
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, Vol. 3, No. 1, 1997, 33-49 

M U L T I F R A C T A L  S P E C T R A  AND M U L T I F R A C T A L  

R I G I D I T Y  F O R  H O R S E S H O E S  

L. BARREIRA, YA. PESIN, J. SCHMELING 

ABSTRACT. We discuss a general concept of multifractality, and give 
a complete description of the multifractal spectra for Gibbs measures 
on two-dimensional horseshoes. We discuss a multifractal characteri- 
zation of surface diffeomorphisms. 

INTRODUCTION 

The multifractal analysis has been recently developed as a new powerful 
tool to study dynamical systems. Its main constituent component - -  dimen- 
sion spectra - -  capture information about various dimensions associated 
with the dynamics. Among them are the Hausdorff dimension, correlation 
dimension, and information dimension of invariant measures. 

Dimension spectra are examples of more general multifractal spectra that 
we have introduced in [4]. They provide information on the distribution of 
pointwise dimensions, local entropies, Lyapunov exponents, etc. In [4], we 
considered Gibbs measures invariant under conformal expanding maps and 
demonstrated that multifractal spectra can be used in a sense to "restore" 
the dynamics -- the phenomenon that we call the multifractal rigidity. 
In this paper, we extend these results to Gibbs measures invariant under 
Axiom A surface diffeomorphisms. 

I. A GENERAL CONCEPT OF MULTIFRACTALITY 

1.1. Definitions. Let X be a set, and let g: Y ~ [-oo, +cx~] be a function 
defined on a subset Y C X. The level sets of g, 

Kg~={xeX:g(x)---a} for -co_<c~<+oc ,  
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are disjoint and produce a multi[ractal decomposition of X, that is, 

x =  (3 o (X \ Z). 

Let now G be a set function, i.e., a real function that is defined on 
subsets of X. Assume that G(Z1) <_ G(Z~) if ZI C Z2. We define the 
function 5 ~: [-c~, +c~] --* R by 

= 

We call f the muttffractal spectrum specified by the pair of functions (g, G), 
or the (g, G)-multifractal spectrum. The funct~n f captures important 
information about the structure of the set X generated by the function g. 

Given -oo < a _ +o% let us be a probability measure on X such that 
~ ( g ~ )  = 1. If 

~:(~) = ~ { G ( Z )  : ~ ( Z )  = 1}, 

we call us a (g, G)-firll measure. Constructing a one-parameter family of 
(g, G)-flfll probability measures us seems to be the most effective way of 
studying multifractal decompositions. 

We illustrate the general concept of multifractal spectra by studying se- 
veral explicit spectra. We refer to [9] for references and more details. 

1.2. Dimens ion  and  en t ropy  spectra .  Let X be a complete separable 
metric space and let f :  X --* X be a continuous map. We begin with the 
choice of the set function G. There are two "natural" set functions on X. 
The first one is defined by 

GD(Z) = dimH Z, (1) 

where dimH Z is the Hausdorff dimension of the set Z C X. The second 
function is given by 

GE(Z) = h(flZ), (2) 

where h(flZ) is the topological entropy of f on Z (see [9] for definitions). 
We call the multifractal spectra generated by the function Go dimension 
spectra, and the multifractal spectra generated by the function GE entropy 
spectra. 

We now describe some "natural" choices for the function g. 
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1.3. Mul t i f r ac t a l  spec t ra  for pointwise dimensions.  Let/~ be a Borel 
finite measure on X. Consider the subset Y C X consisting of all points 
x E X for which the limit 

d~(x) = lira log/z(B(x,r)) 
~-~0 log r 

exists, where B(x, r) denotes the ball of radius r centered at x. The number 
d~(x) is called the pointwise dimension of/Z at x. Whenever x E Y, we say 
that the pointwise dimension of # exists at the point x. We define the 
function gD on Y by 

go(= )  = d,,(=).  

We obtain two multifractal spectra :Do = :P~) and :Ps = :O~ ) specified 
b y  the pairs of functions (go, Go) and (go~ respectively, where the 
set functions Go and G~ are given by (1) and (2). These spectra are 
called multifractal spectra for (pointwise) dimensions. The spectrum :Do is 
known in the literature as the dimension spectrum or f~(~)-spectrum for 
dimensions. 

In [3] (see also [2]), we prove the following statement. 

