbourhoods of z, which
we call, respectively, the reqular neighbourhood of level £ of x and the regular
neighbourhood of x.

5.2. Stable and Unstable Strips

We want to define stable and unstable cones and other objects related to
these regular neighbourhoods and Lyapunov charts, these will be analogous to
the corresponding definitions for nice domains in Sect. 4. For this we need to
introduce an additional small constant w which, for completeness, we define
precisely.

Let x > A > 0and 0 < € < e1(f,x,\), and A a (x,¢)-hyperbolic
set. Notice that (1.7) gives € < aA/18 and so 3e/a < A/6, which gives

12We could of course replace Qo in the expression for @ by its explicit value but various
calculations to be given below will be easier and clearer by keeping track of Qo as an
independent constant.
131n [13] the Lyapunov change of coordinates L is required to be tempered, but we do not
require this condition.
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e~ M2e3¢/ < A3 Thus we can choose w > 0 sufficiently small that the
following inequalities all hold:

e M2 L e Ay < M3, (1-w)>v2(1+w?)/2,

V1 +w? > e?N3, 2w < 1— M A3,
(67A/24 —we/\/24)/ /1 +w?> 67A/47 e—)\/24 < 1/ /1 +e—22u2.
(5.9)

From now on we always assume that w satisfies (5.9). The following three
definitions are analogues of Definitions 4.5-4.7 for nice domains.

Definition 5.1 (Cones in regular neighbourhoods). For any A > 0 we fix the
following cones defined in terms of standard Euclidean coordinates with v =
(”Ul, ’1)2) S RZ:

K ={v:|u| <ePwl} C{v:|v|<wlve|} = K*, (5.10)
K" :={v:|vg| < e Pw|vi]} C {v:|va| < wlvi]} = K™ '

Given x € A and y € N, we write
Ki/" =D

U, (K**) and K/':=D U, (K% (5.11)

Vot (y)

for the cones in Ty, M that correspond to the cones over B,.

Tzt (y)

Definition 5.2 (Admissible curves in regular neighbourhoods). Let z € A. A
C! curve v° C B, is a stable admissible curve (vesp. strongly stable admissi-
ble curve) if its tangent directions lie in K* (resp. K*); similarly for unstable
admissible curves v* C B,. In particular, the horizontal and vertical bound-
aries of B, or BQ(EZ), are stable and unstable admissible curves, respectively,
and so we denote them by 0°B,, 8569 and 0B, BuBg(f) , respectively. A sta-
ble admissible curve 7° is a full length stable admissible curve, with respect
to B, or Bg(f) if its endpoints lie on distinct components of 9“B, or (“)“Bff),
respectively. We define full length unstable admissible curves similarly. For a
C' curve v*/* C N, we use the same terminology according to the geometry
of the corresponding curve ¥, *(y*/*) C B,.

Definition 5.3 (Strips in regular neighbourhoods). Let z € A. A region B C
Bg) is a (strongly) stable strip if its boundary is formed by two full length
(strongly) stable admissible curves and two pieces of 8“8;@. Full length unsta-
ble admissible curves and (strongly) unstable strips BY C B are defined
similarly. Moreover, for subsets NVs/" C N{”, we use the same terminology
depending on the geometry of the corresponding sets W 1 (N5 / “ C Bg(f).

5.3. Pseudo-orbits and Regular Branches

Definition 5.4 (Pseudo-orbits). Given constants J, A > 0 and a finite sequence
= (ly,..., L) of positive integers satisfying |{; — ;1| < 1forall 1 < j <k,
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we say that a finite sequence of points T = (xq,...,xx) is a finite (£, 0, \)-
pseudo-orbit if for every 0 < j < k we have

€Ay, and d(f(ay o) ay) < 0e N

Notice that the true orbit of the point z € Ay is trivially an (¢, 4, \)-
pseudo-orbit for 6 = 0 and for the sequence ¢; = ¢+ j, recall (1.3). The
results we present here are essentially already known for true orbits, but their
generalizations to pseudo-orbits is non-trivial and constitute a crucial step in
our arguments. Given a finite (¢, d, \)-pseudo-orbit we write

k
NY = ﬂ FOND and VL= fIND) for 1< j <k
i=0
for the sets of points corresponding to orbit segments that go through all the
Lyapunov neighbourhoods of the points x;; the size of these sets depends on
the choice of ¢, but we suppress this in the notation.

Remark 5.5. We point out that one must carefully distinguish between J\/g,
where the subscript denotes a finite pseudo-orbit and the superscript indicates
which point in the pseudo-orbit to consider, and Né”, where the subscript
denotes a point and the superscript denotes the level of a regular set containing
that point. A similar distinction should be made when N is replaced by B as
in the following.

In Lyapunov coordinates, for every 0 < j < k, we write

Bl =W YN c BlY) (5.12)
J J
and for every 0 < 1,7 < k,
fol =t o fiT oW, s BL — B, (5.13)

which is a diffeomorphism between B% and Bg—; by definition. We will show that
such maps are hyperbolic branches in a suitable sense.

Definition 5.6 ((-regular branch). A finite (¢, 4, A)-pseudo-orbit z determines
an {-reqular branch for f if the following are true:

(i) BY, BE are stable and unstable strips in Bg(f,“), Bg(ciﬁ), respectively;

(ii) given 0 <i<j <k, yeBL z€ B, v"* e K" and v* € K*, we have
D, fi’v" € K", 1Dy fi7u"|| > eI/ |pu |, (5.14)
D.ff'v* € K°,  |IDofE" 0| = 070300, '

In the specific case where ¢y = ¢ = ¢ and ¢; = min(¢ + j, ¢ + k — j) for
0 < 7 < k, we refer to this as an f-regular branch.

Here and in what follows, we use underlined variables such as y, z to rep-
resent coordinates in R?, while undecorated variables such as y, z will represent
points in M.

We now state our main result in the general setting of hyperbolic sets.
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Theorem E. Let f: M — M be a C't® surface diffeomorphism. For every
X > A >0 and every 0 < € < e1(f,x,A), there are b,6 > 0 such that if A is
a (x,€)-hyperbolic set, then every finite (£,5, \)-pseudo-orbit in A determines
an C-reqular branch.

Recall from Definition 4.11 and the discussion following it that two (C, k)-
hyperbolic branches can be concatenated, but the resulting branch is only
guaranteed to be (C?, k)-hyperbolic. The crucial advantage we gain by consid-
ering /-regular branches is that the concatenation of two /-regular branches is
again a f-regular branch; this is because the hyperbolicity estimates in (5.14)
are given at the level of the Lyapunov charts, and not on the surface itself.
The relationship between the two types of estimates is given by the following
computation.

Since Dy exp, is the identity map, we can choose b small enough that
U,: B, — N is a diffeomorphism, in particular injective, for every z € A,
and such that (5.4) gives

IDyW, [ <2 and [D,;| < 4QoQe** (5.15)

for every £ € N, z € Ay, y € B,, and y € N,. The conclusion of the following
result should be compared to Definition 4.8.

Proposition 5.7. Suppose T = (xo,..., 7)) determines an f-regular branch.
Gien y € N and v* € K ., let v = DyfI(v*) for 0 < j < k. Then
(S K;j fiy and

o] < Qe*exe =D/ . (5.16)

Similarly, given z € NF andv® € K2, let vi = D, f~F=0)(v®) for0 < j <k;

Tk ,27
then vj c K* and

aj -z
03] < Qefoe=29/3||u3]. (5.17)

Proof. The inclusions follow immediately from (5.11) and (5.14). For (5.16) it
suffices to observe that (5.14) gives

of 1l = 1D gy (W gy 0 f57 0 Wl Y] < 2- €273 4QoQe™ o
and recall that Qo = 1/8 from (5.3). The proof of (5.17) is analogous. O
In Sect. 10 we use Theorem E and Proposition 5.7 to prove Theorem D.

Remark 5.8. In the theory of uniformly hyperbolic systems, it is well-known
that every pseudo-orbit segment determines a regular branch as in Defini-
tion 5.6; that is, there is § > 0 such that z, . ..,z determines a regular branch
whenever d(f(z;),z;j11) < 6 for all 0 < j < k. In non-uniform hyperbolicity,
various versions of Theorem E have been obtained. The first result of this type
is the well-known Katok closing lemma [48]. Other versions were obtained by
Hirayama [44], and by Sarig [65] in his construction of countable Markov parti-
tions for surface diffeomorphisms with positive topological entropy; this latter
result was generalized to higher dimensions by Ben Ovadia [14]. What makes
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our Theorem E different is the explicit relationship between £ and the pseudo-
orbit scale §e~*: this is absolutely crucial for our arguments, particularly our
construction of hyperbolic branches associated with almost T-returns.

5.4. Shadowing

We conclude this section by stating a consequence of Theorem E for the prob-
lem of shadowing in the non-uniformly hyperbolic setting. It is classical prob-
lem in hyperbolic dynamics whether every pseudo-orbit is “shadowed” by a
real orbit of the system [60]. In uniform hyperbolicity theory a positive answer
to this question is a fundamental result, with many applications and in partic-
ular, is a key ingredient in the construction of Markov partitions. Extending
it to the setting of non-uniform hyperbolicity has proved challenging and few
results have been obtained, see [13]. Here we give a powerful shadowing result,
which follows relatively easily from Theorem E. In addition to the existence of
a shadowing orbit, this result gives an explicit estimate on the hyperbolicity
constants associated with this shadowing orbit and also proves Theorem 1.12
on the existence of local stable and unstable curves (up to optimizing the rate
of contraction, see Remark 1.13).

Definition 5.9. Given a bi-infinite sequence ¢ = (£,,)nez With €11 — £,] < 1
for all n, a bi-infinite (£, 5, \)-pseudo-orbit is a bi-infinite sequence (z,)nez
such that for every n € Z, we have z,, € Ay, and d(f(z,_1),7,) < de n.
Replacing “n € 7 with “n > 0” and “n < 0” gives the definitions of forward
(€,8,\)-pseudo-orbit and backward (£,5, \)-pseudo-orbit, respectively.

Theorem F. Let f: M — M be a C'** surface diffeomorphism. For every
X > A >0 and every 0 < e < e1(f, x, \), there are b,6 > 0 such that if A is a
(x, €)-hyperbolic set, then the following are true.

(1) If (x)n>0 is a forward (£, 8, \)-pseudo-orbit in A, then Nu>o f*”(NgEﬁ"))
is a CYHHOUer g1l length local (@6240, A/3)-stable curve.

(2) If (2n)n<o is a backward (€, 6, X)-pseudo-orbit in A, then (N, <o f~" (Néi"))
is a O Holder Il length local (@626407 A/3)-unstable curve.

(3) If (xn)nez is a bi-infinite (¢, 5, N)-pseudo-orbit in A, then there is a unique
shadowing point y € M such that f"(y) € Nggi") for all n € Z. Moreover,
the point y is (A\/4,2¢, by + {')-regular for €' = [ 1log Q].

Let o denote the left shift on N” (which contains the possible sequences
/) and A% (which contains the possible pseudo-orbits (z,)nez). If Z is a bi-
infinite (£, 6, \)-pseudo-orbit, then ¢ is a bi-infinite (o7, §, \)-pseudo-orbit. It
follows from uniqueness of the shadowing point that the map Z — y intertwines
o and f: if y is the unique shadowing point for z, then f(y) is the unique
shadowing point for oZ. Moreover, if the pseudo-orbit is periodic in the sense
that ¢"¢ = { and 0" = Z for some n € N, then f"(y) = y. In particular, this
allows us to deduce the Katok closing lemma as a specific case of Theorem F:
if z, f*(z) € Ay and d(z, f*(x)) < de >, then we can take zx = f*(z) and
L = £+ min(k,n — k) for 0 < k < n, and repeat periodically mod n, to get a
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bi-infinite (£, 8, \)-pseudo-orbit whose unique shadowing point is the periodic
point from the Katok closing lemma.

Corollary 1. If z,y € Ay and d(x,y) < e~ >, then writing

f(y) n<o,
@) n>0

by =L+ 1n| and zn:{

gives a (£, 0, \)-pseudo-orbit Z, whose unique shadowing point z is the bracket
[z,y] = V2OV, Thus {[z,y] : z,y € Ay, d(z,y) < Se MY is a (\/4,2¢,0+1')-
reqular set, where {' = [ - log Ql.

Remark 5.10. The 6 in Corollary 1 is the same as in Theorem F. This corollary
in particular shows that the bracket [z,y] exists, so that de~** plays the role
of §; from Theorem 1.12. In general the J, used there could be larger than
de~*, because that result made no claims about regularity of [z, y].

Part II. Hyperbolic Theory

In this part of the paper we develop all the general hyperbolic theory needed
for the proofs of our main results and prove Theorems E and F. For simplicity
we state and prove everything in the two-dimensional setting, as required by
our applications of these results. The results in this part, as well as Theorems E
and F, do not contain any inherently two-dimensional ideas, and we expect
that they hold as stated in higher dimensions as well; we have not written down
detailed proofs, but there do not appear to be any conceptual obstructions.
This should be contrasted with Theorems A-D and their proofs in Part III,
where a crucial role is played by the notion of “nice domain”, which has no
obvious higher-dimensional analogue.

The contents of this part are completely self-contained, with no reference
to existing results in the literature, and follow directly from the definition of
(x, €)-hyperbolic set.

In Sect. 6 we give some basic estimates related to Lyapunov charts. In
Sect. 7 we state and prove Theorem G, on the hyperbolicity of f in Lyapunov
charts, which is a fundamental result in the theory of hyperbolic sets and the
key motivation behind the introduction of Lyapunov charts. In Sect. 8 we state
and prove Theorem H which gives some conditions guaranteeing that Lyapunov
charts of nearby points are “overlapping” in a suitable sense. Some qualitative
versions of this result are known, but we give a quantitative version which is
not available in the existing literature and which is crucial for our arguments;
this is the most involved technical step in the paper. In Sect. 9.1 we combine
these two results to prove Theorem E, and in Sect. 9.2 we deduce Theorem F.

Throughout the proofs, we will write @; for various constants that depend
only on f, x, A, e and are independent of z,y, ¢, n, k, etc.
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6. Lyapunov Chart Estimates

Recall the definition of Lyapunov charts in Sect. 5.1 and in particular the func-
tions s(z), u(z) defined in (5.1), the map L, defined in (5.2), and the quantities
by and b(x) defined in (5.6) and (5.5), respectively. We follow here the basic
approach of Sarig in [65] and prove some properties of these objects, includ-
ing (5.4). We start with a couple of simple estimates showing that although
the functions s(x), u(x) are not slowly varying along orbits, they are uniformly
bounded on each A, and satisfy a bounded variation property along orbits.

Lemma 6.1. For every £ > 1 and x € Ay, we have
V2 < s(x) < QoQe’  and V2 < u(z) < QoQec’. (6.1)

Proof. The lower bounds follow immediately from the definition of s(z), u(z)
n (5.1). Using the hyperbolicity property (H3) and the definition of Qq, @ in
(5.3), we have

s(2)? <23 (@)% ™ = C(2)*(QoQ)*,
n>0
and then the definition of Ay in (1.2) gives the upper bound for s(z). The
upper bound for u(x) is similar. O

Lemma 6.2. There exists a constant Q1 = Q1(c1,c2, A) > 0 such that for every

x € A and unit vectors e, € Ef, et € EY, we have
Q' < MDof(en)] < s(x)/s(f \/1 + Dy f(e3)? < Qu,

Q' < D fe)] ™ < uf(@)/ule) < ¢ L+ [Dof(e)]| = < Qu.

