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Abstract We study the stability of motion in the form of travelling waves in lattice 
models of unbounded multi-dimensional and multi-component media with a nonlinear 
prime term and small coupling depending on a finite number of space coordinates. 
Under certain conditions on the nonlinear term we show that the set of travelling waves 
running with the same sufficiently large velocity forms a finite-dimensional submanifold 
in infinite-dimensional phase space endowed with a special metric with weights. It is 
‘almost’ stable and contains a finitedimensional strongly hyperbolit subset invariant 
under both evolution operator and space translations. 

PACS numbers: 0340K, 0550 

Introduction 

Recently many chain and lattice models of non-equilibrium media  with dissipation 
and energy pumping have been of great interest (cf for example [1,2]). There is a 
deep physical reason for this. Some experimental works (cf experiments with 
convection in [3,4]. Taylor-Dean flow [5], Faraday turbulent ripples [6]) showed 
that particle-like localized structures can arise in a medium if the energy pumping 
is large enough. These structures have individual degrees of freedom and each of 
them can be described by means of finite-dimensional dynamical systems, thus 
dynamics of the medium is treated as a result of an interaction of these subsystems. 
This is the way to build a phenomenological lattice model. For example, it is known 
that some types of motions of non-equilibrium media can be described by a space- 
and time-discrete version of the Ginzburg-Landau equation. In the case of 
one-component and one-dimensional media this leads to the equation [l, 2,7, SJ 
uj(n + 1) = uj(n) - (1 - ip)uj(n) luj(n)l’ + x(ujil(n) - 2uj(n) + ujil(n)) 

where p and x are real numbers. In the more general case when the medium is 
one-dimensional but multi-component we have 
u,(n + 1) = q(uj(n). p) + r(uj(n) - uj-,(n)) + x(uj-l(n) - 2uj(n) + u,+t(n)) 

uj(n) E IC, n; j E Z 
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where uj(n) ER" or uj(n) E C". Here the equation uj(n + 1) = 4(u,(n), 0) describes 
the dynamics of an individual system and y ,  x characterize the connection between 
them ( y  reflects the non-mutual coupling between elements and x is the coefficient 
(or the matrix) of diesion and is usually sufficiently small). For simplicity assume 
that'the medium is homogenous. Therefore the function 4 does not depend on j. 
The case of inhomogeneous media is still very difficult for rigorous investigation. 

Physicists also consider a more general case (cf for instance, [l, 2,9-11]) 

V Afraimovich and Ya Pesin 

u,(n + 1) =f(uj(n))  + xg({ui(n)X$-J n,jeZ 
' ,  

where f is a C'-diffeomorphism, g is C2-map and uj(n) ER". This equation is called 
the evolution equation. Our aim is to study stability of motions in lattice models of 
the above type for unbounded media and therefore with infinite-dimensional phase 
space of states. Let us note that these models are used in physics to describe media 
.with the behaviour in the inner part of spatial region independent of the behaviour 
on the boundary. For such media (and such models) the.physica1 reasons for the 
appearance of finite-dimensional limit sets are not well understood. On the other 
hand, some computer simulations of the Ginzburg-Landau equation display 
finite-dimensional attractors. 

In this paper we are interested in the solutions of the evolution equation in the 
form of travelling waves 

uj(n) = $(lj + mn) 

where m/Z is the 'velocity' of the wave and +={+(k)} is a function 
(k  = lj + mn + m). We describe the behaviour and stability of travelling waves in the 
case when 

m > I s + l .  

From a physical viewpoint this case corresponds to travelling waves with 'large' 
velocity and as experiments show they appear to be stable in a large domain of 
parameter space. 

The evolution equation can be solved if boundary conditions are fixed. For 
space-unbounded models this can be done by k i n g  the growth rate of solutions at 
infinity along spatial coordinates. In other words we will consider only the solutions 
u(n) = (uj(n)) which satisfy 

where 11.1) is a norm in k and q l > l ,  q2>1. If u(n) = (uj(n)) is a travelling wave 
then the growth of perturbations along this solution can have different rates in 
forward and backward directions. That is why, in order to analyse the stability of 
such a solution, we work with different q1 and q2. 