T h e o r e m  1.1. I f#  is a hyperbolic measure invariant under a C 1+~ dif- 
feomorphism, then the pomtwise dimension of/Z exists almost everywhere. 

The theorem implies that if/Z is a hyperbolic measure invariant under 
a C 1+~ ditfeomorphism, then/~(X \ Y) = 0. This claim is known as the 
Eckmann-Ruelle conjecture. 

1.4. Mul t i f r ac ta l  spec t ra  for local entropies.  Let X be a complete 
separable metric space and let f :  X --+ X be a continuous map preserving a 
Borel probability measure/Z. Consider a finite measurable partition ~ of X. 
For every n > O, we write ~n = ~ V f - l ~  V. . .  V f-n~,  and denote by ~n(x) 
the element of the partition fn that contains the point x. Consider the set 
Y = Y~ C X consisting of all points x E X for which the limit 

h,( f ,~,  x) = lim _ 1  log/z(~n(x)) 
n---*oO n 

exists. We call ht,(f,~,x ) the ~z-local entropy of f at the point x (with 
respect to ~). Clearly, Y is f-invariant and h~(f ,~, fx)  = ht,(f ,~,x ) for 
every x E Y. By the Sharmon-McMillan-Breiman theorem, #(X \ Y) = 0. 
In addition, if ~ is a generating partition and/Z is ergodie, then 

h, ( / ) .= h~,(/, ~, x) 

for/z-aimost all x E X, where ht,(f ) is the measure-theoretic entropy of f 
(with respect to/ t) .  We define the function gE on Y by 

gECx) = h~(f,~,x), 
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Let us stress that 9~ may depend on ~. We obtain two multifractal spectra 
CD = ~(~) and ~ = ~(~) specified by the pairs of functions (gE, GD) and 
(gE, GE), respectively, where the set fimctions are given by (1) and (2). 
These spectra are called multifractal spectra for (local) entropies. In Sec. 2 
we will observe that in some situations these spectra, in fact, do not depend 
on ~ for a broad class of partitions. 

We remark that in the study of the multifractal spectra for local en- 
tropies, the Shannon-McMiUan-Breiman theorem plays the same role as 
Theorem 1.1 in the study of the multifractal spectra for pointwise dimen- 
sions. Namely, the first can be considered as the primary reason for the 
coincidence of the different definitions of entropy, due to Kolmogorov and 
Sinai, Katok, Brin and Katok, and Pesin (see [9] for references). Similarly, 
Theorem 1.1 implies the coincidence of all characteristics of dimension type. 

1.5. Mul t i f r ac t a l  spec t ra  for Lyapunov  exponents .  Let X be a differ- 
entiable manifold of dimension n, and let f :  X -* X be a C z map. Consider 
the subset Y C X of all points x E X for which the limit 

)~(x,v)= lira ~loglld=f'*vll 
n.,...*+oo y/, 

exists for every v E TxX. The number A(x,v) is called the Lyapunov 
exponent of v (specified by f )  at the point x. By Oseledets' multiplica~ 
tire ergodic theorem, if # is an f-  invariant Borel probability measure and 
log + Ildfll e LZ(X,#), then #(X \ Y) --0. Let ~l(X) _>.-- >_ ~,~(x) be the 
values of the Lyapunov exponents at x, counted with multiplicities. For 
each i = 1, .--, n, we define the function g~ on Y by 

i x gL( ) = )~i(X). 

�9 ~ 

For each i --- 1, . . . ,  n, we obtain two multifractal spectra s and s spec- 
ified, respectively, by the pairs of functions ~ i (gL, Go) and (gL, GE), where 
the set functions GD and GE are given by (1) and (2). These spectra are 
called multifractal spectra for L yapunov exponents. 

2. MULTIFRACTAL SPECTRA OF GIBBS MEASURES FOR HORSESHOES 

We consider Gibbs measures invariant under Axiom A surface diffeo- 
morphisms and describe the associated multifractal spectra for dimensions, 
entropies, and Lyapunov exponents. Our approach is an extension and a 
modification of the approach in [4] for conformal expanding maps. 
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2.1. P r e l i m i n a r i e s .  Let f :  M --* M be a C 1+~ diffeomorphism of a 
smooth manifold M, and let A be a compact locally maximal hyperbolic 
set for f .  From now on we assume that  f lA is topologically mixing. The 
general case can be reduced to this one by using the Spectral Decomposition 
Theorem. See [6] for definitions. 