Proof. For s(z) we have

s()? & s

L = Y DI = 1+ D el P Z 260N DEtes P,
k=0 =

and

Zeg(’“ DAIDf el = ZG%AHfo el = s(f(@)%

which gives s(z)? = 2(1 + 62>‘||Dfmem|\2s( f(x))?). Dividing both sides by
s(f(x))? and taking a square root, we obtain

2 §=\2sf@) 2+ PDLes) 2 MDLel (62

and the upper bound for s(z)/s(f(x)) also follows since s(f(z)) > /2 so
2(s(f(x)))~2 < 1. For uniformity of @ it suffices to note that |DfF!| <
max(e~ ', e?) by (1.5). A similar computation for u(x), using f~* in place of
I gives the following analogue of (6.2):

¢2 2 | Df;len|2 > NDf e,
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with the upper bound again coming from u(f(x)) > v/2, so that

ek“Dfl;—le:H < m < \/1 —i—e?/\”Df;legHZ_

Applying this to f(x) and f=(f(x)) = x, we get

U(uf(gsx)) < 1+ Df L e 12

HMDf el <

Using that HDfJ?(i)e}t(m)H = ||Df.e%||~! we get the bounds for u, and unifor-
mity via @1 comes as it did for s. O

An almost immediate, but extremely important, consequence of Lemma 6.2,
and therefore of the way the functions s(x),u(z) are defined, is the following
fundamental result originally proved in [56].14

Theorem 6.3. (Oseledets—Pesin Reduction Theorem). For every x € A,

_ A, 0
Lyt oDyfol, = ( ; Bm) : (6.3)

where L, is given by (5.2) and A,, B, € R salisfy
0<@i'<B,<et<l<er <A, <@ (6.4)

Proof. The diagonal form is a consequence of the invariance of the stable and
unstable subspaces E}, E} and the fact that L, Ly, map the coordinate axes
to these subspaces, recall (5.2). Thus, by linearity of L, we have

u
ex

u(z)

) = yp_ e,

Aser = Ly 0 Daf o La(er) = Ly o Duf ()

_ -1 1 ez \ _ s(f(x)) s
B:z:62 _Lf(z)OD(EfOLI(ez) _Lf(gg)oD:rf<S(x)) - s(x) Hsz(e:v)Ha
and the statement then follows from Lemma 6.2. O
Lemma 6.4. For every x € A, we have
s(x)? + u(x)? - s(x)? + u(z)?
R < Ly < AU (6.5)
V2sin £ (Es, EY) sin £(E3, E¥)
In particular, for every £ > 1, x € Ay, and k € Z, we have
<Ll < 3QoQe eIk (6.6)

Proof. Let 0(z) = £(E2, E¥). Consider the orthonormal basis {e¥, (e%)*} in
T, M, oriented so that e = cosf(x)e? + sinf(x)(e?). From (5.2), we have
Lye; = u(z) e’ and Lyeq = s(x)"'es, so the matrices of LE! relative to the

orthonormal bases {e1,es} and {e¥, (e%)1} have the form

L= (M ) = () S ).

141n [56] it is required that L, is tempered, but this is not necessary for our formulation.



1008 V. Climenhaga et al. Ann. Henri Poincaré

The norm of A = L ! is the square root of the largest eigenvalue of

] (_S(x)u(m)z —s(x)u(x)cos@(x)>7

sin? 0(z) u(x) cos 0(x) s(z)?
and thus a routine computation with the quadratic formula gives
L2 u(z) 24+ \/ s(x)? ) — 45(2)2u(x)? sin® 0(z)
|| x || - 92sin 6( ) .

The square root term lies between 0 and u(z)? + s(x)?, which proves (6.5).
For (6.6), we first observe that sinf > 2 for all ¢ € [0, Z]. From (1.3),

we see that if z € Ay then f¥(z) € Apyy and so £(E%. z),E}Lk(m)) > g—c(t+IkD

and, by (6.1), s(f*(z)) < QoQe“ k) and u(f*(z)) < QoQe<“Ik). Substi-
tuting these bounds into the upper bound from (6.5) gives

||L H ﬂQOQEE([+|k‘) _ iQ Q\626€€25\k|
fE@WN = Toe—e(@+k) /r 0 '

V2
which proves (6.6) since 7/v/2 < 3. O

Lemma 6.5. For every £ > 1 and x € Ay
b>blz)>by >0 and e 3% < b(x)/b(f(x)) < &3/,

Proof. From (6.6), the sum in the definition of b(x) converges. Therefore, for
e small and x € A, we have

00 00
1< ”L;1|| < Z e_glkleHL;kl(x)” < 3Q0Qe2d Z e—|k\e

k=—o0 k=—o00

and thus b > b(x) > by > 0 as in the first part of the statement. Moreover

00 -1/
b(f(x)) = b ( > eS"“'6||L;3H<I)||>

k=—o0

o -1/
= < Z €3k1|6||L;kl(x)||€3(|k|+k>€>

k=—o0

50 -1/
=) ( Z €_3k6||Lfk1(w)||63(_k_1|+k)€> ]

k=—o00

Notice that —|k — 1| + |k| can only take the values +1 or —1, depending on
the value of k, and therefore

oo

-1/
b(x)e—fie/a <b ( Z e_3|k€|Lfk1(w)||63(_|k_1|+|k)€> < b(m)e?’e/“.

k=—o00

This completes the proof. O
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FIGURE 6. The map f in Lyapunov coordinates

7. Hyperbolicity in Lyapunov Charts: Theorem G

The key motivation for introducing Lyapunov charts is to show that the map
f restricted to some neighbourhood of points of A is uniformly hyperbolic in
Lyapunov coordinates and to study the way f maps such neighbourhoods to
each other. To state this precisely, we consider € A and recall from Fig. 5
that the Lyapunov chart ¥, maps B, C R? onto A, C M, so that a point
y € N, is represented by coordinates y = W' (y) € B,. (As in Sect. 5, we will
use underlined variables to represent coordinates in B, C R2.) To represent
the map f in these coordinates, we write

Byl =W N 0 f T W) and By = i) (FNG) O N )
and denote by

for=Usk 0 fol,: By — By

the corresponding diffeomorphism; see Fig. 6. Similarly, if z € Ay,, and f(z) €
Ay, for some ¢1 with |[¢1 — £o| <1 we let £ = ({y,¢1) and write

s,1 20) 1 u,1 (e (41)
Brp =W (N N T Nt (x)) and By ;= UL (NSO NN, (;))
(7.1)
By (5.7), Bs 1 B! and B;(l) ; C B}‘(; and therefore f, restricts to a
map
S, 1 u,l
for BUp = By ¢

For simplicity we will just use the same notation f, in both cases. We also
mention that in the definitions of the sets Bi’}, B, B;é)[, B?’(i) we implicitly
mean the connected component, containing x or f(x), respectively, of these sets
which a priori may not be connected. The main result of this section states
that the map f, is uniformly hyperbolic and the sets just defined have a certain
specific geometry, see Fig. 6.

A key part of the statement of Theorem G is that certain sets are stable
and unstable strips which are strictly contained in the sets Bg). It is convenient

to introduce the following sets.
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Definition 7.1. Given r > 0, consider the sets

BS = [—e M3, e 3] x [—r, 7] C R?,

E}f = [—r,r] X [—(37)‘/37", ef)‘/BT] C R?
and let
N/ =0, (ByY) and N2 = wa(By/™). (7:2)

Recall that K;/; and I?;/i are defined in (5.11).

Theorem G. Let f: M — M be a C'+* surface diffeomorphism. Fix x > X >
0,0<e<er(f,x,A), and w satisfying (5.9). Then there is b > 0 such that for
every (X, €)-hyperbolic set A, £ = (£, 01) with [lg — ¢1| < 1 and x € Ay, with
f(x) € Ay, the following holds: for every y € Bl 2z € B;é), /s € Kv/s,

x

Dyfa(v") € K, [IDyfo(e")ll = 2 |u"]), (7.3)
Dofy (0) € K |IDf (@) 2 M) |
Moreover, the sets Bi’}, B;ém are strongly stable and unstable strips, satisfy-
ing
B, CB;, and Bl i S By, . (7.4)
Remark 7.2. Notice that the estimates (7.3) hold in particular for all Y € B:?’},
z € B?&),Z but they do not depend on ¢ and give one-step hyperbolicity in the

sense that the expansion and contraction is exhibited immediately after one
iteration. This is in contrast with the fact that if x € A, for large ¢ we have
very poor hyperbolicity estimates on the surface, cf. (H3) and (1.2). This is of
course the effect of the Lyapunov change of coordinates which has controlled,
but very large, distortion, and applies to very small neighbourhoods of z when
x € Ay for large ¢, recall (5.4) and (5.5). The crucial advantage of writing
the estimates as in (7.3) is that we can iterate the map any number of times
without loss of hyperbolicity. We only need to worry about the effect of the
distortion at the beginning and end of any arbitrarily long piece of orbit in
order to recover the actual hyperbolicity estimates for the original map f on
the surface.

In the rest of this section we prove Theorem G. In Sect. 7.1 we establish
the derivative estimates (7.3), in Sect. 7.2 we use these to prove the invariance
property of the cones, and in Sect. 7.3 we prove that B;’} B;"% are stable and
unstable strips and satisfy (7.4).

7.1. Derivative Estimates

Here we prove the hyperbolicity estimates (7.3). We start with the special case
y=0.

Lemma 7.3. For every x € A, v* € K", v° € K*,

1Dofe(w)| = 20|l and [|Dof;(w*)] = V2 0®].  (75)
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Before proving Lemma 7.3, we set up some notation. Consider the map

fz = exp]?(1 of oexp,: Ty M — Ty M. (7.6)
Then since f, := \Il )© foW, = L ( )© expf of oexp, oL, we have
fz = ;(I)szOLm (7.7)
Given v € T, M, we have
vaz = Dfoexpz (v) eXP;({L,) ODexpw (v)f oD, €XPy - (78)

Also f,: B3' — B;ﬁ&i) and for every y € B!, Dy f, = Dy(L} f(x) o fu o Ly).
Using that L, Ly(,) are linear maps, we have
Dyfe =Lyl 0 Dr g feo La (7.9)

With this notation we can easily prove Lemma 7.3.
Proof of Lemma 7.3. For y = 0 we have L,(y) = L,(0) = 0, so (7.9) gives

DOfac: (x)ODOf.LOL

Now exp,(0) = x gives f o exp,(0) = f(x), and the exponential function is
tangent to the identity at 0, i.e. Dgexp, = Id and D, exp;(lz) =1d, so (7.8)

implies Dy fx = D, f, which means that we have
Dy fe —Lf(gC)OszOLx. (7.10)

Writing v* = v1e; + vaea, (6.3) and (7.10) give Do f,(v*) = Ayvier + Byuses.
Since v* € K" implies |va| < w|v1|, we conclude that

NTES 2,2 2,2 2 2X
||D0f$(y )H _ AIU; + BQ;EUQ > Az > e > €4>\/3,
[lo™ |12 vy + U3 1+ (va/v1)? — 14 w?
where the last two inequalities use (6.4) and (5.9), respectively. This proves
the first half of (7.5); the second is similar. O

By Lemma 7.3 and continuity of the differential, the expansion estimates
in (7.3) hold in some neighbourhood of 0 € B3!. We show that this neigh-
bourhood contains B!, which is the key part of the proof of Theorem G. The
main step is the following estimate for the derivatives of fm

Lemma 7.4. There exists Q2 > 0 such that for all z € A and y,z € B3,
DL, ) fe = iy foll < Qally — 2]

Proof. For simplicity we write v := L,(y),u := L,(z). Since L, is a con-
traction and y,z € B! C [—b(z),b(x)]2 C [=b,b]2, we have |v — u| <
|y — z|| < 2v/2b. In particular it is sufficient to prove that | Dy fo — Dufall <
Qllv — ul|* for all u,v € T,M with |lul|,||v]] < b. Since M is a C?
Riemannian manifold, there is @3 > 0 such that ||D,exp, —Dyexp, | <
Qsllu = vll, |Dfoexp, v expy " —Dyoexp, uexpy ™ | < Qsllu — v for all 2 € M
and w,v € T, M with |[u],|lv|| < 1. Moreover, there is Q4 > 0 such that
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d(exp,(u),exp,(v)) < Q4|lu — v|| for all such z,u,v, and hence since Df is
Holder continuous we have || Deyp (v).f = Dexp, (u) fll < [DflaQf |lu—2]|*. Then

the definition of D, fy, Dy f, in (7.8) gives the result. O
Lemma 7.5. There exists Q5 > 0 such that for all z € A and y,z € B3,
1Dy fr = Dzfall < Qsb”.
Proof. By (7.9), using ||L,|| < 1 and Lemma 7.4, for every y,z € B!,
1Dy fo = Dafoll = |1 L7 © Dy, (yfeo L — Lo Dy, (2 fx o La||

= IL}y 0 (D, fe = Droo) fa) o L
<L)l 1Dz, e = Droo fo
< QullL7ll ly — 2]

Moreover, y,z € Byt C [—b(x),b(x)]?* implies ||y — z|| < 2b(z) and therefore,
by Lemma 6.5,

(7.11)

ly = 2[1* < 2%b(2)* < 27€>D(f(x)). (7.12)
Moreover, from (5.5) we have
- -1
b(F () = b (kz —3"“||wa$)|> <L I

and therefore, substituting into (7.12) and then into (7.11) we get
IDyfa = Dafull < QallL I ly — 21 < 2°6%Qabe,
which completes the proof. O

Now we can prove the expansion estimates in (7.3) for all y. By Lem-
mas 7.3 and 7.5, for every x € A, y € Bl and v* € K*, we have

1Dy fo (@) = |Dofo(w)|| = Dy fo = Dofall - [lu*] > (€** — Qs6%)[|v"|-
Choose b > 0 small enough that
3 — Qsb* > 2, (7.13)
then we get || Dy fz(v*)]| > eM?||v*|. A similar argument gives ”Dgff_(i) (%] >

eM?2||v?|| for every v® € K*, and so we have the expansion estimates in (7.3).

7.2. Conefield Invariance

We now prove the conefield invariance from (7.3). Fix > 0 small enough
that if z = z1e; + 2269 € R? has |z|| = 1 and |2a] < e~ w|z1], then every
v € R? with |Jv — z|| < 7 is contained in K“. By homogeneity we see that if
the assumption on ||z|| is removed and we have |[v — z|| < n||z||, then once
again v € K*. Given z € A and v = vie; + vaes € K¥, (6.3) gives Dq f.(v) =
Agvie; + Bguges, and we have |Byug| < e Mw|vi| < = w| A1), so Dofe(v)
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FIGURE 7. B! is a strongly stable strip

satisfies the assumption on z mentioned above. Now choose b small enough
that

Q50 <. (7.14)

Then for every y = W (y) € B!, Lemma 7.5 gives || Dy f.(v) — Do fo(v)] <
Qsb%||u|l < nllv]l, and by our choice of 7 we conclude that D, f.(v) € K" A
completely symmetric argument applies to the stable cones and f~!.

7.3. Stable and Unstable Strips

To complete the proof of Theorem G we show that BS Land B}‘(l) ; are strongly

stable and unstable strips in Bb[ , Bb“e , respectlvely, recall (7.1) and (7.4).
We begin by proving the statement for B Let A¢t = {(v1,0) € B

fu(v1,0) € Sf(l )} - BS ! Notice that fm( ) = 0 and therefore B ; contains

a neighbourhood of 0 and therefore fyo is a non-trivial horlzontal segment,
and in particular its tangent vectors are contained in the unstable cones K*.
Therefore, by (7.3), the images of the tangent vectors to 'yu’l are contained in
the strong unstable cones K and in particular the slope of the curve f, (v, 1)
always has absolute value < e ™*w < 1.

Since fi(vg ') goes through the origin, has slope < 1 in absolute value,
and has both endpoints on the boundary of the square Bf(m = [~be,, by, ]?
these endpoints must both lie on the stable boundaries v := {(£by,, v2),v2 €

[—be,, be, |} of B;f(lw)y s0 fo(ve!) is a full length strongly unstable admissible
curve in B}Z(lw)) as shown in Fig. 7. Therefore the preimages f!(v1) NBY) are

by (7.3), strongly stable admissible curves through the endpoints of 7, ’1, which
are points on the horizontal axis with coordinates (v, 0) with [vF| < e=*/2by, .
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Note that this last estimate comes from the fact that every tangent vector to
fo(71) is contracted by a factor of at least e~*/2 under the action of f; 1.
Since f!(vi) are strongly stable admissible curves in B we conclude as
shown in Fig. 7 that their horizontal distance from the y-axis in R? is always
bounded above by

| 4+ e Pwbg, < e M2y, + e Pwby, < (723X e W)y,

where the last inequality uses Lemma 6.5. By (5.9), this is < e=*/3by,, which

proves that B;% is a strongly stable strip in g,feo . Similarly, B?(;) ; 1s a strongly

unstable strip in g})‘[l.

8. Overlapping Charts: Theorem H
8.1. Overlapping Charts

The parameters defining Lyapunov charts vary slowly along orbits but in gen-
eral only measurably with the point z € A. On each regular level set Ay, the
dependence is continuous, and it is well-known that “if points x,y € Ay are
close, then their Lyapunov charts are close”. The condition on how close x,y
need to be depends on £; we need an explicit quantitative estimate, which is
provided by (8.3) in Theorem H. This is the core technical result of the paper,
whose proof demands the largest share of our efforts.

First we make precise what it means for two Lyapunov charts to be close.
Let x > A > 0 be fixed, € given by (1.7), and € € (0,€1). Let A be a (x,¢)-
hyperbolic set. Given ¢ > 1 and z,y € Ay, recall that NéZ)7Ny(£) are defined in
(5.8) and ./\7;/;,./(/;/; in (7.2), and that the notion of “full length (un)stable
admissible curves” is defined in Definition 5.2.