As soon as the boundary conditions are fixed the evolution equation can be 
treated as an infinite-dimensional dynamical system with the phase space 

"%,.q%={a =(U,): l l~l lq,,q*<4 

@.(U) = @(Uj) + xg({uJ1&)) 

and the evolution operator 

U = (U,). 
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"M,,,, is a Banach space with the metric / I . 1 1 4 , , q i .  One.of the important features of 
dynamics of unbounded media is that the evolution operator @% is not differentiable 
in the sense of Freshet but only in the sense of Gautex (i.e. it is differential only 
along directions corresponding to finite-dimensional perturbations). It may lead to 
an instability along some infinite-dimensional directions. Moreover, it may also 
happen that a strongly linearly stable stationav solution is not isolated. 

Usually a travelling wave is a bounded solution of the evolution equation. 
Nevertheless, its small perturbations running with the same velocity can spread out 
along spatial coordinates with an exponential rate. If a travelling wave is stable a 
small perturbation tends to zero in each coordinate when time tends to, infinity. 
However, this convergence to zero is not uniform over coordinates. The metrics with 
weights / ] . 1 1 4 , , q 2  allow one to take this phenomenon into account. Such metrics were 
introduced in [16] to sbdy hyperbolic properties of spatially homogeneous solutions 
and to establish the existence of hite-dimensional attractors in the systems with 
drifted coupling ('drift' systems). 

Let u(n)=(uj (n) )  be a solution of the evolution equation representing the 
travelling wave uj(n) = $(l j  +ma).  It is easy to see that the function 4 should satisfy 
the following 'travelling wave equation' 

$(k)  = f ( W  - m ) )  + xg({$(k - m + G)&-J 
where k = lj + mn + m is the 'travelling coordinate'. Wc first shall study hyperbolic 
properties of the solutions of this equation. For q l > l ,  q2>1 denote by 
Yx,q,,q2c-"Mq,,92 the set of solutions of the travelling wave equation. 

Let us introduce the shift Sx:YI* ,41 ,42~Y~4 , ,q~ ,  (S,$)(k) = $(k + 1). Obviously, 
it acts as the nonlinear operator given by the right-hand side of the travelling wave 
equation. 

If q, and q2 are large enough (where q, does not depend on x but q2 does) we 
will show that there exists a smooth imbedding 

+ "M.7>42 
xx : Rd( ls+m)  

with x,(Rd(""")) ='4x,q,.q,. This means that Yx.9,n2 is a smooth d(ls + m)- 
dimensional submanifold in Aql,42. Moreover, we will show that the travelling wave 
equation generates a map 

F . Rd(ls+m)+ R d ( k + m )  
X .  

such that the diagram 

2% ~ K . 9 , . 4 2 C " 4 q , , q r  
(Wd(ls+m) 

is commutative. The map F, is a multi-dimensional version of the famous H h o n  
map. For x f O  it is a C'-diffeomorphism while Fo is not invertible. 

Let us now assume that the prime nonlinear term in the evolution equation is a 
map possessing a hyperbolic locally maximal closed invariant set A c R d  (cf 
definition below). We will show that in this case the map F, for all sufficiently small 
x also possess,es.a locally maximal closed invariant hyperbolic set A,. The problem 
of the existence of Ax for F, is a classical problem of small Perturbations of the 
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smooth map Fo with the hyperbolic locally maximal invariant closed set Ao. 
However, as we mentioned above, 6 is not invertible. Such a situation was 
considered in [20,21], but for the sake qf the reader's convenience we present a 
method of solving this problem in the appendix. 
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I t  is easy to see now that the set 

A.,,,.h =xx(AJ = vw3.42 

is locally maximal closed invariant hyperbolic for the map S,. This describes the 
hyperbolic property of the restriction S, I Y%,,,,,. 

In fact for arbitrary q1 > 1, q2> 1 one can still construct the map xx which is 
correctly defined on A, and is a homeomorphism onto its image. In this case 
AM,91,q1~.Uq, ,q2 is 'topologically hyperbolic' in the sense that one can construct 
'traces' of stable and unstable local manifolds which lie in A,,,., (cf theorem 2 
below). However, in general, ,yx cannot be extended to Rd('s+m) such that A,,,,,, is 
not contained in any even topological finite-dimensional submanifold in .U9,,,. 

= {+(k)}  
in directions transversal to Yx,o,,q2. Let us introduce the 'travelling evolution 
operator' Q, in .U,,,, acting by the formula 

The next step in our study is to describe stability of a travelling wave 

( Q x ~ ) ( k )  =f(~k-m) + 4 { W k - m + r i X = - s )  

e. lPJw,,q2 = Id1 ~ x , q , , ' 7 * .  

where w = (wJ E.U,~,~>. It is easy to see that 

This means that solutions of the travelling wave equations are the fixed points for 
Q,. 