For each x E M, we write 

a'(x) = lldfIE~(x)ll and a~(x) = lldfIE~(x)ll. 

The functions a 8 and a ~ are H61der continuous and satisfy a~'(x) > 1 and 
aS(x) < 1 for every x E A. 

Let ~ be a HSlder continuous function on A, and let g be the unique 
Gibbs measure for ~ with respect to flA. We define the function ~ on A by 
log~ = ~ - P^(~).  

2.2. M u l t i f r a c t a l  s p e c t r a  for  p o i n t w i s e  d i m e n s i o n s .  It is an experi- 
mental fact tha t  the orbit distribution in attractors of dynamical systems is 
often not uniform. Instead one can observe places of high and low density, 
sometimes called hot  and cold spots. The same phenomenon has been ob- 
served for the more general class of hyperbolic attractors with singularities 
which includes the Lorenz attractor,  the Lozi attractor,  the Belikh attrac- 
tor, etc. In the multifractal analysis of dynamical systems one encodes all 
the (experimental) da ta  in multifractal spectra. It is a challenging prob- 
lem to travel in the opposite direction and obtain information about  the 
dynamical system from its multifractal spectra. 

Let now A be a compact locally maximal hyperbolic set of a C 1+~ dif- 
feomorphism on a smooth surface. For each q E ~,  we define the function 
~O,q on A by 

~o~,q = --~D (q) log a = + q log 77, 

where T~(q) is chosen such that  

PA(tPD,q) = O. 

Similarly, for each q E I~, we define the function ~a~),q on A by 

r = -T~(q) log a s + q log 7, 

where T~(q) is chosen such that  

8 
= 0. 

It is obvious that  the functions ~a~),.q and s ~D,q are HSlder continuous. We set 

To(q) = ~D(q) + TS(q). (3) 

The Legendre transforms of ~D and T~ are denoted by :D~ = 7)~ (~) and 

T)~) = 7)~ (~) respectively. 
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The following properties are proved in [10]. 

P r o p o s i t i o n  2.1. The function TD is real analytic and satisfies T~(q) <_ 
0 and T~(q) >_ 0 for every q E R. We have To(0) = dimH A and To(l)  = 0. 

Set 
aD(q) = -T~(q).  

Let m~ be the equilibrium measure on A corresponding to the Hblder 
continuous function t u loga ~, where t u is the unique root of Bowen's equa- 
tion 

Ph(t log a ~) = 0. 

Similarly, let rn~ be the equilibrium measure on A corresponding to the 
H61der continuous function - t  8 log a s, where t 8 is the unique root of Bowen's 
equation 

PA(--tloga 8) = O. 

A measure/~ is called a measure of max/ma/dimension for A if dimn A ---- 
dimg/z. 

Let h~(f) be the measure-theoretic entropy of f ,  and let A~ and A~, be 
the positive and negative Lyapunov exponents of v. Simpelaere [11] and 
Pesin and Weiss [10] effected independently a multifractal analysis of the 
spectrum Vo. 

T h e o r e m  2.2. 

(1) For v-almost every x E A, the pointwise dimension of v at x exists 
and 

fA log 7? dg fh log ~7 dv 
g o ( x ) = d u ( x ) =  fAlogaUdv+ fAlogasdv = 

(2) The domain of the function a ~-* Do(a) is a closed interval in 
[0, +oo) and Coincides with the range of the function aD(q). For 
every q E R, we have 

VD(ao(q)) -'- To(q) + qao(q). (4) 

(3) I f  u is not a measure of maximal dimension, then Do and TD are 
strictly convex, and hence, (Do, TO) is a Legendre pair with respect 
to the variables a, q. 

(4) I f  u is a measure of maximal dimension, then DO {8 the delta func- 
tion 

DD(cZ) = {0dimHA ifif(x=dimHA'~x ~= dimH A. 
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We note that  if v is an equilibrium measure of maximal dimension, then 
it is also an equilibrium measure both for t ~ log a ~ and - t  ~ log a ~, and hence, 

Statement 1 in Theorem 2.2 was first obtained by Young [14]. Setting 
q = 0 in (4), we obtain dim~ A = t ~ + t  8. This formula was first established 
by McCluskey and Manning [7] for C 1 diffeomorphisms. Other proofs were 
given independently by Wakens [12], Barreira [1], and Pesin [9]. 