Definition 8.1. (Overlapping charts). We say that Née) and Ny(é) are overlap-
ping if x,y € N ONy(z) and the following conditions hold:
(A) Overlapping derivative estimates: for every z € W 1(/\/}@ N /\/152))
and every v* € K", v® € K*, we have
D, (¥, o W,)(v") C K* and | D, (¥," o W) (0")] > e ||, (8.1)
Do (W' o W,)(v*) C K* and [|Do(¥; ' o W,)(0*)]| = e |l0*], (8.2)

xr
and similarly with the roles of x and y reversed.
(B) Overlapping stable and unstable strips: Every full length strongly
stable idmissible curve vy° C N;,E (resp. N;g) completely crosses ./\fy“l
(resp. N; ;) and every full length strongly unstable admissible curve v* C

~;‘)Z (resp. ./\7;4) completely crosses ./\N/';é (resp. J\N/;‘)@).
Theorem H. Let f be a C'T® surface diffeomorphism. For every x > X > 0,

and every 0 < € < e1(f,x, ), there exists 6 > 0 such that given any (x,€)-
hyperbolic set A, any integer £ € N, and x,y € Ay with

d(z,y) < e M, (8.3)
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the Lyapunov charts N9 and J\fy(g) are overlapping.

In the rest of this section we prove Theorem H. The proof depends on
two intermediate results about the Holder continuity of E5/* and of s(z), u(z)
which we prove in Sects. 8.2 and 8.3, respectively. In Sects. 8.4 and 8.5 we
combine these to prove parts A) and B), respectively, in the definition of

overlapping charts, thus completing the proof of Theorem H.

Remark 8.2. A similar “overlapping charts” condition plays a central role in
Sarig’s construction of countable Markov partitions; see [65, Definition 3.1] for
the formal definition and [65, Proposition 3.2] for the key properties, which are
similar to our definition above, although it is not immediately clear whether
one definition implies the other. The crucial ingredient of our approach here is
the explicit distance criterion (8.3) that guarantees overlapping charts, which
has no analogue that we are aware of in [65].

8.2. Holder Continuity of the Splitting

Proposition 8.3. There is Qg > 0 such that for any ¢ € N and z,y € Ay, we
have

d(E;, By) < Qec"d(w,y)”  and d(E}, Ey) < Qoc®d(x,y)"
where d(-,-) represents distance in the Grassmannian of M.

Recall that 8 and « are given in (1.6). For generality we prove Proposi-
tion 8.3 as a special case of the following result which does not require z,y to
belong to a (x, €)-hyperbolic set. More specifically the Hélder continuity only
depends on the angle and hyperbolicity estimates at the points =,y and not
on how these vary along the orbits of z,y.

Proposition 8.4. Let M be a compact smooth Riemannian manifold and
f: M — M a C'*® diffeomorphism. There is a constant Qg, depending only
on M, |Df*Y|, o, |Df*Ys, and x, such that if C,K >0 and x,y € M are

such that
[Dfyesll < Ce X" and ||Dfyeyl| < Ce ™™ for all n >0, (8.4)

|Dfret|| > C~reX™ and IDfy eyl > C~teX™ for allm >0,  (8.5)
for some unit vectors ei/u eT,M, ef/u € TyM for which the corresponding
subspaces E;;Z satisfy (B3, Ey) > K, £(E;, E,) > K, then we have
(B, By) < Qe(C*K~1)?d(z,y)", (8.6)
where v, 3 are as in (1.6). The same bound holds for Ey, E; if we have
[Df; "ezll < Ce™X" and ||Df, "ey|| < Ce X" for alln > 0, (8.7)
|Df;"es|| > C~'eX™ and IDf, " esll > C™'eX™ for alln > 0. (8.8)
In particular, if (8.4), (8.5), (8.7), and (8.8) all hold, then
|4(E;, BY) — £(By, By)| < Qs(C* K1) d(x, y)". (8.9)
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To see that Proposition 8.4 implies Proposition 8.3, it suffices to observe
that given € > 0 and ¢ € N, the conditions (8.4), (8.5), (8.7), (8.8) are satisfied
for all z,y € Ay, with C = e and K = e,

We will give the explicit calculations only for the stable subspaces, leading
to the proof of (8.6), as the situation for the unstable subspaces is completely
symmetrical. We follow Brin’s approach in [12, Appendix A] (see also [13,
§5.3]; the main idea of the argument goes back to [20]). The only thing we
need that is not given there is the computation for how much vectors in (E2)*
are expanded, depending on C' and K, given in Lemma 8.8. The rest of the
proof of Proposition 8.4 is taken nearly verbatim from [12, Appendix A], with
notation adjusted to fit our current setting.

First note that by the Whitney embedding theorem [45], we can choose
N € N such that M can be smoothly embedded in RY. By compactness of M,
the Riemannian metric is uniformly equivalent to the distance induced by the
embedding and therefore it suffices to prove the result under the assumption
that M C RY. Then, for each z € M write E+(z) for the orthogonal comple-
ment to T, M C RY: since E* is smooth it suffices to prove the result with
E? replaced by Ef := E3 @ EL(x).

Definition 8.5. Given 2 € M C RY and n € N, let D;n) be the N x N matrix
representing the linear map that takes v — D, f™(v) for v € T,M and v — 0
for v € B+ ().

Since we embed M in RV, we can treat Grassmannian distance between
subspaces as follows. Given a subspace E C RY, we define the distance of a
nonzero vector v from the subspace E by considering the unique decomposition
v =¥ + vl where vF € E and v+ L E and letting d(v, E) := |Jv*]|/||v]. We
can then define the distance between two subspaces E, E' ¢ RV by

d(E,E") :=sup{d(v,E) : v € E'\{0}} = sup{d(v,E’) : v € E\{0}}.(8.10)
The strategy of the proof is based on the following general result.

Lemma 8.6. [12, Lemma A.1]. Let N > 2 and let {A}, { Bk}, be two sequences
of real N x N matrices satisfying the following properties

(1) there are A € (0,1) and c3 > 0 such that

|Ax — Bil| < Ae* for all k > 0; (8.11)
(2) there are subspaces E4, Eg C RN, x >0, and C' > 1 such that
[Arval < C'e™ ol and | Agoxll > (C) " e |loxll  (8.12)
for every va € Ea,vy L Ea, k>0, and
|Brogll < C'e™**|op|  and ||Byug| = (C) X og|  (8.13)
for every vg € EB,U§ 1L Eg, k>0.

Then
d(E4, Ep) < 3(C")2eX A%, (8.14)
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Proof. We start by fixing ¢ := —(x + ¢3), and let kg := LloiAJ, so that
(ko +1)g <log A < kog <log A —¢q
(recall that ¢ < 0). In particular,

AeC3ko < pkodagako — —xko (815)
and, letting & := C:IX = _%X,
B () B () < KA S NAY, (s16)

where the inequality uses kog < —g+log A. Then, by (8.11), for every vp € Ep
and every k > 1 we have

lAwvsll < 1Brosll + 1Ak — Bill - vl < C'e X*|lop|| + Ae*||ug |
and therefore, in particular, for k = ko, by (8.15),
[Akovp] < C'eX™ [lup|| + Ae™ [lup|| < 2C"e™X* |[up]|.
This implies that
Ep C Ra:={v e RV : || Ay, <20 e X% ||v|}.
Clearly we also have 4 C R4 and therefore it is sufficient to estimate the

“width” of R4. For v € R4, write v = vg —l—vj, where vy € F4 and vj 1 E4.
Then by (8.12), for any k£ > 1 we have

1Akl > [ Aol = [Avall > (") ¥ [lugll = C'e™* uall,

and therefore, for k = ko, using also that ||va] < ||v| since the splitting of v
is orthogonal, we get

o]l < C'e™ XM ([|Agyoll + C'e X0 ual]) < 3(C")2e 2% |u],
which, by (8.16), implies d(v, E4) < 3(C")2e~2xko < 3(C")2e2XA¢ and there-
fore, from the definition of &, the conclusions of the lemma. O

The following two lemmas give the estimates we need to apply Lemma 8.6.

Recall that ¢y, c2, c3 are as in (1.5), that M is embedded in RY, and that Dg(c")
are the matrices defined in Definition 8.5.

Lemma 8.7. [12, Lemma A.2]. There is Q7 > 1 such that for all z,y € M and
every n > 1, we have

IDSY — DYV < Qrec™|lz — y|.

Proof. We prove the lemma by induction on n. For n = 1, since f is C'*% we
have HDg(El) - Dé,l)H < |Dflallz — y||* and therefore the statement holds for
any Q7 > |Df|q. Then, by the chain rule, we have

(n+1) _ pnt+1) — pO) p) _ )
Dy Dy = Dy Da” = Dy
)

by adding and subtracting D(l,

assumption and the fact that || fz — fy|| < e2™||x — y|| for all z,y € M, we
get

n n 1
|DE — Dl <

DM,

)

(w)Dz(,n), taking norms, using the inductive

|DE — DEV + (DY) ) — Dy

() fn(y)” : ”Dg(;n)”
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< e?Qre®" |z —yl|* + [Dflae™" |z — y[|e="
< Qre Y o —y | (e
+ |Df|aQ7—16(1+a)02n67C3(n+1))'

Since by (1.5), ¢5 > (1 + a)ca, we can choose Q7 sufficiently large so that the
quantity inside the brackets is less than 1 for every n, which completes the
proof. O

Lemma 8.8. Suppose Ay, is a sequence of N x N matrices and RN = E* @ E*
is a splitting such that £(E*, E*) > K > 0, and for every k > 1 and v* € E*,
v® € E° we have

[Aw*|| < Ce X |lv°||  and || Agot]| > C™eX¥||v¥|. (8.17)
Then for every w 1. E® and every k > 1, we have
[Apwl] = (2C*K~1)7eXE||w]|, (8.18)
where 7 := X32 as in (1.6).

Proof. Writing w = w* + w® where w* € E*, w® € E*, from (8.17) we get
[Avwl] = | Apw" || = [Axw®]| = C~r X [w®|| — Ce™*[|w?]|.

Let § = £(w®,w") and note that § > K and since w L w?®, we have ||w| =

|lw¥||sinf < ||w*] and ||w| = |Jw?]|tand > ||w?| tan K > ||w®|| K. Plugging
this into the equation above, gives
1Dz fFwl| = (C7HeX? — CK e ) |wl]. (8.19)

Now fix kg := | (2x)~* log(2C2K’1)J, Then for k < ky we have

k
|;’1€]|€w|| =z exlk > eler—x)ko > e(Cl—X)(QX)fllog(QCQKfl) — (QCQK—l)Clz;X
& w &

where we recall that ¢; < 0 (see (1.5)). The formula for « gives the required
estimate.
It remains to treat k > kqy. In this case we have

e 2xk < e—2x(ko+1) < eflog(2C2K’1) _ %C”QK,
which gives

CK le Xk < O~ lexk

1
2
and hence, (8.19) gives
[Awwll > (20) X" [lw].
Since v > 1, C > 1, and K < 1, we have
C?*KH™r < 2C*KH ™t =(0)"H(CK )T < 20) 7

and thus we get the result in this case also, thus completing the proof. O
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To complete the proof of Proposition 8.4, we will apply Lemma 8.6 with
Ap,=DP¥. By=D{, A=Qr|z—yl*, C'=(@C*K).
To verify the conditions of Lemma 8.6, first note that Lemma 8.7 gives
14k = Bill = [IDS” = DM || < QreF |l —y[|* = A+,
so that (8.11) holds. For (8.12), we observe that the hypotheses (8.4) and (8.5)
of Proposition 8.4 give
|Ages]| < Ce ™ F and ||Agel| > Clexk

for all k£ > 0, so that Lemma 8.8 can be applied with v* = e and v* = e¥ to
obtain
lAkvi ] > C*K ™) eX¥||ug || = C'eX* |l
for all v; L E3. This establishes (8.12), and (8.13) follows similarly. Thus
2x _ B

Lemma 8.6 applies, and using (1.6) to write —X—

Gy = o Ve have

d(B}, By) < 3(C') AR = 3(2C°K )™ (Qrd(w,y)*)*,  (8.20)
which completes the proof of Proposition 8.4 by taking Q¢ = 3(2)2762XQ$/°‘.

8.3. Holder Continuity of Lyapunov Coordinates

In this section we prove that s,u: Ay — [v/2, Qoéed] are Holder continuous
with exponent ¢ and constant given in terms of e, where (,7 are given in
(1.6). Observe that the Holder exponent ¢ depends on x — A, and decays to 0
as A — x where x is the decay rate associated with the (x, €)-hyperbolic set A
and A < x is the rate used in the definition of s(z), u(z).

Proposition 8.9. There is Qg > 0 such that for any £ € N and x,y € Ay, we
have

[s(z) = s(y)| < Qse™d(z,y)¢ and [u(z) — u(y)| < Qse™d(x,y)°. (8.21)

We give the argument for the upper bound for |s(x) —s(y)|; the argument
for Ju(z) — u(y)| is analogous. Recall first that by definition,

s(z)?=2) "D e
n>0
Since s(z), s(y) > 1, we have

|s(2)? — s(y)?| n nes y €
S < 2 NI~ ID S P

() — s(y)| < 2T
n>0

(8.22)
Notice that x,y € Ay gives || Dfles|| < e‘e X", |[Dfrres|| < e““e ", and so

An = An(e,y) = [IDFRSI — [ Dfes?] < 262 tem, (823
Plugging this into (8.22) gives a uniform bound for |s(z) — s(y)| but is not suf-
ficient for our purposes since it does not include d(z,y) and does not therefore

imply Holder continuity. It will nevertheless be useful to bound the tail of the
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sum for large values of n. For small n we need a more sophisticated estimate
on A, as follows.

Lemma 8.10. There is Qg > 0 such that for all ¢ € N and z,y € Ay we have
An < Q96(2+aﬁ)02n€65fya(l+n)d(x’ y)a[j. (824)

The proof of Lemma 8.10 uses the Holder continuity of the hyperbolic
splitting from Proposition 8.3 and so for clarity we isolate the specific estimate
in which this property is used.

Sublemma 8.11. There is Q19 > 0 such that for all ¢ € N, x,y € Ay, and
k > 0, we have

|||fokw€;k$|| — HfokyejckyH| < Qloeﬁé’ya(lJrk)d(fkm, fky)aﬁ. (8.25)
Proof. Since D f is Holder on T M, we have
IDfprueinll = IDfpryeiu, I < [Dflad(efey, er,)
By (1.3), f*x, f¥y € Ayy) and therefore, by Proposition 8.3,
(€5 €50,)" < D fla(Qee® TR d(fra, fry)7)®
which gives the result. O

Proof of Lemma 8.10. By (1.5) the norm of ||[Df|| is bounded above by e,
and therefore, using the formula for the difference of two squares,

A <2 [[IDfes]l = Dy ey l]- (8.26)

Moreover, by the chain rule we have

n—1 n—1
[T 1IDfseaesinl = T] 1D Fpsyein, |
k=0 k=0

and therefore, applying the standard equality for the difference of two products

-1 —1 -1
‘H::O ap — Z:O bk‘ = ‘ZZ:O ao...ak,l(ak — bk)karl---bnfl

the absolute value of each individual term is bounded by e, we get

n—1 n—1
[11Dfpaeiial = TTID ey, |
k=0 k=0

Substituting this into (8.27) and (8.26) and using (8.25), we get
n—1

Ap <262 |IDfprpeii, |l = 1D Fpryein, |
k=0

[IDfEesll = DSy eyll| =

(8.27)

, and using that

n—1
< el2m Z |||fokr€;kz|| — ||foky€;ky||’
k=0

i (8.28)
< 2Q106202n Z eﬁeva(EJrk)d(ka’ fky)o‘ﬁ.
k=0
Using the bound e® for the derivative we get d(f*z, fy) < eF°2d(x,y) and
therefore, plugging this into (8.28) and rearranging the terms we get

n—1
A < 2Quoe "5 d(w, y)*? Y elor ek,
k=0
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To bound the geometric sum, we write

S (6ev-tcaB)ork 6(657+025)an -1 e(6<—:’y+cQﬂ)o¢n
e =
k=0

e(b6eyteaBla 1 — plbeyteafla _ 1

and so we conclude that

2Q10 2con Beyal af (6ey+cafB)an
A, < W@ *"e d(z,y)*"e 2

which gives the result. O
Proof of Proposition 8.9. We want to use (8.23) for large n, and (8.24) for

small n; the transition happens at the point where the two bounds are roughly
equal. Thus we choose N such that

62566—2XN ~ 6(2—',-046)@N€6efycz(€—',-N)d(x7 y)aﬁ;

more precisely, we take

B {265 — 6eyal — afBlogd(z, y)J
L 2x+ 2+ aB)cy +6eya |

(8.29)

so that
(2x + (2+ af)ca + 6eya)N < 2el — Geyal — aflogd(x,y)
< (2x + (24 af)cs + 6egya) (N + 1). (8.30)