We construct a filtration of affine subspaces 
VS.0 c 'Vs.-1 c v5,-2 

*41 .92  ".4,,92 %"t =' ' ' = &qx.9* 

such that Q, is contracting along each 
(C(k),  y) .  C(k)  >O,O< y < 1. The union 

with parameters of contraction 

is everywhere dense in and is a non-uniformly stable affine subspace for Qx at 
the point Jr. Let us note, that the above filtration can be constructed for arbitrary 
q2>lr ql>q('), where qi0)>l  is a constant independent of x .  In particular, the 
situation can occur when the set A,,,,,, is only topologically hyperbolic while the 
map q. is differentiable and exponentially stable along each V";,,,,,. 

In order to complete our consideration we have to pass from the travelling 
wave equation to the evolution equation. Assuming again that q,  and q2 are 
sufficiently large we associate with each +E:W,,,,,, the solution U($) of the 
evolution equation such ~~ that u(Jr)(j) = Jr(lj). This induces the map a, from YXv,,,,,, 
onto the set 

4 9 , d 2  = ..(Yx.7,,9,) 

such that ax($) =U($). SQ,,,,,,is the set of solutions of the evolution equation in 
the form of travelling waves. It is crucial here that U(+) no longer belongs to .Uq,,q2, 
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but to M,q$ak It is also worthwhile emphasizing that, as we show, the map CL. is 
injective (this is due to our assumption that the velocity of the wave is given by 
relatively prime numbers m,l). This implies that the evolution operator ax is 
invertable on l,,q,,,. Besides, this set is a smooth d(ls + m)-dimensional 
submanifold in We will also show (cf proposition 4 below) that the diagram 

Y*,q,,q* 2% 4 w . 4 2 = J U d . d  

is commutative. The set 

-%a,rq2 = "%(L,,,,) = -&u,.'7: 

is locally maximal hyperbolic closed invariant. For arbitrary q 1  > 1, q2> 1 this set 
can be still defined to be a topologically hyperbolic subset in in the above 
sense. 

Now let us describe the stability of travelling waves in directions transversal to 
s&,,~,. Usually one can expect stability in the sense of damping of perturbations 
running together with the travelling wave. This means that stability is non- 
stationary. In addition it 'is, as a rule, non-uniform along spatial coordinates. This 
leads to the following definition. 

Let us fix U ~Jll,, , , ,  q2 > 1, q2 > 1 and consider its semi-trajectory u(n) = @:(U), 
n > 0. We call a two-parameter family of subspaces 8; c T,,(n@&qz, k E Z, n > 0, the 
non-stationary invariant filtration if 

(1) they form a filtration: 8tz 8:+'; 
(2) they are invariant: there exists r > 0 such that d@J$ C 8::;. 

The non-stationary invariant filtration is referred to as infinitesimally stable if there 
exist a >0, O <  y <  1, such that for any k > 0 , p  >0, n > O  and any 17 E 8;'"" 

l l m M l q , , q z ~  Ck,Y" 1117 IIq,.q: 
where CkP 2 0  is a constant independent of n. 

The above definition expresses stability with respect to the differential of the 
evolution operator. We now consider local stability with respect to the evolution 
operator itself. We call a two-parameter family of submanifolds Tt c Aq,rq2, 
~ ( n )  E Y; the non-stationary invariant liltration if 

(1) they form a filtration: Yi 3 7;"; 
(2) they are invariant: there exists r > 0 such that @%(T;) C 'Tk;:. 

The non-stationary invariant filtration is said to be locally stable if there exist a >0, 
O <  y < l ,  such that for any k > O , p  >O, n > O  and any u EY;'"" 

I I ~ " , ( ) - u ( n ) I I q , , q , ~ C k ~ y "  ' I I u  - U ( o ) l l q ~ , q ~  

where C,, > 0 is a constant independent of n. 
Let us now define the extension &,'of a, onto by setting 

U w )  = (WE) 

s J W )  = (Wki-1)  

= (4 E 4,,, 

w = (Wk) E 4 , , 9 r  

as well as the extension s, of S, by setting 
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We shall show (cf proposition 6 below) that the diagram 

~ q , , q ,  2s JU,$.,I 

"U,,.,, JUqLd 
Q,*S? I -  1.. 