2.3. M u l t i f r a c t a l  s p e c t r a  for  local  en t rop ie s .  For each p E R, we set 

TE(p) = PA(plog~). 

The following property is immediate from the definitions. 

P r o p o s i t i o n  2.3. The function TF. is real analytic and satisfies T~(p) <_ 
0 and T~(p) >_ 0 for every p e R. We have TE(O) = h and T~(1) = 0. 

Set 

a s ( p )  -- -T~(p) .  

Any Markov partition is a generating partition. The same is true for 
any partition of A by rectangles obtained from a Markov partition (not 
necessarily all at the same level) and corresponding to disjoint cylinder sets 
in the underlying symbolic dynamics (see Appendix). We denote the class 
of such partitions by ~ f .  

We now give a full description of the spectrum EE for Gibbs measures 
supported on locally maximal hyperbolic sets. Let mE be the measure of 
maximal entropy, i.e., the unique equilibrium measure for flA. 

T h e o r e m  2.4. 

(1) There exists a set S C M with y(S) = 1 such that for every partition 
E ~ I  and every x E A, the local entropy of L, at x exists, does not 

depend on x and ~, and 

gE(x) = h~(f, ~, x) = - f log ~ dy. 

A 

(2) The domain of the function a ~-~ EE(a) is a closed interval in 
[0, +oo) and coincides with the range of the function aF.(p). For 
every p 6 ~,  we have 

EE(as(p)) = TE(p) + P~E(P). 

(3) I f  L, 7s mE, then ~ and TE are analytic strictly convex functions, 
and hence, (E~, TE) is a Legendre pair with respect to the variables 
~, q. 
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(4) If  v = m s ,  then EE is the delta function 

EE(a) = i f a  # h. 

According to (3), the dimension spectrum for pointwise dimensions ad- 
mits a decomposition into "stable" and "unstable" dimension spectra for 
pointwise dimensions. In the appendix we will show that one can also define 
"stable" and "unstable" entropy spectra for local entropies, which coincide 
with EE. 

2.4. Mul t i f rac ta l  spec t r a  for Lyapunov  exponents .  Note that in the 
two-dimensional case g~(x) = Al(x) is the positive value of the Lyapunov 
exponent, and g2L(X ) = A2(x) is the negative value. 

We consider the spectra s and s specified by the pairs of functions 
(g~, GD) and (_g2, Go) respectively. Weiss [13] effected a multifractal anal- 
ysis of the spectrum s The two spectra s  and s  can be described in 
the following way. 

T h e o r e m  2.5. For every ~ 6 R, we have 

s ) = T)~CmE)(h/a) and s ) = Z)~(mE)(h/a). 
Moreover: 

(1) if  mE is not equivalent to the measure m~ (respectively, rnSD), then 
s  (respectively, s is an analytic strictly convex function defined 
on a closed interval containing h / t  u (respectively, h/tS); 

(2) if  mE is equivalent to the measure rn~ (respectively, rasp), then the 
Lyapunov spectrum s  (respectively, fSD) is the delta function 

if  a ~: h / t  u respectively, s  = if  a ~ h/tS ] 

We now give a complete description of the multifractal spectra/:~ and / :~  
specified by the pairs of functions (g~, GE) and (--g2L, GE) respectively. 

T h e o r e m  2.6. For every a 6 R and ~ 6 ~3 I, we have 

= s(Em )( t a n d  = 

Moreover: 

(1) if rn~ is not equivalent to the measure rn~ (respectively, rasp), then 
f ~  (respectively, f ~ )  is an analytic strictly convex function defined 
on a closed interval containing h / f "  (respectively, hitS); 

(2) if mE is equivalent to the measure rn~ (respectively, msD), then the 
Lyapunov spectrum s  (respectively, s is the delta function 
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if ~ ~= hit  u respectively, f~D(a) = ira  ~ hi t  8 ] " 

As immediate consequences of Theorems 2.5 and 2.6, we obtain the fol- 
lowing 

C o r o l l a r y  2.7. 

(1) I f  the measure mE i8 not equivalent to the measure m~,  then the 
range of the function g~ contains an open interval, and hence, g~ 
attains uncountably many distinct values. 

(2) I f  g~ attains only countably many values, then mE is equivalent 
to m~.  