Note that there is a number p > 0 which depends only on «, 3, ¢, and € such
that the numerator in (8.29) is positive provided d(z,y) < p. Continuing with
this assumption our choice of N and the bound in (8.23) give

oo oo
Z eZAnAn < Z 262)\ne266672xn
n=N n=N
2
— 1 —e2(x—)
where Q17 = 2(1 — e 2x=2))=1e2x= A Then the second inequality in (8.30)
and the definitions of the constants ¢, 7, in (1.6) give

26l 2(—x+AN Qllezeeez(—x+>\)(N+1)

%)

o\ 2e£—6eyal—af log d(z,y)
§ 62)\TLAn < Q11626Z6 2(x—X) Gegrat(2+af)cy+2x
n=N

= Qq 2l e Ret—beyal—aflogd(z,y)) (8.31)

— 62116(2(1—L)-‘,—G'\/ou)dd(x7 y)ocBL S Qlleenfd(x’ y)C7
where the last inequality uses the fact that 2(1 — ¢) + 6yar < 2 + 6yar = n.
Turning our attention to the finite part of the sum, (8.24) gives

N-1 N-1
Z 62)\nAn < Qg Z 62/\n6(2+a[3)52n666wa(f+n)d(l,’ y)aﬁ

n=0 n=0
< Q12666'yafe(65’ya+(2+a[3)cQ+2)\)Nd(l,’ y)aﬂ

_ Q1266€7a€6(667a+(2+aﬁ)02+2X)(1—L)Nd(x7 y)aﬁ



1022 V. Climenhaga et al. Ann. Henri Poincaré

for some constant ()12 independent of £, z,y. Applying the first inequality in
(8.30) gives

6667a€e(667a+(2+aﬁ)02+2x)Nd(1,7 y)aﬁ < e2€é’

and thus
N—-1
Z 62)\nAn < Q12e?elefL(Ge'ya+(2+ozﬁ)02+2x)N
n=0
_ ng626567L(66'ya+(2+aﬁ)52+2x)(N+1)

for Qi3 = Qoe!(6vat(2+af)e242x) Now the second inequality in (8.30) gives
N—1
Z €2>\nAn < ngeQeée—L(265—6eﬂ/o¢€—aﬁlog d(z,y))
n=0
_ Q136(2(17L)+6'yaL)eZd(x’ y)aﬂL < ngendd(x’ y)C7
where the last inequality again uses 2(1 — ¢) + 6yae < 7. Adding (8.31) and

using (8.22) completes the proof of Proposition 8.9 in the case d(z,y) < p.
When d(z,y) > p, (8.23) gives

A, < 2% e =S d(2, )¢ (8.32)
and thus (8.22) gives
2624/}—{
_ 2A\n ¢
|S(.’IJ) S(y)| S Z e An S 1— e,Q(X,)\) d(xﬂ y) ’
n>0
which completes the proof because n > 1, so e>¢ < 2, O

8.4. Overlapping Derivative Estimates

We are now ready to begin the proof of Theorem H. We consider two points
x,y € Ay with the property that d(z,y) < de~*, as in (8.3), and prove that
the corresponding regular neighbourhoods at level ¢ are overlapping, subject
to certain conditions on 4. Crucially, these conditions will not depend on /.

In this section we prove the derivative estimates involved in the definition
of overlapping charts. In fact, we will prove here a slightly stronger version of
(8.1) by showing that (8.1) holds for all z € W 1(N, NN,). The analogous
statement (8.2) is completely symmetric.

For z,y € Ay with N "N, # 0, let z € N NN, and denote

2, =V, (2) € B,, and z, =V, (2) € By,

Then (V' 0 W,)(z,) = 2z, and D, (V' 0 W,): T, B, — T, B,. We consider
the standard coordinates given by the orthogonal basis (e1,ez) in T, B, and
T By and consider an unstable vector

vie K CT, B,
which we assume is normalized, so that ||v%|| = 1, and which we write as

u o ,u i
Uy = Ql,xel +y2,162'
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T, M 7
1
1 ,U;j //
!
L,

e
|
|
|
:

o~ :
2y I
|
B, CR? B, C R?
F1GURE 8. Applying the transition map
Then let

vg =D, (U, o W,)(vh) = vf e1 + 05 eo.

We will estimate the absolute values of v, vy, in order to prove (8.1). Con-
sider unit vectors e%, e € TM and €y €y € T;W , in the directions given by
the hyperbolic splitting. Throughout this section, we write d,, = d(x,y),
U, = u(x), s, = s(x) to make our computations more compact and easier to
read. Observe that

\I/;1 oV, = L;l oexp;1 oexp, oL,.

Use {e¥, e2} as a basis for each tangent space to T,,M in the obvious way, and
similarly for ng” . With respect to these bases and the standard basis {e1, ea},

the derivatives of the maps L, L exp, Loexp,, and L, are represented by the
matrices

uy, 0 & u;t 0
o s) \g @) Lo st)
respectively, where ff ;g € R are determined by

Dy, (z,)(exp, toexp, el = Efey + el (533

DLz(gm)(expljl oexp,)es = ey +&sey.
Thus D, (¥, 'o¥,) has matrix (with respect to {e1, e }) given by the product
of these matrices, which is

<uy 0> <u;155 8;18)(%%??1‘ uys;iéf)
0 sy \uy & 5,8 Syly &5 Sy, &)
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and we conclude that

vy

U, U

R uyu, & UV p T UyS, 151”2 @ (8.34)
Qg,y = Sy“;1§2 El,x + 8yS, 15222,x~ (8.35)
We now collect the various estimates which we will plug into these equations
to estimate the norms of vy , v5 .
Lemma 8.12. There exists a constant Q14 > 0 such that for every £ € N and
x,y € Ng satisfying (8.3), we have
ool > 1/V221/2 and o, | < e Pwluf ], (8.36)
€51, 167 1<Quae® a7, and |1 — &}, [1-63<Quae®d],,  (8.37)
Quie™ <uys;t < Q146 and  Quue™ < s u;’ < Quie, (8.38)
1— Quae" VS | < wyugt <1+ Quae VS, (8.39)
1— Quae VdS < sysyt <14 QuaeVdS . (8.40)

Qf

vector and v¥ € K. Equation (8.37) follows from (8.33) and Proposition 8.3
which gives quantitative control on the Holder dependence of the stable and
unstable directions on the base point in A,. Equation (8.38) follows immedi-
ately from (6.1). Finally, by (6.1) and Proposition 8.9,

Proof. Equation £8.36) follows immediately from the fact that v“ is a unit

enl
Uy Uy Ug Qerd
which gives the first half of (8.39). The upper bound and (8.40) are
similar. O]

We are now ready to start estimating the two components y’f’y, yg’y of QZ.
We estimate each one separately. Once we have proved Lemmas 8.13 and 8.14,
we will be in a position to give the conditions on § > 0, which we stress will
be independent of /.

Lemma 8.13. For every ¢ € N and x,y € Ay satisfying (8.3), we have
|211Ly| > (1- Q1455)(1 - Q145C)|Q1f,z| - Qﬂéﬁ.

Proof. Using (8.37) and (8.39), we have the following estimate for the first
term of (8.34):

uyuy ot &4 > (1= Quae®dl )(1 — Quae1dS vy, .
Now (8.3) and the bounds on € in (1.7) give
6e'yfd,8 < eGe'yZJﬁ —BX __ 5B (6ey—pBA) < 5ﬁ

e(n—= 1)€€d§:’y < Dl §Ce=N — ¢ ((1=1)e= N < 5C (8.41)

and thus
Juyuy VYL > (1= Q1467) (1 — Q1ad) v}, |. (8.42)
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For the second term of (8.34), by (8.37) and (8.38), and using |vy .| < 1, we
have

-1 2 l _6Geyl 2 Teyl
|uy3z gfyg,xl S Q1466 e’ dg,y S Q14€ 7 dg,;w

where the second inequality uses the fact that v > 1. As in (8.41) above,
e"rdl < §PeTTINE < 68 (8.43)

and thus |u,s; '&vl | < QF,6°. Subtracting this from (8.42) and recalling
(8.34) proves the lemma. O

Lemma 8.14. For every ¢ € N and x,y € Ay satisfying (8.3), we have
0 | < (1+Q1a6”) (1 + Quad®)[vg o | + QF,0°.

Proof. The proof is nearly identical to the proof of the previous lemma. Let
us bound the first term in (8.35) as follows:

[sys, 16305 o] < (1+ Quael™ VS )(1+ Quae® ] ), |
< (14 Q1ad®) (1 4 Quad”)|uh |-
Similar computations for the second term of (8.35) give
[y €50 | < Qe d], < Q0.
Adding these estimates together proves the lemma. O

Proof of Theorem H (derivative estimates). We can now prove the first part of
Theorem H concerning properties (8.1) and (8.2) in the definition of overlap-
ping charts. Start by requiring that § > 0 is sufficiently small that Q46° < 1
and Q146 < 1. (Further conditions will come later.) Lemmas 8.13 and 8.14
give
[, _ (1+Qua0”)(1+ Quad)luf | + Q10”
Wi, | = (1= Q1adP)(1 — Q140¢) v} .| — Q7,07
(14 Q1407)(1 + Q140 ) wlvy | + Q340"
T (1= QuadP)(1 — Quad) v | — Q3,08 7

where the second inequality uses the fact that v € K*. Note that the function

‘jttis is decreasing in t when ad—bc < 0, which is the case for the expression

above, and thus we can obtain an upper bound by observing that (8.36) gives
v} .| > 3, so monotonicity gives
[vg ] (14 Q146”)(1 + Q146%) e w/2 + Q3,0°
vt , (1 —Q140%)(1 — Q1409)/2 — Q3,6
For sufficiently small § > 0, the right-hand side is < w, which implies that

vy € K* as required by the first part of (8.1).
For the second part of (8.1), we observe that

gl vt | o (1= Quad)(1 - Qud) — Q157) [t |

ozl = Slow 2+ oy, 12 VIt e Pt | ’

t—

: < (8.44)
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where the second inequality uses Lemma 8.13 and (8.36) for the numera-
tor and the fact that v* € K* for the denominator. Recall from (5.9) that
1/vV1+4e=22w2 > e~ *?%; thus we can choose § small enough that the right-
hand side of the above expression is > e~*/24, which proves the second half of
(8.1). Condition (8.2) follows by analogous arguments. O

8.5. Overlapping Stable and Unstable Strips
We now complete the proof of Theorem H by showing that if v C Nf,e is a

full length strongly stable admissible curve, then it completely crosses ./\/;J.
The other three required conditions obtained by interchanging x/y and sta-
ble/unstable are proved analogously.

We start with a couple of simple Lemmas relating the distance d(z,y)
between two points and the amount of overlap of their regular neighbourhoods.

Lemma 8.15. There exists a constant Q15 > 0 such that for every £ > 1 and
every x,y € Ay satisfying d(z,y) < Q1se™>by, we have x,y € N mN@S‘).

Proof. Recall that the regular neighbourhood Néz) is given by Na(;e) =
\Ilz(Bg(f)) = epr(Lz(Bg(f))), where BY) = [~be,be)> € R? and L, is given
by (5.2). In particular, LI(B;Z)) is a parallelogram in T, M centered at 0 with
side lengths 2by/u(z) and 2b,/s(z). Using the upper bounds in (6.1) we see that
both of these side lengths are at least Q(QOCA))_le_dbg. Moreover, by condition
(H2) and the definition of Ay in (1.2) we have £(E, E¥) > e~

Consider a parallelogram whose sides have length A, B and meet at an
angle 6 € (0,7/2]. The distance between pairs of opposite edges is at least
min(A, B) - sin > min(A4, B) - 20/7, and thus the parallelogram contains a
ball of radius min(A, B)f/m around its center. In the setting of the previous
paragraph, this shows that Lw(Bg)) contains a ball in T, M centered at the
origin with radius 2(QoQ) 17~ e=2<p,.

Choose r > 0 such that given any x € M and v € T, M with |jv]| > r,
we have d(z,exp,(v)) > r/2. Then choosing Q15 > 0 sufficiently small that
2Q15bp < r and Q15 < (Qo@)*lw’l, we see that Lm(Bg(f)) contains a ball in
T. M centered at the origin with radius 2Q15e’2dbg, and since e=2¢b, < by,
the image of this ball under exp, contains B(z, Q15e~2%b,). This shows that
B(z,Q15e2%by) C epr(Lx(B;(f))) = \I/m(Bg(f)) = NY, which completes the
proof. O

Lemma 8.16. There exists Q16 > 0 such that for £ > 1 and x,y € Ay,
ifye NO  then ||U;1 0 W, (0)] < Quee>“d(x, ).

Proof. 1t y € N¥ then W51 o W, (0) = W;'(y) is well defined. Therefore
195100, (0)| = 05 ()| = 251 (y) — 0] = W5 (y) — ¥, (w)]] and so we
just need to estimate the Lipschitz constant of W, !1. By definition we have
Ut = L 1oexp,! and the result follows using (6.6) in Lemma 6.4 and the
fact that exp, ! is close to an isometry. g



Vol. 23 (2022) SRB Measures and Young Towers on Surfaces 1027

Bg) BZ(/[)

Nz

67’\/3b[

~S
B,

FIGURE 9. Proving Theorem H

Proof of Theorem H (stable and unstable strips). We can now complete the
proof of Theorem H. Let z,y € A, with d(z,y) < de** as in (8.3). Then
since by = Ce~2¢/* for some constant C' > 0, we have

d(x7y)€262b£_1 < 56—)\262660—1625[/(1 — (50_16(26(1+é)_A)£ < 60_1,

(8.45)
where the last inequality uses (1.7). By making § sufficiently small that §C 1 <
@15, we guarantee that the hypothesis of Lemma 8.15 is satisfied.

Now let « be a full length strongly stable admissible curve in Njyg, and
consider the curves v, = ¥ (y) C gge and v, = ¥, () C Bl(f), as shown in
Fig. 9. Observe that since B3 := [—e~*/31 ¢=>/37] x [=r, ] (see Definition 7.1),
7, intersects the z-axis at the point (,0) for some [t| < e=*/3by. Let 1, be the
segment of the z-axis in B;Z) that connects this point (¢,0) to the origin; the
length of 7, is at most e=*/3b,. Let Ny = \Ilzjl oW,(n,). Let z € By) be the
intersection point of 7, and 7,, and let w® be the endpoints of v,. Writing
z = z1€1 + z2e5 and similarly for wi, our goal is to show that |w2i| > 6_)‘/3[)[.

We give the proof for w™; the proof for w™ is similar. By Lemma 8.16

and (8.45), the point v := ¥, (2) = ¥, ! (¥,(0)) has

]| < Quee*“d(x,y) < Q16C " Sby. (8.46)

By (8.1), 1, is an unstable admissible curve connecting z and v with length
< eM?e=3p, (using the fact that 7, has length at most e=*/3by). Since 7,
is a stable admissible curve, we have

lwl — 21| < 2wby,
and thus
lwi| < [vr] + |21 — v1] + Jw] = 21] < Q1eC1by 4 M4 3by + 2wby.
By (5.9) we can choose § > 0 small enough that
Q16C 716 + N 3 L ow < 1, (8.47)
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and we conclude that [w]| < by, so w* is not on a vertical boundary of Bg(f).
If wt is on the top boundary of By), then there is nothing to prove,
so we can assume that the part of v, running from z to w™ is the image of
the top half of v, under the transition map. By (8.1), this part of v, is a
stable admissible curve with length > e=*/24p, (using the fact that the top
half of , has length at least by). Since the length of this part of 7, is at most
V1 + w2|wy — 23, we conclude that
67)\/241)[

VIt w?

As argued above, 1, has length < e*/24p,; on the other hand since it is a stable
admissible curve, its length is at least

lwy — z| > (8.48)

\/\2’1 — v+ |20 — 0|2 > \/W72 + 1]zg — val,

and we conclude that

we)\/24b€
20 — V2| < ———. 8.49
R (8.49)
Combining (8.46), (8.48), and (8.49) gives
—N24p LM 24
wi| > Jwd — 20| — |20 — va| — |va| > & £ - Cc1ob
lwg | > lwg” = 22| = |22 — 2 |2\_\/1+W2 N Q16 ¢
o= M24 _ e /24
= (=~ QueC )b = (e = Qi o),
(o Qe o) = ( QusC ™9
where the last inequality uses (5.9). As long as § is small enough that
e M Q1gC 71 > e M3, (8.50)
this gives |wy | > e~*/3by, completing the proof. O

9. Pseudo-orbits, Branches, Shadowing: Proofs of Theorems E
and F

We are now ready to prove Theorems E and F.