is commutative (let us note again that Q, I Yx,,,q2 = Id,  3, I WX,q,,q2 = SJ. Using this 
we shall prove that 

yk = 'E$,,,&+)) = &(v%,q2(4n))) 
where u(n) = Ci.(w(n)), u(n) = E(u(O) ) ,  k EZ, n > O  form a non-stationary in- 
variant filtration which is locally stable with respect to Q X .  Moreover, the set 

is everywhere dense in Aqillp(,q+ 
Now we can describe the entire picture of the hyperbolic behaviour of travelling 

waves. Fiu any q1 > q:') > 1, qz > 1 where qi0) is a constant independent of x .  Take 
any I ,  n > Is + 1 and choose qf(l)  > 1 such that 44) '  = qi. i = 1,Z. The solutions OF 
the evolution equation in the form of travelling waves moving with the velocity m/l 
form a set d$z,(oa2(l) c It contains a finite-dimensional subset -Y%;,(f),q2!~) 
which is invariant under the evolution operator and topologically hyperbolic wth  
respect to the metric / 1 . 1 1 4 , , q l  in Aq,,ql. It can be constructed as pointed out above. If 
ql(l) and &(I)  turn out to be large enough (such that q,(l).does not depend on x but 
qz(l) does) then d$~,(l)42(l) is a smooth d(ls + m)-dimensional submanifold in A,,,,, 
and 5fL$,(l),q2(L) becomes, a hyperbolic subset in the ,usual sense. If ql(l) > q$') then 
any travelling wave lying in an affine subspace Y2&(ll,q2(l)(~) c converges to 
di$,(l).q2(r) and the union of these affine subspaces is everywhere dense. If, in 
addition to that qz(I) is large enough (depending again on x) then T2&(l),q2(l)(~) is 
transversal to the tangent space. to d2z,(l).q2(l) at U. Let us notice-that for any distinct 
pairs (11, ml),  ( I z ,  mz) the sets 2~~;(l),q2(l) and 5f$;(f),qz(l) are disjoint and therefore 
the corresponding spaces V2z,(f) ,q2(l)(~) are also disjoint. 

As we have, seen above, parameters q1.q2 play an important role in our 
construction and deeply reflect a smooth topological structure of, hyperbolic sets for 
the evolution operator. When these parameters increase one can observe two critical 
phenomena. The iirst is due to the transition from q1 < qi') to q1 > q'p) (with any 
q 2 > l ) ,  while the second corresponds to the transition over q2=qi0) (x) .  For 
1 < q1 < qi") and qz> 1 the set 2x,qz,q2 is 'topologically hyperbolic as a subset in 
dx,q,.q2. But its stability in 'transversal' directions is not clear yet. When ql > q'p) the 
set dx,q,,q2 becomes non-uniformly stable along the filtration V&,, k EZ. In fact, 
given U ~ d ~ , ~ ~ , , ~ ,  this filtration appears when q1 exceeds some critical value q?(u) 
(such that 410) = supuedxa,az q$')(u)). If, qz exceeds 4io)(x)  then d,,,,, becomes a 
smooth submanifold and 2x,q,,q, is a hyperbolic subset in the usual sense. 

Let us emphasize that qlo) and' qi0)(x) depend on the velocities of travelling 
waves but they are uniformly bounded from above. 

So far we have considered only one-dimensional multi-component models. 
However the multi-dimensional models are also of great interest; for example, 
spacetime-discrete versions of the generalized Ginzburg-Landau equation, the 
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Kuramoto-Sivashinsky equation, reaction-diffusion equation and the Huxley equa- 
tion are of this type. They describe the appearance and interaction of structures in 
non-equilibrium media and have recently become the subject of study. For instance, 
the discrete version of the two-dimensional H d e y  equation has the form 

uijJn + 1) = uj,.jAfi) + af(Uj,.i,(fi)) 

+ x(ui,-dn) - 4uiwdn) + U j * + d n )  + ~il, i-~(n) 

+ ~ j ~ , j t + ~ ( ~ ) ) .  