One can formulate similar statements for the function g2. 
It is an open problem in dimension theory to obtain a description of the 

spectra :DE and ~D for Gibbs measures on locally maximal hyperbolic sets. 

3. MULTIFR~.CTAL RIGIDITY FOR HORSESHOES 

In this section we consider another interesting phenomenon in dimen- 
sion theory of dynamical systems which we regard as a multifractal rigidity 
phenomenon. Roughly speaking, it states that  if two dynamical systems 
are topologically equivalent and some of their multifractal spectra coincide, 
then they are smoothly equivalent. In particular, not only topological, but 
also measure-theoretical and dimensional properties of the two systems co- 
incide. Thus, given a dynamical system one can use multifractal spectra to 
"identify" the metric structure of the phase space as well as the correspond- 
ing invariant measure. We illustrate the multifractal rigidity phenomenon 
by the following example. 

Let f be a "linear horseshoe map," i.e., a C c~ map f :  [0, 1] x [0, 1] --~ 
[0, 1] • [0, 1] such that  there exist two disjoint horizontal strips HI and 
//2, and two disjoint vertical strips VI and V2 such that  f :  H~ --* V~ is a 
linear onto map for i = 1, 2. We denote the constant values of the partial 
derivatives on Hi by 

c~ = H02f[H~H and d~ = ]]OlflH~H -1 

for i = 1, 2. We consider the horseshoe defined by f ,  i.e., the locally 
maximal hyperbolic set for f given by 

oO 

The restriction of f to A is topologically conjugate to the full shift on 2 sym- 
bols al~]2. Let X: ~2 --~ A be the corresponding coding map (see Appendix). 
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We also consider the Bernoulli measure # on ~2 with probabilities/31 and 
;32 = 1-/31. 

We define the functions a ~, a s, and ~ for i = 1, 2 by 

a=(x) = c~ i f x E H i ,  

a s ( x )=d i  i f x e V i ,  

7/(x) = log31 i f x  e Hi. 

For every q e JR, the functions T~o(q ) and T~(q) satisfy the identities 

cl-T~(q) 31 q q- c2--T~D(q) 32 q -= 1 (5) 

and 

dl-T~ (q) ~l q Jr d2-:r~(q) ~2 q = 1. (6) 

Let f" be another "linear horseshoe map" with its horseshoe given by 
OO 

D 
k------oo 

Let ~: ~]2 --~ A be the correspondingcoding map. We consider the Bernoulli 
measure ~ on~2^ with probabilities 31 and 32 = i - 31. 

Set Vi = f(H~) for i = 1, 2. We define the functions ~ ,  ~ s  and ~ for 
i = 1 ,  2 b y  

= 9,, 
~(x) ---- log 3i if x e H~. 

We note that  f]A and f]A are topologically equivalent under the homeo- 
morphism ~ o x  -1. If p is an automorphism of ~'2, then the homeomorphism 
~opox -1 is also a topological conjugacy between fIA and f]A, and all topo- 
logical conjugacies are of this form. An important question is whether the 
class of all conjugacies contains a homeomorphism ( preserving the differ- 
entiable structure, i.e., a u = E ~ o ( and a s = E s o (. One can ask if, in 
addition, ( is measure preserving, i.e., y = Po ( .  We give a complete answer 
to these questions below. 

We consider the spectra 2)~ and Z ~  specified by f (as defined above). 
Similarly, we consider the spectra ~ and 2 ~  specified by f .  

T h e o r e m  3.1. / f  T ~ ( a )  = :D~(a) and :D~(a) = ~ ( a )  for every a 
and these spectra are not delta functions, then there is a homeomorphism 
(: A -'+ A such that: 

(i) ( o f = f"o ( on A; 
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(2) the automorphism p of ~2 satisfying ~ o X = X o p is either the 
identity or the involution automorphism; 

(3) a u = ~ o r  s = ~ s o r  a n d u = P o r  

Proof. The  proof of the theorem is a modification of the proof of Theo- 
rem 7.1 in [4]. 

It  is suffices to prove that  the spectrum :D~ uniquely determines the 
numbers ill, f~2, cl,  and c2 up to a permutat ion of the indices 1 and 2. 