9.1. Regular branches: Proof of Theorem E

The two fundamental ingredients in the proof of Theorem E are Theorem H
and Theorem G, which is essentially the special case of Theorem E where k = 1
and the pseudo-orbit is in fact a real orbit.

Fix § > 0 sufficiently small so that the conclusions of Theorem H hold.
To prove the first part of Theorem E, we observe that if z = (xg,...,zx)
is an (Z7 d, A)-pseudo-orbit, then by Theorem H, the Lyapunov charts /\/}Efj)
and N}fi )j_l) are overlapping for every 1 < j < k. By Theorem G, for each
0 <j <k, the sets

5,1 _ g1 2 —1ArE541)
sz»(f.y Liy1) T \Ijxj (N}J 'n f 'N.f(g)1 ),
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ul (£5) (Li4+1)
B tptyan) = Yrioy VS DN

from (7.1) are strongly stable and strongly unstable strips in Ege and Egﬁ ,
j g1
respectively, and f,, is a diffeomorphism between them that satisfies the inclu-
sions and estimates in (7.3). Since the Lyapunov charts N, ffﬂl and Ny (5”1
. 1 w, 1
are overlapping, we conclude that W " oW (B Flw) €j+1)) is an unstable

Tj41

(4j+1)

strip in Bz, and thus its preimage under vl o JfoW,, is a stable strip

in B_fﬂj . Thus we have

V- lofow U-lofow Wl ofol,,
0 opl) "2 Rlz) (br—1) k1 Fy
Bm sz — —>BCE1€71

B B
where the maps are not defined on the entirety of the indicated domain, but
only on a stable strip, and the corresponding image is an unstable strip. In
particular, taking the composition of all the maps we see that (5.12) with j =0
defines a stable strip B2 C Bg(ff,o) that is mapped to an unstable strip Bz C B:(Ei’“)
by \I/g;k1 o f¥oW, . This proves the first property in the definition of an {-regular
branch. For the second, we observe that by (7.3), each f,, , = f(ac] hofo

VU, _, has a derivative that maps K" into K “ and that the transition map
\I/;j1 o Wy, ,) maps this into K by the definition of overlapping charts;
moreover, the first map above expands each vector in K% by a factor of at
least e*/2, and so after composing with the transition map, the derivative of
\I/;j1 o foW,, , expands each vector in K* by a factor of at least eM2e= N4,

Iterating completes the proof of Theorem E.

9.2. Shadowing: Proof of Theorem F

We prove Theorem F using Theorem E and the definition of regular branch in
Definition 5.6, together with the hyperbolicity estimates from Proposition 5.7.
Start by choosing the constants as in the assumption of Theorem F.

First we prove that V*® := [, 5, f~ (V. N ig o 1HHBer )] Jength

local (Qe2<o, \/3)-stable curve. Given n € N, let £™F := ({y,...,0,) and
vt = (x0,...,1,), so that % is an (£™F, 6, \)-pseudo-orbit, which by
Theorem E determines an /™ *-regular branch. Let B2(n) C B%O) be the cor-
responding stable strip.

The boundary curves of the strips {B2(n)},en can be represented as the
graphs of a uniformly Lipschitz family of functions spanes — spane; (recall
Fig. 5 and Definitions 5.1-5.3). This family contains a sequence that con-
verges uniformly to a Lipschitz function whose graph is a continuous curve
V* CN),50 B2n) C B, with endpoints on [—b(z),b(z)] x {~b(z),b(z)} C B,.
Moreover, the expansion estimates in Definition 5.6 imply that any full
length unstable admissible curve in B, intersects B2(n) in a curve of length
< 2bge=*"/3_ and thus intersects (), ~, BL(n) in a single point. It follows that

Ve = ﬂnzo B2(n), and thus V* = ﬂnzof_n(/\/‘ggin)) = \I’m(nnzo B3(n)) is a
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continuous curve satisfying the geometric conditions in Definition 1.10; more-
over, V* is full length in A,. To prove that it is a local (Qe20, \/3)-stable
curve, we need to prove that it is C! (in fact we will prove that it is C1THdlder)
and that for every y,z € V*® and j > 0 we have

d(fi(y), f1(2)) < Ce_)‘j/3d(y, z) for C = @626@0. (9.1)

We start by proving (9.1). Given n > 0, let W,, be an arbitrary full
length stable admissible curve in the unstable strip f™(¥, (B(n)), and let
Vi = f7™(W,,). Then for each y, z € V* there are y,,, z, € V,, such that y,, — y
and z, — z. Moreover, (5.17) from Proposition 5.7 gives d(f’(y,), f/(z,)) <
Ce=/3d(y,, 2,) for all 0 < j < n. Thus for every j > 0 we can send n — oo
and deduce that (9.1) holds.

It remains to show that V* is C1THOMer To this end, let 2 € V* be
arbitrary and choose a unit tangent vector v,, € (ng)*lK;‘mfn(I) C T,M,
where the cones are as defined in (5.11). Then (5.17) from Proposition 5.7
gives

1D fvn|| < Cem7 (9:2)
for all 0 < j < n. By compactness of the unit tangent space there is a subse-

quence v, — ei € T, M. For every j € N, (9.2) holds for all v,, with n; > j,
and thus it holds for e as well:

IDfies| < Ce™/3 for all j > 0. (9.3)

We will show that x — e is Holder continuous and that e} is tangent to V*
at x; this will complete the proof that V* is a local (C, A/3)-stable curve.
Let e} be an arbitrary unit tangent vector in K/ .. From (5.16) in Propo-
sition 5.7, we have
IDfies] > @ tem2eess

for all 7 > 0. Observe that

A A A
—2el; + gj > —2ely — 2¢j + §j > —2¢ely + Zj’ (9.4)
where the last inequality uses the fact that e < %— % = 1—>‘2, which follows from
(1.7). We conclude that
|Dfiev| > Qe 2N/t = 01N/ for all j > 0. (9.5)

Using (9.3) and (9.5), we can apply Proposition 8.4 and conclude that z — e
is Holder continuous.

It remains to show that e is tangent to V*® at x. Equivalently, we must
show that for any w > 0, the cone

K. = {0} U{act +bel : Ja| < wlpl} € TaM

has the following property: there is a neighbourhood U C T, M containing
the origin such that (exp, |) (V) lies in K. Once we verify this, we can
conclude that V* is differentiable at x and that e is in its tangent space.
To find the neighbourhood U, we first observe that given w > 0, every v €
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T, M\K,, has the form v = ae¥ + be’ for some |a| > w|b| with |a| > 0. Thus
for all 7 > 0 we have

IDfLo]l = lallDfiesll — I Dfiesll = lal(C N/t —w™lCe 7).
Moreover, ||v|| < |a] + |b] < |a|(1 +w™1), and thus

| Dfiv| < C1leM/4 — y=10e=2i/3
[ — 1+wt '

(9.6)

Now we fix a choice of j sufficiently large that the right-hand side of (9.6) is
at least 3Ce~*/3, and let U C T, M be a sufficiently small neighbourhood of
0 that for all v € U we have

A (exp, 0), f72) _ 1D
d(exp, v, T) —2 v

Combining this with (9.6) and our choice of j, we see that for all v € U\ K,
we have

d(f? (exp, v), fix)
d(exp, v, )

> 3 e2iss
- 2 b

and comparing this to (9.1) we conclude that exp, v does not lie on the curve
Vs, Tt follows that (exp, |r)~1(V?®) C K., and since w > 0 was arbitrary, this
shows that V* is differentiable at = and that ef is in its tangent space. This
completes the proof of the first part of Theorem F. The second part of the
theorem follows by an identical argument.

Remark 9.1. The same proof given above can also be applied to a family of
(C, k)-hyperbolic branches as in Proposition 4.10; it suffices to replace A\/3
and A/4 in the above arguments with x, and to replace the cone families from
(5.11) with the cone families associated with the hyperbolic branches. Thus
we have also proved Proposition 4.10.

It remains to prove the third part of Theorem F. Existence and uniqueness
of the shadowing point follow immediately from the first two parts: indeed, a

bi-infinite pseudo-orbit determines a local stable curve V* =1, ., f —”(/\/gﬁﬁ"))

and a local stable curve V* =, -, F V)Y and thus MNhez FrNE)) =
VSN V™. Since the curves determined in the first two parts are both full length,
they have a unique point of intersection, which is the unique shadowing point.

Now we establish regularity of y. Fix d, A > 0 and let A’ be the collection
of unique shadowing points for (¢, d, \)-pseudo-orbits in A, where £ € N? can
be arbitrary. Observe that A’ is invariant since as remarked after the statement
of Theorem F, if y is the unique shadowing point for Z, then f(y) is the unique
shadowing point for oZ. Given y € A’ we have local stable and unstable curves
Vy /% as in the first two parts of the theorem. Moreover, these curves satisfy
f(vs) Vi (since shadowing the orbit for n > 0 implies shadowing for

Y
. Thus the subspaces defined by E;/ Y= TyVZS/ “

n>1)and f~1(V*) C Vit
produce a measurable D f-invariant splitting on A’.
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It remains to prove that this invariant splitting satisfies (H1)-(H3). We
start by letting ef/“ be unit vectors in E;j/“ and observing that (9.3) and (9.5)
imply that writing C(y) = Qe?*, we have

IDfyeyll < C(y)e /% and IDfyeqll > C(y)~tern/4

for all n > 0, where we observe that (9.5) applies to a broader class of unit
tangent vectors (anything in the cone K ;;M), and in particular applies to our
choice of ej. This establishes two of the four inequalities in (H3); the other
two follow from the analogues of (9.3) and (9.5) for the backward pseudo-orbit

and corresponding unstable curve.

Remark 9.2. The fact that (9.5) contains A/4 instead of A/3 is due to the fact
that we must use (9.4) to compare the level of regularity at the two ends of
the orbit segment. One consequence of this appears later in Proposition 11.3
and its proof in Sect. 11.2, when we build a nice rectangle for which \/3
appears in the hyperbolic branch property, but A/4 appears in the regularity.
Roughly speaking one may say that the hyperbolic branch property controls
contraction/expansion from the endpoints to somewhere in the middle of the
corresponding orbit segment, but regularity requires us also to control it when
going between two points in the middle of the segment, and for this we must
weaken A/3 to A/4.

To prove (H1) for C, observe that f(y) is the shadowing orbit for oz with
regularity sequence £, so that C(f(y)) = Qe**‘1, and thus
e < O(f(y))/Cly) < ™. (9.7)

Now we need to estimate £(E,, E;}). First observe that £(E}, Eyf) > [le; —ey||
since the angle represents the length of the arc of the unit circle joining the
endpoints of e; and ey, while the right-hand side is the length of the straight

line joining them. Let v"/* := Dy\I/;()leZ/S and observe that |[v*/*|| > 3 by the

u/s

first estimate in (5.15). Moreover, € K*/* so the endpoint of v* lies in

the region of R? given by
{(z,y) € R®: |y| S wlz| and 2 +y* > 1/4},
while the endpoint of v lies in the region
{(z,y) € R? : |z| < wly| and 2? +y* > 1/4},
Thus, by (5.9), [[v* — v*|| > 1/2,1° and we conclude that
1 . _ 5 2 ‘
5 Sl = w7l < 1Dy W lllley — ell < 4QoQe* L (Ey, Ey)
using the second inequality in (5.15). Thus
s u A—1_—2¢l,
L(Ey Ey) 2 Q e ™,

15 An elementary computation shows that the optimal lower bound is (1 — w)//2(1 + w?).
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so putting K (y) := Q te2¢% establishes (H2), and (H1) for K follows just
as it did for C. We conclude that the set A’ of shadowing points is (A/4, 2¢)-
hyperbolic. Moreover, to find which A contains y, we write

C(y) _ @626(0 < 6266

and find that this holds as soon as £ > {y + i log @ A similar computation
with K (y) shows that y is (A\/4,2¢, €y + [ 5 log Q])-regular.

Part III. Nice Rectangles and Young Towers

In this third and final part of the paper, we apply the general results stated
in Theorem E and F, and proved in Part II above, to our particular setting in
order to prove Theorems B, C and D. As mentioned above, Theorem A follows
directly from Theorems B and C, and therefore this completes the proofs of
all our results. The sections are organized as follows: in Sect. 10 we prove
Theorem D, which is essentially a reformulation of Theorem E in the setting
of almost returns to nice domains, in Sect. 11 we show that Theorem D implies
Theorem B, and in Sect. 12 we prove Theorem C.

10. Hyperbolic Branches in Nice Domains: Proof of Theorem D

The proof of Theorem D consists of two parts. First we show that every almost
return gives rise to a pseudo-orbit and thus, by Theorem E, to a regular branch,
which satisfies the hyperbolicity estimates given in Proposition 5.7. Then we
show that this regular branch can be “restricted” to give a hyperbolic branch
in the nice domain I',,;. This second part of the proof does not explicitly require
Theorem E, it only uses the existence of a regular branch, but does use in an
essential way the fact that I', is a nice domain.

To begin, let C; be the constant given in Theorem 1.12 (without loss of
generality we may assume that Cy > 1), ¢co > 0 as given in (1.5), and § > 0 as
in Theorem E. Then we let

567)\(Z+1) e—c2

r=——<9¢

10.1
o <8 (10.1)

where the inequality holds since Cy > 1 and A, ¢,co > 0. For generality we
state the following lemma for almost returns in a slightly more general setting
than that of Theorem D, without any explicit references to rectangles or nice
domains.

Lemma 10.1. If z,y € Ay and k > 1 are such that f*(V;) NV # 0, and
ze fRVaN V' satisfies d(z,y) < r and d(f~%(z),z) < r, then the sequence
T = (20,...,2) given by x; = fi(x) for 0 < j < k/2 and z; = fI=*(y) for
k/2 < j <k isan ({,0,\)-pseudo-orbit for {; = min(l+ j, L+ k — j).



1034 V. Climenhaga et al. Ann. Henri Poincaré

Proof. Write i = |k/2]. By assumption z € V,* and f~*(z) € V;# and therefore
by the assumptions of Lemma and Theorem 1.12 we have

d(fi(z), f7F(2)) < Coe™Md(z, F7%(2)) < Cre™ir < %567/\(@”‘)7
and
' ' - ; 1 _
d(f7R(2), [75(y)) < Coe™ P04 (2, y) < Cre M0y < §5e—A(z+l)7

and thus d(f(z:),2i41) = d(f'(2), Fi(y)) < 6e D, Since f(z;) = 2541
for all j # 4, this completes the proof. O

Consider now the setting of Theorem D: suppose I' is a nice regular set
with diam(T',,) < r and suppose x € I" has an almost return to I' at time
k € TN. Then the assumptions of Lemma 10.1 are satisfied and there is an
(,0, \)-pseudo-orbit = (zq,...,x)) as in the lemma starting and ending
inside I'pq. Moreover, notice that

d(f(p),z1) = d(f(p), f(x0)) < e*d(p,z0) < ™ diam(Tpq) < e?r < deNHY,

where the first inequality uses the general fact from (1.5) that d(f(x), f(y)) <
ed(x,y) for all z,y € M, the second inequality is immediate since p, zg € Iy,
the third uses our assumption that diam(T'y,) < r, and the fourth uses (10.1).

By a similar calculation, d(f(vr_1),p) < de >, and therefore the
sequence

ﬁ:: (p,l‘l ~-~,l‘k;—17p)

is also an (£, 8, \)-pseudo-orbit. Considering the Lyapunov chart U, B,(f) —
Np(£)7 by Theorem E there is an /-regular branch from Bl(,e) to itself associated
with this pseudo-orbit, and we have the corresponding maps

By B and AR (102

at the level of Lyapunov charts and of the manifold, respectively, recall (5.13).
For this branch Proposition 5.7 gives the hyperbolicity estimates required in
Definition 4.8 for a (Q\eQd,)\/S)—hyperbolic branch. Moreover, concatenating
any finite sequence of such branches gives a new ¢-regular branch that is associ-
ated with the concatenated pseudo-orbit, and thus has the same hyperbolicity
estimates given by Proposition 5.7. Thus the collection of such branches sat-
isfies the concatenation property.

Remark 10.2. We emphasize that these are not yet the hyperbolic branches
we require for I'p4 as in Definition 4.8. Indeed, these branches are constructed
on the scale of the Lyapunov chart which a priori may be significantly bigger
than the scale of the nice domain I'yg. The strips N} ,/\/'Ié€ intersect I'p, but
may extend across the boundary of I',,,. We therefore need to “restrict” these
branches to I'p, and produce I'p,-strips Cs C NP and v c NE such that f*
maps C*® onto C. Since these are subsets of the larger strips ./\/;9,/\/%f and the

cones K,i/yu C Ty M defined in (5.11) give conefields over I',, that are adapted



Vol. 23 (2022) SRB Measures and Young Towers on Surfaces 1035

Ficure 10. Proving Theorem D

to the set I', the restricted strips will automatically inherit the hyperbolicity
and concatenation properties.