By the uniqueness of the Legendre transform, the spectrum :D~ uniquely 
determines ~ ( q )  for every q e R, and hence, it is enough to prove that  
Eq. (5) uniquely determines the numbers f~l, f~2, cl, and c2 up to a permu- 
tat ion of the indices 1 and 2. 

One can verify tha t  the numbers a+  = a~)(q-cx~) can be computed by 

i o~• = -  lira ( ~ D ( q  /q)" 
q..- ,  :t: o o  

We observe tha t  since the spectrum :D~ is not a delta function, and hence, 
T~ (q) is not linear and is strictly convex, then a+  < t u < a_ .  Therefore, 
raising bo th  sides of (5) to the power 1/q and letting q --* 4-00, we obtain 

m a x { f ~ l c l  a+,/~2c2 (~+ } = min{/~lC1 or- ,/~2c2 or- } = 1. 

We assume that  f~lCl a+ = 1 (the case when f~2c2 a+ = 1 can be t reated 
in a similar way; in this case, p is the involution automorphism). Since 
c~+ < a _ ,  we must have f~2c2 a -  = 1. 

Setting q = 0 and q = 1 in Eq. (5), we obtain, respectively, 

C l - t ~ q - C 2 - t " = l  and f~l-l-f~2----1. 

Set x = cl - t~,  a = ~+/t  ~ < 1, and b = c~_/t u > 1. Then, one can easily 
derive the equation 

x a + ( 1 -  x)  b = 1. 

One can verify with s tandard calculus arguments that  this equation has 
a unique solution x E (0, 1), which uniquely determines the numbers cl 
and c2, and hence, also the numbers f~l and/~2. 

Similar arguments show tha t  Eq. (6) uniquely determines the numbers 
dl and d2. [] 

We believe that  the following conjecture holds. Let h be a locally maxi- 
mal hyperbolic set, and let a and r / b e  HSlder continuous functions on A 
such tha t  a(x) > 1 for each x �9 A, and Ph(logr/) = 0. For any q �9 R, we 
define the number T(a, r/) (q) as the unique root of the equation 

PA(--T(a, rl)(q) log a + q log r/) = 0. 

Let now A and A be locally maximal hyperbolic sets of topologically equiv- 
alent diffeomorphisms f and f" respectively. We consider the functions a u 
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and a s defined by f on A, as well as the functions ~ and E8 defined by f" 
on .~. We also consider the functions ~? and ~ as above, corresponding to 
f and T respectively. We define TD = T~ + T~ as in (3). Likewise, we set 

~DD = T(  5"~, ~), TZ) = T(  Es, ~), and TD = T~ + T~. 

C o n j e c t u r e .  One of the following alternatives holds: 

(1) there exist functions a and q? as above, such that  T(a, '7) = To;  in 
this case, there is a constant 7 E ( 0, 1) such that  2~ D = v To  and 
T$ = (1 - v)TD; 

(2) the function TD can be decomposed into a sum T~ + T ~  in a unique 
way, i.e., if 

=To, 
then  T $  = or T $  = 

If the first alternative holds, one can verify that  ? log a u = (1-~/) log a s = 
log a, up to an automorphism of the shift space. If the second alternative 
holds, one can substi tute the hypotheses of Theorem 3.1 by the requirement 

tha t  D~) (~ )  = :D(~(a) for every (~. 

APPENDIX A. 

We describe the "coordinate-wise" approach to the multifractal spectrum 
for local entropies by decomposing the potential function ~; onto "stable" 
and "unstable" parts. 

Let { R 1 , . . . , R k }  be a Markov partition of A. It generates a symbolic 
model of A by a subshift of finite type (~A,a) .  Here ~A is the set of two- 
sided infinite sequences on k symbols, which are admissible with respect 
to the transfer matr ix  A = (aij) (i.e., a~j = 1 if intRi  A f - 1 ( i n t R j )  ~ O, 
and a~j = 0 otherwise), and a is the shift map. We define the coding map 
X: ~]A --* A by 

+oo 

X ( ' " i - l i O i l ' " ) =  N f-np~,,. 

We note that  the map X is HSlder continuous, onto, and satisfies fo X = XOO ". 
Moreover, X is injective on the set of points whose trajectories never hit the 
boundary of any element of the Markov partition. 

The  pullback of a by the coding map X is a HSlder continuous function 
: a o X on EA. Let  ]~ be the unique Gibbs measure for ~ with respect to  

the shift q. Its push forward is the measure v defined above. 
We recall tha t  two functions ~al ancl ~a2 on X are called cohomologons 

(with respect to  f )  if there exist a HSlder continuous function b: X --* R 
and a constant c such that  

qOl-~O2 = b - b o  f +c. 
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In this case we write ~01 ~ ~02. We recall tha t  for two Hhlder continuous 
functions ~01 and ~2 on X,  we have ~01 ~ ~2 if and only if the equilibrium 
measures corresponding to ~1 and ~2 on X coincide. 

Given a point x E A, we set 

A~(x )  = V ~ ( x )  N R ( x )  and AS(x )  = Y S ( x )  A R(x ) ,  

where V ~ ( x )  and VS(x )  axe local unstable and stable manifolds at x respec- 
tively, and R ( x )  is a fixed element of the Markov parti t ion containing x. 
Let 

[., .]: A~(x )  x AS(x )  --* [A~(x), AS(x)] 

be the HBlder homeomorphism defined by [y, z] = VS (y )NVU(z ) .  For surface 
diffeomorphisms, [., .] is, in fact, Lipschitz and has Lispchitz inverse. 

We denote by E~ and E A the sets of right-sided and left-sided infinite 
sequences on k symbols respectively. Note tha t  E A is canonically identified 
with E+,,  where A t denotes the transpose of A, by the bijective map 

(ioi_  . . -)  e r,+,. 

We consider the subshifts of finite type a+ :  ~+ --* E + and a_  : E A --* 
E A defined by a + ( i o Q . . . )  = ( Q i 2 " " )  and a _ ( . . . i - l i o )  -- ( " ' i - 2 i - 1 )  
respectively. 

Let x e A and choose w = ( . . . i _ l i o i l . . .  ) E ~A such that  X(W) = x. 
For any point w' (. " " "  - -  "" ~_1~0~1 " ' "  ) E )'~'A with the same past as w (i.e., 
i~ = ij for any j < 0), we have X(w')  E A~(x) .  Similarly, for any point 
w' = ( . . .  i k l i 'o i~ . . .  ) E EA with the same future as w (i.e., i~ = ij for any 
j > 0), we have X(W') e AS(x) .  Thus, the manifold A~'(x) can be identified 
via the coding map X with the cylinder Cio in E + and the manifold A~(x)  
can be identified via the coding map X with the cylinder Cio in E A. 

Choose k points wl, . . . ,  wk E ~'A such that  wi E ~A NCi for each i, and 
set ~ = (wl , . . .  ,wk). We define the function rn :  ~A ~ ZA by  

r ~ ( . . ,  i - l i o i l . . "  ) = ( . . .  j - 2 j - l i o i l i 2 " "  ), 

where ( - . - j - t j o j l " " )  = Wio. We now define the function 8 u = ~ on ~A 
by 

O o  

j=0 

The functions 8 ~ and ~ axe cohomologous and have the same pressure (see 
Lemma 1.6 in [5]). Hence/1 is also' the Gibbs measure of 8% 

Let r +  : ~A ~ ~+A and r _  : ~A "--} Y]A be the projections defined, respec- 
tively, by 

z r+( . . . i _ l i oQ . . .  ) = ( i o i l . . .  ) and z r _ ( . . . i _ l i o Q . . .  ) = ( . . . i - l i o ) .  
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One  can  easily check t h a t  0" ( - - .  i - l i o i l . . .  ) = 0'~( . . .  i ' l i ' o i ' l . . .  ) when-  
"' for every  j > 0. This  means  t h a t  there  is a funct ion ~0 u on E + ever  i j  = ~j 

such t h a t  0 ~ = ~o u o ~r+ on EA. 
In  a s imilar  fashion, we define the  funct ion 08 -- 0~ on ~'A; and  the re  is 

a funct ion ~o 8 on F, A such t h a t  08 = r 8 o ~r_. 
T h e  funct ions  ~o u and  ~o 8 are HSlder cont inuous (see [5]). Le t  #~' be  the  

Gibbs  measu re  for ~o u on F,A+ , and  #8 the  Gibbs  measure  for ~o s on EA- 
We no te  t h a t  p~ ---- # o ~r+ -~ since t hey  are b o t h  Gibbs  measures  for the  
funct ion ~o", and  t h a t  #8 = # o ~r_ -~ since they  are bo th  Gibbs  measures  
for the  funct ion ~o 8. This  implies t h a t  

8 C - ~u(C+.. . i , , )  = #(C~o...i,) and # ( io . . - i , , )  = #(Cio...i,~), (7) 

where C'+~o.-.,," = Ir+Cio...i, and C~__,...io = zr_Ci_,...io. The measures #u and 
#8 can be identified (p-almost everywhere) with the conditional measures 
of # on unstable and stable sets of EA respectively. 