The remaining part of the argument is essentially topological, and this is
where the niceness assumption plays a crucial role. Indeed, the crucial conse-
quence of niceness is formalized in the following statement.

Lemma 10.3. Let I' be a nice reqular set and suppose that some x € I' has an
almost return to T at a time k € NT. Then f*(W2) C Tpy.

Proof. Suppose by contradiction that the conclusion does not hold. Then
FF(W$) must intersect one of W;j o but this implies that the image under

f~F of this intersection point lies in the interior of I'pg, which is forbidden by
niceness. g

As shown in Fig. 10, let
Y =WENNY and Ay =W NN,

Lemma 10.4. The curves f* (vp) and fF (vg) are full length unstable admissible
curves in I'yg.

Proof. We prove the statement for 77, the same argument applies to 7'
Observe that each endpoint of 7,7 lies on either W, W, or the stable boundary
ofj\/;g. Since p and ¢ are fixed by f*, we have fk(W;) C W, and fk(W;) cC Wy
it follows that each endpoint of f* (’y;j) lies on either W7, W¢, or the stable
boundary of f¥(N?) = N}. Since f*(%) must intersect I'py by Lemma 10.3,
these restrictions on its endpoints guarantee that it is a full length unstable
admissible curve in I'p,. 0
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Proof of Theorem D. By Lemma 10.4, f’“(’y;‘), fF (74) are full length unstable
admissible curves in I'p, and therefore they define an unstable strip C* in
I'pq, whose preimage C® = f*k(@) is a stable strip in I'pq, thus yielding the
desired hyperbolic branch. The required hyperbolicity estimates are inherited
from the regular branch of which this hyperbolic branch is a subset. O

11. Building a Tower Out of Hyperbolic Branches: Proof of
Theorem B

In this section we prove Theorem B. In Sect. 11.1 we introduce some defi-
nitions and notation and reduce the proof of Theorem B to three Proposi-
tions 11.3, 11.5, and 11.6. We then prove each Proposition in its own subsec-
tion.

11.1. Saturation and Young Towers

Before formulating the propositions, we need to establish some notation and
to introduce the notion of saturation.

Let I',; be a nice domain and suppose that A C I'y, is such that every
point € A has full length stable and unstable curves W *. Suppose more-
over that A has the (C, k)-hyperbolic branch property for some C,x > 0 (see
Definition 4.14). Let €(A) denote the set of hyperbolic branches associated
with almost returns to A, and let €5(A) C €(A) be the subset consisting of
those branches associated with (true) returns. Let €*(A) denote the set of
branches obtained by concatenating finitely many members of €(A). Thus we
have

Co(A) C C(A) C T (A).

Remark 11.1. Both inclusions can be proper. For the first one, A can have
almost returns without having any true returns, for example, if the set A
consists of one non-periodic point which returns to Iy, then there is no return
to A but almost returns may exist. For the second, €*(A) may even contain
branches f*: Cs — O such that C* and C* _are disjoint from A. This can
oceur if two branches fi: 01 — C’1 and fJ 02 — 6'2 generated by almost
returns have a concatenated branch fi+7: O — Cv (recall Definition 4.11 and
Fig. 3) with the property that the part of A in Cf lies entirely outside of C’S,
and similarly for CA%‘

Since f is a diffeomorphism of a compact manifold the derivative of f
is bounded and so for each ¢ > 1 there can be at most a finite number of
hyperbolic branches of order ¢. Thus we can index €y(A) by

In(A):={ij: i € TN,j € {1,....;m;}},

where i gives the order (return time) of the hyperbolic branch and j indexes
the m; hyperbolic branches with order i. Therefore we obtain

Co(A) = {f": C5; — Clhijery(a)- (11.1)
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We consider the particular case when A is a rectangle.

Definition 11.2. (Saturated Rectangle). Let I' C T', be a nice rectangle with
the hyperbolic branch property!® and let I(T') and €,(I") be as above (see
(11.1)). The rectangle I' is called saturated if for all ij € Io(I"), we have

Cy=[fTU(CENC®) CcC® and Cf = f(C;NCY) CC,  (11.2)
where C*/* = User W™ as in (2.2).

See Sect. 11.5 for a general discussion of the saturation property and its
connection to the first return property of the Young tower that is eventually
constructed, as well as to multiplicity of the associated countable-state Markov
coding. That section also includes an example of a non-saturated rectangle.

Given x > A > 0,0 < e < e1(f,x,A), and £ € N, let » > 0 be given
by Theorem D, so that every (x, ¢, £, r)-nice regular set has the (@ezd, A/3)-
hyperbolic branch property.

Proposition 11.3. With x, A\, €, ¢, 7 as above, let A be a (x, €, ¢,r)-nice recurrent
set. Then there exists a nice (Qe*‘, \/3)-rectangle T C T, such that the
following are true.

(1) ACT C Ty

(2) T is T-recurrent.

(3) T satisfies the (@6265, A\/3)-hyperbolic branch property.

(4) €o(I') = (') = €*(T') = €*(A).

(5) T is saturated.

(6) T is (A\/4,2¢,0 + 0')-regular, where ' = [5-log Q).

Remark 11.4. See Remark 9.2 for a discussion of why A\/3 appears in the hyper-
bolic branch property (3) and A/4 appears in the regularity property (6). This
regularity property is used in the proof of Theorem B(2) to establish a Holder
continuity estimate ((11.3) in Proposition 11.6) leading to bounded distortion
(condition (Y2) in the definition of Young tower), but the construction in
Proposition 11.5 of the topological Young tower for Theorem B(1) only uses
the hyperbolic branch property (3).

At first glance it may appear redundant to state both conclusions (3) and
(6) in Proposition 11.3, since Theorem D guarantees that every nice regular
set satisfies the hyperbolic branch property, so one might reasonably expect to
deduce (3) as a consequence of (6). The problem is that A is (x, €, £)-regular
while T' is only (\/4,2¢, £ + ¢')-regular (which is weaker), and so in order to
apply Theorem D and deduce that T' satisfies the (C, k)-hyperbolic branch
property for some k € (0,\/4), we would need to make more careful choices in
our original setup, choosing 0 < € < %e1(f,\/4, ) and then r = r(\/4, K, 2€).
This can be done but would create a more complicated set of conditions for €
and 7 in our main theorems, which we prefer to avoid; after deducing conclusion
(6) from Theorem F (see the paragraph following Lemma 11.9), we deduce

161n fact one does not need the full strength of the hyperbolic branch property to make this
definition; it suffices to have a hyperbolic branch associated with each (true) return.
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conclusion (3) by finding an almost return to A itself, to which Theorem D
can be applied, see Lemma 11.13 and the sentence following it.

Proposition 11.5. Let I' C Ty, be a T-recurrent nice (Cy, k)-rectangle satis-
fying the (Cy, k)-hyperbolic branch property, and suppose that T is saturated.
Then T supports a first T-return topological Young tower.

Replacing T-recurrence with Lebesgue-strong T-recurrence allows us to
upgrade the topological Young tower to a fully fledged Young tower satisfying
the required distortion estimates and having integrable return times.

Proposition 11.6. LetI' C T’y be a Lebesgue-strongly T-recurrent nice (Cy, k)-
rectangle satisfying the (Co, k)-hyperbolic branch property, and suppose that
Coe T < 1. Suppose moreover that T' is saturated and that there are
Cy,B1,71 > 0 such that v1 < pik and for all a € Z and z,y € f*(I'), we
have

d(EY, EY) < Crerld(x, )™, (11.3)
Then T supports a first T-return Young tower with integrable return times.

To prove Theorem B, we will apply Propositions 11.5 and 11.6 to the
rectangle constructed in Proposition 11.3, with Cy = @626£ and K = A\/3.
Propositions 11.3, 11.5, and 11.6 will be proved in Sect. 11.2, Sect. 11.3, and
Sect. 11.4, respectively.

Remark 11.7. The only hyperbolic branches that are required in the proof of
Propositions 11.5 and 11.6 are those associated with true returns (of I'); so
these results remain true if the hyperbolic branch property from Definition 4.13
is weakened to only require that the set of true returns produces a collection
of hyperbolic branches with the concatenation property, rather than requiring
such a collection for the (larger) set of almost returns. Branches associated
with almost returns (of A) play a crucial role in the proof of Proposition 11.3
for establishing the saturation property; roughly speaking, once this property
is obtained it is enough to consider true returns.

Proof of Theorem B. As stated before Proposition 11.3, we choose r depend-
ing on x, A\, € ¢ to satisfy the conditions of Theorem D, and thus given a
(x, €, ¢, 7)-nice recurrent set A as in the assumptions of Theorem B, Propo-
sition 11.3 yields a nice rectangle I' C I'p, that contains A, is T-recurrent,
satisfies the (@62ez ,A/3)-hyperbolic branch property, and is saturated. Thus
Proposition 11.5 applies to I', and we conclude that I" supports a first T-return
topological Young tower, which proves the first part of Theorem B. For the sec-
ond part of Theorem B, we will apply Proposition 11.6 to I', which requires us
to verify Lebesgue-strong recurrence, the (Cy, k)-hyperbolic branch property
with Cpe "1 < 1, and (11.3) with v; < B1k.

To this end, first observe that since A is Lebesgue-strongly T-recurrent, so
is any set containing A, including I'. Moreover, with Cy = @e%e and k = \/3,
we have Che "1 = @e%ee’)‘T/3 < 1 by our choice of T in Definition 1.16.
Finally, since I" is (A/4,2¢,£ 4 ¢')-regular by Proposition 11.3(6), we see that
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F(IT) is (A\/4, 2¢, £+0' +]a|)-regular for every a € Z. We can deduce (11.3) from
Proposition 8.4, and specifically (8.6) (with s replaced by u), where we replace
x with A/4. More precisely, regularity guarantees that for all z,y € f*(T')
we have (8.7) and (8.8) with C' = e2(+'+lal) and y replaced by A\/4, and
moreover £ (E$, E*) > C~! for z = x,y, so that Proposition 8.4 gives Qg > 0
depending only on M, |[Df*Y|, a, |[Df*'|,, and \/4, such that

d(EY, By) < Qu(e* M3 d(a, ) = Qet* HO 2 (2, 4)
where 5" and 4/ are obtained by replacing x by A/4 in (1.6) to get

2 2\

, %—cl A —4ey
o= .
s+ % deg + A

= = d g
TS oy d

(11.4)

It follows that (11.3) holds with Cy = Q4e!2¢Y ¢+~ = 12¢y/, and 3 = 7.
Thus the condition that v < 1k is equivalent to 127" < 8'A/3. Using (11.4),
this is equivalent to

A —4deq 2\« A
€

6 2,

A 4es+ XN 3
which holds by the fifth inequality in (1.7). This confirms that we can apply
Proposition 11.6 to I' and completes the proof of Theorem B. ]

11.2. Proof of Proposition 11.3

We will define T" as the “maximal invariant set” for the dynamics generated by
the hyperbolic branches associated with almost returns to A (via Theorem D).
This can be thought of as a generalization of the standard horseshoe where we
define a maximal invariant set as consisting of the points which remain in the
strips for all forward and backward iterations. The key difference is that in the
horseshoe setting we have at most a finite number of branches with pairwise
disjoint stable strips and pairwise disjoint unstable strips, all of which have
the same return time. In our setting, a point  may belong to infinitely many
stable strips with varying return times and therefore we need a more involved
construction. With this in mind, we make the following general definition. Let

C={f:C5 — Cli}ijer
be a collection of hyperbolic branches indexed by the set I. Note that so far

we do not assume that these come from almost returns to a nice regular set;
for now we allow an arbitrary collection of hyperbolic branches.

Definition 11.8 (Hyperbolic sequences). A sequence h = {iy,jm 120, with
ImJjm € I is a forward hyperbolic sequence for x € I, if for all m > 0 we have

flotittinai(zy e CF . . (11.5)
Similarly, B~ = {iymjm bms oo 18 a backward hyperbolic sequence for x € T, if
for all m < 0 we have

frlmtFiD(@y e Cs (11.6)
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If = and hT are backward and forward hyperbolic sequences for z, their
concatenation b = {4, jm }mez is called a hyperbolic sequence for x (associated
with the collection of hyperbolic branches €).

A point  may or may not admit a forward or backward hyperbolic
sequence and, if it does, these sequences need not be uniquely defined. Consider
the sets

C*t:={x €T, | ¥ has a forward hyperbolic sequence h*},
C™ :={z €T, | x has a backward hyperbolic sequence h~}.

Lemma 11.9. Given an arbitrary collection € of (C, k)-hyperbolic branches, the
following set is a nice (C, k)-rectangle and is T-recurrent:

I[':=CT"NC~ ={x €Ty, |z has a hyperbolic sequence h}.  (11.7)

Moreover, CT = U,er Wi and C~ = J,er WY, so that Ct = C*(T) and
C~ = C"(T) in the notation of (2.2).

We think of I as the “maximal invariant set” of €.

Proof of Lemma 11.9. To prove that I is a rectangle, we use arguments similar
to those in the standard horseshoe setting. Let § = {i;,)m }mez denote a
hyperbolic sequence for the point z, and bi its forward and backward parts.
For each n > 0, the branches fm : C‘S i C“ o Withm =0,1,...,n can be
concatenated as in Definition 4.12 to produce a branch of order zo—l—zl —|— i
by Proposition 4.10, the intersection (over all n > 0) of the resulting branches
is a local (C, k)-stable curve that has full length in I'p,. It can be characterized
as

W2 ={y €Ty, :hT is a forward hyperbolic sequence for y}.  (11.8)

A completely analogous argument shows that every z € I" has a full length
local (C, k)-unstable curve

Wi ={y €Ty, : b~ is a backward hyperbolic sequence for y}. (11.9)

This implies that for any z,y € I' the intersection W7 N W/ consists of a
single point z. Moreover, x has a forward hyperbolic sequence b} and y has a
backward hyperbolic sequence b, ; writing f for the concatenation of these two
sequences, it follows from (11.8) and (11.9) that b is a hyperbolic sequence for
z, s0 z € I'. This shows that I is a rectangle, as claimed.

To see that Ct = C*(I") it suffices to observe that C™ is a union of curves
Wz by (11.8), so C* = U,ccr Wi D U,er Wy, while given an arbitrary
z€CT and y € ' we have z = [z,y] € T and z € W, s0 CT C |, .r WE. A
similar argument gives C~ = C*(T).

Finally, the fact that I" is recurrent follows almost immediately from the
definition; if B = {i,n7m }mez is a hyperbolic sequence for x € T, then f%(x)
and f~%-1(z) have hyperbolic sequences given by shifting h one index in either
direction; hence, ig and —i_q are return times to I'. O

zel
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Now we restrict ourselves to the case when € arises from almost returns.
Given x > A >0,0< e < €e1(f,x,A), and £ € N, let » > 0 be given by Theo-
rem D, so that every (x, €, £, r)-nice regular set has the (@62627 A/3)-hyperbolic
branch property. Let A be a (x,¢€,£,7)-nice recurrent set and let € = €(A)
be the corresponding collection of hyperbolic branches associated with almost
returns via Theorem D. Then Lemma 11.9 shows that (11.7) defines a nice
(Qe2<, \/3)-rectangle I’ C I, that is T-recurrent, verifying conclusion (2) of
Proposition 11.3. Conclusion (6) on regularity follows from Theorem F. For
conclusion (1), we observe that since A is recurrent, given € A there are
i0,i1,42, -+ € N such that zp := flotit-+i-1(x) € A for all k > 0; then
fi(xy) = w41 is a return to A that produces a corresponding hyperbolic
branch in €, and the sequence of branches obtained this way is a forward
hyperbolic sequence for x. A backward hyperbolic sequence is produced simi-
larly, and thus = € T', verifying (1).

Remark 11.10. Everything in the previous paragraph remains true if we
replace €(A) with the (potentially smaller) collection €y(A) of branches asso-
ciated with true returns. However, in the remainder of the proof it will be
essential that we define I' using the collection of branches corresponding to
almost returns.

It remains to prove conclusions (3), (4), and (5). In order to prove
these conclusions, we need the following result about hyperbolic branches.
We remark that this is the one and only place in the paper where we use the
assumption from Definition 1.16 that T is even.

Lemma 11.11. Let 'y, be a nice domain. Then for any hyperbolic branch
fi:C* — C" we have Int(f*(C*)) N Olpg = 0 for all k = 0,...,7 that are
multiples of T'. Moreover, if fi/: Cs — O™ is any other hyperbolic branch,
then the corresponding stable (resp. unstable) strips are either nested or dis-
joint.

Proof. The first statement is automatic for & = 0,4. Suppose that there exists
some k € {1,..,4 — 1} such that Int(f*(C*)) N OTpg # 0. Then we must have
Int(f*(C*)) N (W UW;) # 0 or Int(f5(C*)) N (W2 UW) # 0 (or both).
In the first case, iterating forward by ¢ — k iterates, this would imply that
Int(@“) N f"_’“(VV;g UW;) # 0, contradicting the niceness property of T'q.
Similarly, in the second case, iterating backwards by k iterates, this would
imply Int(as) N f*k(W; UW}') # 0, contradicting niceness.

For the second statement, assume without loss of generality that 7 < 4’
Suppose by contradiction that the two stable strips GS,CA"S # () are neither
nested nor disjoint (the argument for unstable strips is exactly the same).
Recall that the stable boundaries of és,é’s are pieces of the global stable
curves of p,q (see Remark 4.9) and therefore cannot intersect unless they
agree; thus the intersection CsnC'"is a single stable admissible curve or a
non-empty stable strip.
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FiGURE 11. Two overlapping branches leads to a contradic-
tion (Lemma 11.11)

FiGURE 12. Proving Lemma 11.12

In the first case, we see that f* maps this stable admissible curve v* to the
local stable manifold of either p or g. Due to our choice of T even, D, fT and
D, fT have positive eigenvalues, and it follows that since i’ > i are multiples of
T, there is an open region U C Crs adjacent to v° such that fi'(U) Ny =0,
contradicting the assumption that fi/ 10" = C'is a hyperbolic branch.

In the second case, each stable strip has one of the components of its
stable boundary inside the interior of the other stable strip, see first figure in
Fig. 11. It follows that fi(a’s) contains a piece of the stable boundary of I'y,
in its interior, contradicting the first statement proved above. O

To prove conclusion (3), that T' has the (@6255, A/3)-hyperbolic branch

property, we start by proving the following lemma, which is illustrated in
Fig. 12.

Lemma 11.12. Suppose that W* and W* are full length local stable and unsta-
ble curves in I'yq and that 7 € TN is such that fT(W?®) N WY # 0. Suppose

moreover that f*: Cs — C* and fi/: C's — C" are hyperbolic branches with
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1,4 > 7 such that W* C C* andW* C C". Then for any full length local stable
and unstable curves W2 C C* and W* C C™, we have TV NWE £,

In particular, if ANC® # 0 and ANC" +# 0, then there exists 7j € I(A)
such that the hyperbolic branch f7: aj] — éﬁj from the collection €(A) has

We c Cs; and W C C¥.
Proof. Observe that fT(as) nec™ > fT(W) N W £ (. Applying f~7 gives
Co N7 (C) £ 0. (11.10)

This implies in particular that f*T(é’“) NT,, # 0; on the other hand,
Lemma 11.11 gives Int f~7(C"™) N Ty, = 0, and it follows that
FTT(C™) C Ty (11.11)
Now we claim that
FT(O°C™) N Int(C®) = 0, (11.12)
as shown in Fig. 12. To see this, observe that
FUFT(0°C") NInt(C*)) = f77(8°C™) N Int(CY)
CrTWynWw)NIntTp, =0
since I'p, is a nice domain. Applying f~*¢ gives (11.12), and together with
(11.10) and (11.11) this implies that f~7(C"*) fully crosses C* in the unstable
direction, as shown in Fig. 12. The conclusion about W and W follows; these
appear in Fig. 12 in the same configuration as W* and W* £10. R
For the final claim in the lemma, choose z € ANC?® and y € C'%
then apply the first part of the lemma to deduce that f7(Wz) N W # 0. By
Theorem D, the collection €(A) contains a hyperbolic branch f7: jj — C’;‘j
associated with this almost return, which has ajj > C* > W* and é\'T“J D)
C’ > W* as in Fig. 12. O

Observe that the previous two lemmas did not refer to the rectangle T’
they are general facts about nice domains and hyperbolic branches. Now we
once again consider the rectangle I' and prove the hyperbolic branch property
in conclusion (3).

Lemma 11.13. Let T' be the rectangle constructed in (11.7) using the collection
C(A) of (Qe** \/3)- hyperbolic branches associated with almost returns of A
by Theorem D. Let z,z" € T and 7 € TN be such that fT(WS)NWY # 0. Then
there is a branch f7: C* — C" in the collection C*(A) such that z € Cs.

Proof. A natural idea is to try to apply Lemma 11.12 to W and W} and
thus produce an almost return of A that gives the desired hyperbolic branch.
However, the lemma requires us to choose branches for z and 2z’ with order at
least 7; we can find such branches in €*(A) but not necessarily in €(A), and
there is no guarantee that these branches will contain any elements of A (see

Remark 11.1).
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Thus before applying Lemma 11.12, we first observe that z has a forward
hyperbolic sequence bt = {i,,7m }5°_, and let n > 0 be such that Zm 0fm <
T < > im. Let k = Z:;:lo i, and observe that by the definition of a
forward hyperbolic sequence, we can concatenate the branches fim : afm .

cy . for0< m < n—1 to get a hyperbolic branch f*¥: C5 — C¥ from €*(A)
such that z € C?.

Similarly, 2z’ has a backward hyperbolic sequence h~ = {i_j_m}50_1,
and choosing n’ > 1 such that 3" i, <7—k < 3" _ i ,, we can write
(= Z:Ln_ll i_, and do a similar concatenation to get a hyperbolic branch

fé: C’S — C’“ from €*(A) such that 2z’ € C’“
Now we observe that

Rt Wao ) W, D T E W) N f~H W) = fH(FT(W2) N W) # 0

by the invariance properties of local stable and unstable curves, and so the
point f¥(z) € T has an almost return at time 7 — k — £ via f~%(2') € T.

Moreover, f*(z) € afnjn and f~4(2') € 6;& ., where iy, i’ , >7—k—{by

our choice of n and n’. The corresponding branches are in €(A), so each of 6;9” in

and 6’;& ., contains an element of A, and we can apply Lemma 11.12 to get

)

a hyperbolic branch f7=F=¢: éff—k—aj — GZ‘T_k_Z)j such that z € G(ST_k_g)j.

Concatenating this with the branches f*: CA’ZS — ég and f¢: 6;, — CA';% gives
a hyperbolic branch from €*(A) whose stable strip contains z. g

Lemma 11.13 shows that every almost return of I' is associated with
a hyperbolic branch from the collection €*(A), and thus any concatenation
of such branches lies in this collection as well. Since these branches are all
(Qe2*, \/3)-hyperbolic by Theorem D, we have proved conclusion (3).

In fact, we have also proved that

¢o(I) € (') C €(T") C €*(A).

To prove conclusion (4) it suffices to show that €*(A) C €y(T). For this,
observe that any branch in €*(A) is obtained by concatenating a finite sequence
of branches from €(A), and repeating this finite sequence periodically in both
directions produces a bi-infinite hyperbolic sequence. This hyperbolic sequence
determines a unique point x € I', which is periodic, and the hyperbolic branch
associated with this periodic return is exactly the branch from €*(A) that
we began with. This establishes conclusion (4), and then the proof of Propo-
sition 11.3 is completed by the following result, which establishes conclusion

(®)-

Lemma 11.14. T' is saturated.

Proof. Given a branch f%: CA'fj — 6}5 from &y (I") = €*(A), for every w €
f—i(éu N C*) we have fi(w) € C* and therefore fl( ) has a forward hyper-

bolic sequence {imjm tm>0. The branch fi CS — C’“ is a concatenation of
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finitely many branches from €(A); adding these branches to the start of the
forward hyperbolic sequence for f¢(w) produces a forward hyperbolic sequence
for w. It follows that w € C*, thus proving the first inclusion in (11.2). A com-
pletely analogous argument works for the unstable leaves to show that I" is
saturated. O

11.3. Proof of Proposition 11.5

Let I' = C® N C" be a nice T-recurrent saturated rectangle satisfying the
(C, k)-hyperbolic branch property and let € = €y(T") denote the collection
of hyperbolic branches associated with returns to I', indexed by Ij. Recall
the definition of s-subsets and u-subsets from Definition 2.4. To each branch

1 g — Cf in € we will associate an s-subset I's; € Cf; NI and a u-subset
Il C @’3 N T such that f?: Iy, — I'ly is a bijection. We stress that both
inclusions are in general proper; roughly speaking, the reason for this is that
there may be some z € @; NT for which fi(x) ¢ T', and such points must be
excluded from I'{;; similarly for = € 6}; and f~%(x). To define 75, first recall
from (11.2) that for ij € Iy we write

Oy = F(CE e = Cyn (0",

U i As m u i w (1113)
i = f1(CnC) = Cin f1(C);
then let
L3 =Cynce, I = CpnCe. (11.14)

Notice that C7;, C}; are collections of stable and unstable leaves, respectively,
whereas I'};, I}, may be Cantor sets.
Lemma 11.15. For every ij € Io, I'};,T'}; are s-subsets and u-subsets, respec-
tively, of T' and fl(l"fj) = I'Yy. Moreover, if x € I' and i € TN are such that
fi(x) € T, then x € I'?; for some ij € Ily; in particular this implies that
I'= Uije]o Ffj = Uije[o F:LL;

Proof. By the saturation assumption, C7; € C*,Cj; € C* and therefore I'j; :=
ijﬂC“ C C°NC* =T and Iy = C%QCS C C*¥NC?® =T and so e,y T
Since C7; is a union of stable leaves and C}; is a union of unstable leaves,
the sets I'f; := C7; N C" and T, = C}% N C*® are s-subsets and u-subsets,
respectively, of I'. Moreover, directly from the definitions we have

FTy) = F(CHne e = f(CnC)nes =T,
For the second statement, let € T' and i € TN be such that fi(x) € T.
Since I has the (C, k)-hyperbolic branch property, there is a hyperbolic branch
fr: 05 — Cf in & such that z € Cf; NT and f*(z) € C NT. Since ' C C*,
the definition of C7}; gives

z=fT(f(2)) € fFHCHNT) C fTHCENCY) =Cy
Since we also have x €¢ ' = C* N C* C C* it follows that = € C’fj NCY = I‘fj.

The final assertion follows because I' is recurrent and so every x € I' has some
i,7’ € TN such that fi(z), f~" (z) € I. O
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FIGURE 13. Proof of Sublemma 11.18

Lemma 11.15 shows that there exists a cover of T' by s-subsets and
another by u-subsets satisfying the Markov property YO0 required in the def-
inition of topological Young tower. It does not however claim that this cover
is a partition of I' as required by the definition, i.e. that the s-subsets of the
cover are disjoint which in fact they may not be. The following lemma shows,
however, that they are pairwise either nested or disjoint, and this will then
allow us to choose a sub-cover made up of pairwise disjoint sets (see the proof
of Proposition 11.5 below).

Lemma 11.16. Let k¢ € Iy and suppose there exists x € I'j, and 0 < i < k
such that f*(x) € T. Then there existij € Iy such that T, € T'5;. In particular
all {T'; }ijer, are pairwise either nested or disjoint.

We will prove this lemma momentarily.

Remark 11.17. Notice that the last statement in Lemma 11.16 does not follow
directly from Lemma 11.11. Indeed, the fact that two stable strips CA'fj, 5;:[ are
nested does not a prior: imply that the corresponding sets C7;, C, are either
disjoint or nested, recall (11.2), and therefore also does not a priori imply that
I'};, T}, are either disjoint or nested, recall (11.14).

Sublemma 11.18. In the setting of Lemma 11.16, letting m = k — i, there
exist ij, mn € Iy such that C’\,je - afj, 6}& - CA'}jm, and such that f’(@zi) =
Ci5 N Con = F7M(CR)-

Proof. From Lemma 11.15 we have z € I'j; for some ij € Io. Therefore z €
I7;NT}, and so x € @Sj N 6,35 and in particular CA'Z-SJ- N C*,ge # () and therefore,
by Lemma 11.11, (f‘,j,z - afj, as shown in Fig. 13. Also, from Lemma 11.15,
xr € 5, implies € T and f*(x) € T and therefore, letting y = fi(z) € T’
we have f™(y) = f™(f!(x)) = f¥(x) € I. Thus there exists mn € Iy such
that y € C%,,,. We therefore have f™(y) € f™(Cs,,) = C%  and also f™(y) =
fF(z) € TY, € C%, and therefore C%, N CY # () and thus, since m < k,
6’}:[ C égm Then, since CA'EZ C @SJ are both full height vertical (stable) strips
and 5’}& - égm are both full length horizontal (unstable) strips, it follows that
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fi(aié) is “full height” relative to the horizontal strip @‘; and f*m(é,g,z) is
“full width” relative to the vertical strip C%,,. Since fi(aﬁe) = f*m(af&) we
complete the proof. O

Proof of Lemma 11.16. Let m = k — 1. Directly from the definitions,
Cho = fH(Cin C®) = [7H(f™(Cle N C°)). (11.15)
From Sublemma 11.18 we have f"”(a}je) = @% NCs,, and thus (11.13) gives
FTCl N C) = Cl NG, N f™(C) = CE N e
Substituting this into (11.15) and using the saturation condition which implies
Cy.n © C%, we get Cfy = fH(CHNCy,,) C fH(CENC®) =: Cf;, which implies
the statement since I'}, = C;, N C* C C7; N C* =T, by (11.14). O

Proof of Proposition 11.5. Since the family of sets {I'{;}ijer, are pairwise
either nested or disjoint, they are partially ordered by inclusion. We can there-
fore define the set Iy C Iy of indices ¢j which are mazimal with respect to this
partial order. We then let P := {I'{; };;c ;- By Lemma 11.15, every point z € I'®
belongs to some I'j; for some ij € Iy and therefore must also belong to some
maximal element I'j; for some ij € I5. Thus P is a partition of I into pairwise
disjoint s-subsets whose images are u-subsets. This gives the Markov—Young
structure. To see that it is a first return topological Young tower we suppose
by contradiction that there exists some k¢ € I}, x € I'j, and 0 < ¢ < k such
that fi(x) € I'. Then Lemma 11.16 implies that there exists some ij € I such
that I', C I';, contradicting the maximality of I',. O

11.4. Proof of Proposition 11.6

We split the proof into two independent parts, one to prove the hyperbolicity
and distortion conditions (Y1)—(Y2) using the hyperbolic branch property and
Holder estimate (11.3), and the second to prove the integrability of the return
times, which follows from the Lebesgue-strong T-return property.

11.4.1. Hyperbolicity and Distortion Properties of the Tower. We will verify
Conditions (Y1) and (Y2) in Definition 2.10. Fix i € TN, j € {1,...,m;}, and
x € I'};. Note that the map F' = fi I'}; — T has the (C, k)-hyperbolic branch
property with constant C' > 0 and £ > 0 independent of z. Since the number T’
is large enough, (see Condition 3 in Definition 1.16) it ensures that Ce™*T < 1
and Condition (Y1)(a) follows with 3 = Ce™"*T. Condition (Y1)(b) can be
shown by a similar argument.

We now prove Condition (Y2)(a), the proof of Condition (Y2)(b) is sim-
ilar. It suffices to show that there are constants ¢ > 0 and «; > 0 such that
for any z € I' and w € V7 we have

Jac"F(z)
Jac" F(w)
Indeed, setting z = F"(x) and w = F"(y), the desired bounded distortion
estimate follows from (11.16) and Condition (Y1)(a).

log < cd(z,w)*. (11.16)
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To show (11.16) notice that z € I';; for some i € TN and j € {1,...,m;}
and hence,
Jac (2) Jac“ f(f%(2))
1 ‘ = ‘ — | 11.17
° JacF(w) F(w) Z Jac“f (w)) ( )

Since I is a (Cp, k)-rectangle, we see that for any z € I', w € V7, and 0 < a <
i — 1, we have f*(w) € V., and

d(f*(2), f*(w)) < Coe™"d(z, w
Moreover, using the assumption that I" satisfies (11.3), we see that
A(Efa(zy, Efauy) < Cre7d(f7(2), £ (w))™
< C’le'“aC’é;le KBy (2, w)P = Cngle(“*“ﬁl)ad(z,w)ﬁl.

). (11.18)

(11.19)

Since f is C1*@, it follows that there is C, > 0 such that
Jac" f(f*(2) Jac" f(f*(z)) — Jac" f(f*(w))
Jac" f(fo(w) Jac" f(fe(w))
< Cod(Efa)s Bfouy)® (11.20)
< CoCP O e n=ria gy ),
If Jac" f(f*(2)) > Jac" f(f*(w)) this gives
Jacuf(fa(z)) Jacuf(fa(z)) o abBra a(yi—rBi)a Bra
8 TacTf(fo(w)) ~ Jactf(fa(w)) | = COTCTETTdE w)

The same bound holds with z and w exchanged, by exchanging their roles in
(11.20). Then by (11.17) we get

3=

Jac“F(z
| 7‘ < avBro Ot(’)’l KB1)a 510‘ 11.21
o8 2t § :020 cl d(z, w) (11.21)

Since we assumed 1 < (1K, we see that 1 — k31 < 0, and thus (11.21) implies
(11.16), which proves Condition (Y2)(a).