Define the function Cu on Z + by 

l o g r  = - 

and the  funct ion r on EA by 

l o g r  = ~8 _ p ~ ]  (~os). 

Clearly, Pr.+ (log Cu) --- P~.] ( l o g r  s) = 0. B y  Propos i t ion  3.2 in [S] and  (7), 

i t  follows t h a t  

logCU(w+) = l im l o g  u t C +  ~ = lira log 

for each w+ = ( i o i z . . . )  6 Z + ( the  uni form convergence),  and  t h a t  

8 

logeS(w_)----  l im log U (Ci - " ' " i~  = lira log #(Ci_, . . . io)  
8 

for each w_ = ( . . .  i - l i o )  6 Z, A ( the  uniform convergence).  Th is  implies  
t h a t  the  funct ions r  and  Cs do no t  depend on the choice o f  the po in t  fl. 

T h e  following s t a t e m e n t  shows t h a t  Gibbs  measures  on compac t  local ly 
m a x i m a l  hyperbol ic  sets have a p roduc t  s t ructure .  

Proposition A . 1 .  The follouring properties hold: 

p, (1 )  = = ); 
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(2) there exist positive constants K1 and K2 such that for all integers 
n, rn > 0 and any ( . . . i _ l i o i l . . .  ) 6 EA, 

u(c~_~...~.) 
< / ( 2 .  K1 <_ nU(C + ~ 8 - - 

r , ~o. . .~, ,  • ~ ( c ~ _ ~ . . . ~ ~  

Proof. The first property follows immediately from the former discussion. 
The second property follows from the identities in (7). [] 

For any point x �9 A A X(Cio) we define the measure v~ = X.(#sICi~ on 
AS(x) and the measure v~ = X.(/~]C~~ on A~(x). The following statement 
follows immediately from Proposition A.1. 

P r o p o s i t i o n  A.2.  There are positive constants K1 and K2 such that for 
any point x �9 A, and any Borel sets E �9 AS(x) and F �9 AU(x), 

gl(v~U(E) • u~(F)) <_ y([E,F])  _< g2(u~(E) • v~(F)). 

For y-almost every point x �9 A let ~ and Y~ be the conditional measures 
o f y  on A~(x) and AS(x) respectively. We note that  ~ -- y~ and D~ -- y~ for 
y-almost every x �9 A. In the two-dimensional case, the stable and unstable 
foliations are Lipschitz, and hence, there exist positive constants cl, c2 such 
that  

c l~([Z ,x] )  <_ D'~ ([E, y]) <_ c2P'~x([E,x]), 

c~:([~ ,E])  < ~([y ,  El) < c2~:([~, El), 
for any point y E R(x) and any set E C M such that  E n R(x) ~ ~. One 
can use these inequalities to obtain another proof of Proposition A.2 in the 
case of surfaces. 

For each p �9 R, we define the function ~o~,p on E + by 

~oE, p = -T~E (p) + p log 0=, 

where T~ (p) is chosen such that  

P~+ (vb,~) = 0. 

Similarly, for each p �9 R, we define the flmction ~ , p  on EA by 

~ , p  = -T~(p)  -t- p los Cs, 

where T} (p) is chosen such tha t  

8 P~7, ( ~ , ~ )  = 0. 

Clearly, 

T~E(p ) ---- P~+(p logr  ~) and T~(p) -- Pr~](plogr 

It is obvious tha t  the functions ~E,p" and ~os,p8 are H61der continuous. 
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T h e o r e m  A.3. T~E(p ) = T~(p) = TE(p). 

Proof. It follows easily from the definitions that P~+ (p~U) = P~.] (p~S) = 
P~.A (P~) for every p. We have 

T~E(P) = Pr.+ (p~U) _ pp~+ (~o~,) = Pr~A (P~) -- PP~A (~) = TE(p), 

and similarly, T~ (p) = TE (p). [] 
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