11.4.2. Integrability of the Return Times. Let F': I' — I be the induced map
to the base of the topological first T-return Young tower where F(z) = f7(®)(z)
and 7(z) is the first return time to I which is a multiple of T'.

For every n > 0 let

n—1

R, (x) := ZT(F](J?)) and v, (z) == #{0<i<n/T: fT(z) €T}

Jj=0

where we define Ro(z) = 0 by convention. Notice that R,,v, are on quite
different time scales, the index n in v, refers to the iterates of the original
map f, whereas in R,, it refers to the iterates of the induced map F. The
following relation between the two quantities is not surprising but neither is it
completely trivial, we thank Vilton Pinheiro for explaining it to us.
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Lemma 11.19. (Pinheiro [62]). Let x € T' and suppose lim,,_,oc Ry, (x)/n exists.

Then
i “ — (1 R“”))

n— o0 n n— o0 n

In particular lim,, o v, (x)/n exists and is equal to 0 iflim, oo Ry (x)/n = oo.

Proof of Lemma 11.19. For any x € T', by definition of v, () we have

k—1
vp(2) = #{0<i <n/T: fT(z) €T} = max{k >0: ZT(FJ(.T)) < n}
§=0

and so, for every n > 7(z), so that v,(z) > 1, we have
vy (z)—1 ‘ vy () '
Ry, (o) () := Z T(F/(z)) <n< T(F(x)) =: Ry, (z)41().
§=0 3=0

Dividing through by v, (x) this gives
Bo,@)(2) _ n (@) +1 Ry, (2)41(7)
vp(z) T () vn () vy () + 1
Since (vp,(z) + 1) /vn(x) — 1 as n — oo and the limit of the sequence R, (z)/n
exists, the subsequences on the left and right hand side of (11.22) also converge

to the same limit. It follows that the n/v,(z) converges and therefore also
vn(2)/n to a limit as in the statement. O

(11.22)

Lemma 11.19 leads to the integrability of the return times stated in Def-
inition 2.12. Indeed, by the results in [71] the induced map F': I' — I" admits
an SRB measure ji whose conditional measures /i, on unstable curves of points
of I' are equivalent to the Lebesgue measure my. on these same curves. It is
therefore sufficient to show the integrability with respect to one of these con-
ditional measures. For fi-a.e. z € T there is E, C V}* with zi,(ES) = 0 such
that

lim Bn(2)

n— 00 n

= / Tdj = / /po[z di(z) for all z € E,,  (11.23)
r r

where a priori these quantities may be infinite. However, since I' is Lebesgue-
strongly T-recurrent, there is a local unstable curve V* and aset E C V* NI
of positive one-dimensional Lebesgue measure such that for every x € E we
have limsup,,_, . vn(z)/n > 0 (see (1.9)). Now Lemma 11.19 implies that if
2 € E is such that lim,,_, R, (z)/n exists, then this limit is finite.

Observe that for each n > 1 and y € T, the function z — R, (x)/n is
constant on Vi'NI'. In particular, fixing z € I' and writing £ = {J, ¢ VNV,
we see that E, C V}* has (i,(E.) > 0 and that lim,_,. R, (z)/n is finite for
every z € E’, such that the limit exists.

Choosing z € T such that 1, (ES) = 0, we get i, (E., N E,) > 0. For any
point z € E, N E., (11.23) gives [ 7dji < oo, and it follows that [ 7 dyi, < oo
for fi-a.e. z. This completes the proof of the integrability of the return times
and thus the proof of Proposition 11.6.
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11.5. Discussion of the Saturation Condition

The saturation condition in Definition 11.2 is crucial to our construction of a
first T-return Young tower, but may appear mysterious at first glance, so we
give some general discussion here of the role it plays; this section is not part
of the proofs.

The strategy in the proof of Theorem B was to use a collection of hyper-
bolic branches € to produce a rectangle I' (Proposition 11.3), and then to
build a Young tower that has I' as its base (Propositions 11.5 and 11.6). In
Sect. 11.2, Proposition 11.3 was proved by taking € to be the collection of
branches associated with almost returns of some nice regular set A C I, but
Lemma 11.9 shows that the construction of a nice rectangle I' that is recurrent
works if we begin with any collection € of hyperbolic branches.

The proof of conclusions (3), (4), and (5) in Proposition 11.3, however,
required us to work with the specific choice of € given by the collection of
almost returns. To illustrate why this was important, consider the following
example, which shows how (4) and (5) can fail for a general collection €, where
the collection of hyperbolic branches associated with returns of I' may contain
some branches that do not appear as concatenations of branches from the
generating set €.

Ezxample 11.20. Suppose that D, q are fixed pomts and that I',, contains two
hyperbolic branches f: C§ — C% and f: C$ — C. Define a map 7: {0 1}% —
Tpg by m(x) = Nper f77( wn). To each finite word w = wowy -+ wy—1 €
{0,1}™ we can associate the cylinder [w] = {z € {0,1}2 : z; = w; for all
0 < j < n}, and 7[w] is the stable strip for a hyperbolic branch of order n
(recall Definition 4.8) associated with the word w.

Let € be the collection of two hyperbolic branches associated with the
words v = 01 and w = 10. Applying Lemma 11.9 to € produces the rectangle I"
consisting of all points 7 (z) for which xo, 2,41 € {v,w} for all n € Z. Observe
that for z = 10.10 € {0,1}% (where the overline denotes infinite repetition
to either the left or the right), we have w(z) € T' and f(w(z)) € T' (this is
a period-2 orbit), but the hyperbolic branch corresponding to this return is
f: 619 — 6{‘, which is not a concatenation of branches from €, so conclusion
(4) fails. Moreover, the rectangle I' is not saturated, because z = 7(01.10) € I’
has

FHCENWE) = {7(y) : Yoyrye - - = 110},

which is a full-length local stable curve that is disjoint from I' and thus does
not lie in C*, violating (11.2). Then the construction of a topological Young
tower in Sect. 11.3 fails: Lemma 11.15 does not go through because the sets
defined in (11.14) are not contained in T.

In fact one can still build a “not first return” topological Young tower
over I' by writing I'Y = {7 (y) : yoy1 = v} and I'}, = {7 (y) : yoy1 = w}, then
setting the inducing time 7 to be equal to 2 everywhere so that I'" = f2(I'%) =
{7(y) : y_2y—1 = v}, and similarly for T'%. This gives the Markov structure
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in Y0, but is not a first return tower because some points, such as the point
m(x) given in Example 11.20, return before time 2.

One might reasonably object that the rectangle in Example 11.20 is
indeed saturated if we take T = 2 and only consider returns at even times,
since then every T-return is associated with a concatenation of the branches
in €, and thus I' supports a first 2-return topological Young tower. This phe-
nomenon occurs if we start with any finite collection of branches €: taking T'
to be any common multiple of their lengths will guarantee that the rectangle
is saturated (for T-returns) and produces a first T-return topological Young
tower. This simple solution fails when € is infinite, as in the next example.

Ezample 11.21. Given three hyperbolic branches {f: 6;’ — é}*}je{07172},
define 7: {0,1,2}% — T, as in Example 11.20, and let € be the infinite col-
lection of hyperbolic branches associated with words of the form 210™1 and
1012 for n > 0. Then given any 7 > 4, we observe that z = 2101=41.210¢—41
has the property that m(z), f!(n(z)) € T, so for w = 210412 € {0,1,2}*, the
branch f?: 6'5) = 6;; is associated with a return to I', but is not a concatena-
tion of branches from €. Putting z = m(10°7%12.210°=%1) one can check that
FTHCENWE) ¢ Cf, so (11.2) fails and T is not saturated for any choice of T.
Because the stable strips associated with the branches in € are disjoint, one
can still build a topological Young tower (with infinitely many branches) as
in the paragraph following Example 11.20, but it will not be a first T-return
tower for any choice of T'.

The reason we can avoid these problems in Proposition 11.3 is that the
collection of branches we use there is not arbitrary: rather, it is the collec-
tion of all hyperbolic branches associated with almost returns to a particular
nice regular set A. For such a collection, Lemmas 11.12 and 11.13 guarantee
that any T-return for the rectangle I' corresponds to an almost return for the
original set A, and thus to a branch from the original collection. Thus one
may interpret the saturation condition as the requirement that the original
collection of branches be “large enough” that no new branches are created by
“accidental returns”.

For a discussion of a related issue in the setting of coded shift spaces, see
[29, §3], and specifically condition [IIT*] of that paper, which plays the same
role there as saturation does here, guaranteeing that a certain Markov coding
is 1-1. Example 3.6 of that paper could be translated into the setting of Exam-
ples 11.20 and 11.21 by letting € be the collection of four hyperbolic branches
associated with the words {0, 10,01, 101}; then the associated rectangle is not
saturated, and moreover the procedure described after Example 11.20 does not
produce a topological Young tower at all since the s-sets I';, are not disjoint.
One can still obtain a Markov coding but it is uncountable-to-1. Together
with the previous two examples, this illustrates how important the saturation
condition is for our results.
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12. Hyperbolic Measures Have Nice Regular Sets: Proof of
Theorem C

In this section we prove Theorem C. The non-trivial part of the proof is to
show that we can find arbitrarily small domains I',, with u(I'py N Ag) > 0
where p,q € Ay are periodic points. Then letting 77 > 0 be any common
multiple of the periods of p and ¢, it follows that p, ¢ are fixed points for f7
and therefore 'y, is a nice domain with T'(T',,) = T. Moreover, p is also fT-
invariant and therefore p-a.e. € I'y)g N Ay returns to I'yg N Ay with positive
frequency for iterates which are multiples of 7', in both forward and backward
time. The set A of such points is T-recurrent, and if x is an SRB measure, it
is Lebesgue-strongly T-recurrent. Thus Theorem C follows from the statement
below.

Proposition 12.1. Let f be a C'T diffeomorphism, p an ergodic non-atomic
X-hyperbolic measure, and A a x-hyperbolic set. Fix X € (0,x) and ¢ €
(0,e1(f,x;A)). Let U C M be an open set and £ € N such that u(U N Ag) > 0.
Then with ¢ as in Theorem F, there are (A\/4,2¢, £+ {")-regular periodic points
p,q such that Ty is defined, contained in U, and satisfies p(T'pg N Ag) > 0.
Since I'pg C U, diam Iy, can be made arbitrarily small.

Before proving Proposition 12.1, we use Theorem F to establish a result
reminiscent of the Katok closing lemma. Say that y € B(z,d) N Ay is Ay-
non-wandering if there is a sequence niy — oo and yx € Ay N f7" Ay such
that yk, ™ (yx) Fooo, y. Observe that by Poincaré Recurrence, every point
in supp(u|Ag) is Ag-non-wandering.

Lemma 12.2. Given § > 0 as in Theorem E, {' € N as in Theorem F, and any
¢ € N, for all Ag-non-wandering points y,z € B(x,5e = /3) N Ay there is a
sequence of (A/4,2¢,L+ {')-regqular periodic points py koo, Vonve

Proof. Suppose y, z are as in the hypothesis. Choose ny — 0o and yi € Ay N
f7™ Ay such that yg, /™ (yr) — y. Choose my, z; similarly for z. For suitably
large k, we have

Uiy S (), 2k, [ (21) € B(w,6e7/2)
and thus in particular
ACF™ (g, 22) < 0™ and  d(f™ (), ) < b,
It follows that yi, f(yk), -, ™ (yk): 2is f(2), -, [™ N zw), yr is a (€,8,N)-
pseudo-orbit with
b=t m%n(z}nk—i) | Ogiénk,
min(i — ng, ng +mg — 1) ng < i < ng + mg.
Repeating this finite pseudo-orbit T periodically gives a periodic bi-infinite
pseudo-orbit to which we can apply Theorem F and obtain a (A/4,2¢,¢ + ¢')-

regular periodic shadowing point py. Note that p, € N9 N N2+ and that
the intersections converge to V,; NV as k — oo because yj € NQ and fmez, €

NG Thus pp — Vi N Ve O
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d [b, d]

(a) (b)

FiGURE 14. Proving Proposition 12.1

Proof of Proposition 12.1. Fix x € U Nsupp(u|As). Since Ay is closed, we have
supp(u|As) € Ay. Choose 6,6 > 0 sufficiently small that B(z,0’) C U, and
such that for every y,z € B(x,d) N Ay, the intersection V7 NV} is a single
point and lies in B(x, ") N Ay . Assume also that § is chosen small enough and
¢ large enough to satisfy Lemma 12.2.

Let Z := B(x,0) N supp(p|A¢). Observe that Z is compact, and that
w(Z) > 0 by our choice of z. Let 7#°: Z — V* and 7%: Z — V. be projec-
tion along local stable and unstable leaves, respectively. Since V" are one-
dimensional we can equip each with a total order, and by compactness we can
choose a, b, c,d € Z such that

7 (a) = inf n°(Z), =°(b) =supn’(Z2),
7 (c) =inf 7 (Z), w“(d)=supn“(2).

Let I'y be the region bounded by V.7, V}’, V', and V}', as shown in Fig. 14.
Observe that I'y D Z and thus u(I'o N Ay) > 0. By Lemma 12.2 there are
periodic points pg,qr € Ap such that pp, — VSNV and ¢ — VP NV}
It is possible that none of the domains I',,,, contains z (this can occur, for
example, if @ € V', as in Fig. 14b); on the other hand, the union (J, ', 4.
covers all of Z except possibly for ZNV UV, UV UV}, Since 1 is non-atomic,
a single local stable or unstable curve always has zero measure, thus this subset
is p-null. Using the fact that u(Z) > 0, we conclude that there is some n such
that u(Tp, 4, N Z) > 0. This completes the proof of the proposition. O
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Appendix A: List of Terminology and Notation

(1) Almost returns, Definition 4.13 on page 23
(2) Brackets, Definition 1.11 on page 7
(3) Branch
— (C, k)-hyperbolic, Definition 4.8 on page 22
- lf—regular7 Definition 5.6 on page 29
— (C, k)-hyperbolic branch property, Definition 4.14 on page 24
(4) Overlapping charts, Definition 8.1 on page 40
(5) Concatenation property, Definition 4.12 on page 23
(6) Cones, Definition 4.2 on page 21
— in regular neighbourhoods, Definition 5.10 on page 27
(7) Conefield, Definition 4.3 on page 21
— adapted, Definition 4.5 on page 21
(8) Curves
— local (C, \)-stable (unstable), Definition 1.10 on page 7
— K-admissible, Definition 4.4 on page 21
— stable and unstable admissible, Definition 4.6 on page 21
— in regular neighbourhoods, Definition 5.2 on page 27
— full length stable and unstable admissible, Definition 4.6 and Defi-
nition 5.2
(9) (x,¢,¥,r)-nice domain, Definition 1.16 on page 9
(10) Measure
— hyperbolic, Definition 1.2 on page 4
— physical, Definition 1.1 on page 4
— SRB, Definition 1.4 on page 5
(11) Nice
— domain, Definition 1.16 on page 9
— regular set, Definition 1.19 on page 10
— rectangle, Definition 2.3 on page 14
(12) Pseudo-orbit
— finite (@, 0, A)-, Definition 5.4 on page 28
— bi-infinite (Z,4, \)-, Definition 5.9 on page 30
(13) Rectangle
— (C, \), Definition 2.1 on page 13
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— nice, Definition 2.3 on page 14
— saturated, Definition 11.2 on page 62
(14) Recurrence (recurrent)
— recurrent and Lebesgue-strongly recurrent, Definition 1.21 on page
10
— almost recurrent, Definition 4.13 on page 23
(15) Regular
— level sets, Definition 1.8 on page 7
— (x,&,¢)-regular set, Definition 1.9 on page 7
— (x,¢, £, r)-nice regular set (nice regular), Definition 1.19 on page 10
- 2—regular branch, Definition 5.6 on page 29
(16) Sequences, hyperbolic, Definition 11.8 on page 65
(17) Set
— fat, Definition 1.3 on page 5
— (x, €)-hyperbolic, Definition 1.6 on page 6
— regular level, Definition 1.8 on page 7
(x, &, £)-regular, Definition 1.9 on page 7
— s/u-subsets, Definition 2.4 on page 14
- (x,¢, ¥, r)-nice regular (nice regular), Definition 1.19 on page 10
(18) Stable and unstable strips,
— in a nice domain, Definition 4.7 on page 21
— in regular neighbourhoods, Definition 5.3 on page 28
(19) T-returns time, Definition 2.5 on page 14
(20) Tower
— topological Young, Definition 2.6 on page 15
— Young, Definition 2.10 on page 15
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