It was considered in [22]. 
The methods of study presented in this paper work in the multi-dimensional case 

as well as in the one-dimensional one. The main reason for this is that the 
'travelling wave equation' is still one-dimensional with respect to the travelling 
variable while the dimension of the domain of values of function $ depends on the 
dimension of the medium. That is why the solutions of the travelling wave equation 
inherit the same properties and their hyperbolic behaviour in the space A,,,q, can be 
described by the imbedding map x.. The next transition to the travelling waves 
solution of the original evolution equation is given by another imbedding ax. It is 
defined as a.(#@) = $(@.;)), where I= ( I l , .  . . , lr), lj  0, i = 1,. . . , t is the 
'wavevector', 7= (jl,. . . ,it) EZ' and t is  the dimension of the medium (here (i,;), is 
the usual scalar product). The map ax is well-defined as a map into a space 
JI1,fia2<~), where q@) = (qt), q2il) = ( 4 9 ,  i = 1,. . . , t and Aq,c),q2(7) consists of all 
the functions u : F +  Rd, U = (uo))  for which 

[j.. . (hereq(j i )=q, 'd] jaO andq(jj)=q;"j,ifjj<O). 
As we can see, despite  the multi-dimensionality of the medium, the type of 

metric we use to express the hyperbolic behaviour depends on two parameters ql. q2 
in the one-dimensional case. After that the picture of hyperbolic behaviour 
described above in the one-dimensional case can be reproduced (with few and 
almost trivial modifications) in the multi-dimensional case. 

Although we consider only multi-component media (with at least two com- 
ponents) our methods may also work in the one-component case. The reason is that 
we use essentially information about the hyperbolic behaviour of the map F,. It can 
be studied, and turns out to be sufficiently strongly hyperbolic even if the map f does 
not have a non-trivial hyperbolic set or is not invertible. This &n often occur whenf 
is one-dimensional [19]. 

1. Definitions and general properties of travelling waves 

Given q1 > 1, q2 > 1 let us consider the set 

(here 1/.11 is a norm in the Euclidean space Rd). It is easy to see that 
Banach space with the norm j1.114,qt. 

is the 
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Let f : Rd + Rd be a diffeomorphism of class e, g: ( [Wd)&+'+ Rd a map of class 
C2(s>O) and x 2 0  a real number: Define the map QP,:JC1,,,,+(Rd)" by the 
formula 

@&) = ( f (uJ  + xg(IU3ir:-J) U = (uj) E J4,,i2. 

Proposition I .  Assume that there exists M > 0 such that for 1 = 1,2 

Then for any q1 > 1, q2 > 1 
1. CP, is a map from 
2. @% is differentiable in the sense'of Gautex and its Gautex differential at a 

into itself; 

point U = (U,) is given by the linear map 

(dQP,T)( j )  = f ' (q ) .  TI + 2 aiTi 
i=j -s  

where 

Proof. We have under these assumptions that 

where q = max{ql, q2}. This proves the first statement. In order to prove the second 
one we have to estimate the norm of the vector (@#(U + 6) -@%(U) - dCPz . [ ) j  in 
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Rd. Evidently, it is less than M . sup,;-i,, 11cj112. The second statement follows from 
here. 

Fix U E J U , , , , ~ ,  and consider the sequence of points u(n)=@:(u)  such that 
u(0) =U. We have 

ui(n + 1) = f(ui(n)) + xg({ui(n)}<Z;-3) j E Z, n > 0. (2) 

Let us fix m, 1 E Z+ that are relatively prime numbers such that 

m>ls+l .  (3) 

We are looking €or a special trajectow {u(n)} of the form 

ui(n) = @(l j  + mn) = $(k - m )  k = lj i mn + m. (4) 

Here $:Z+Rd is a function (let us note that for any k there exist j,n such that 
lj f m n  = k) .  Trajectory (4) represents a 'travelling wave' with 'velocity', m/l .  It 
follows from (2) that I) should satisfy the relation 

@(k) =f ($ (k  - m))  + xg({$(k - m + l i ) ) L ) .  ( 5 )  

We shall show (cf below, proposition 2) that the function $ is uniquely defined 
by (5)  if we know the values 

xp = *(-In - Is i p  + 1) p = 1,. . . . ls + m. (6) 

In order to describe the set of all the travelling waves let us start by considering the 
map 

F,:(Rd)"+"--t (Rd)"+m, F&,, . . . ,Xi,+,) = (Z,, . . . ,?"+,) 
where 

- - 
(7) 

fl = x2, f2 = x 3 , .  . . 1 Xlr+m- l  - X&4" 

Z&+, = f ( X b + l )  + xg({xp&-s), P ( 9  = [(s + 9 + 1. 

First we shall study hyperbolic properties of the map F, for small enough x. It is 

easy to see that Idet(dF,(x))l= x Idet$/ for any x = (x;) E(R~)""", 

i = 1,. . . , Is + m. We shall assume that 

for any x  xi) E(@)%+'. (8)  # det - 
ax1 

It follows from (8) that F, is a diffeomorphism of ~ 1 a s s . C ~  for any x # 0. 
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Consider the map f .  Assume that it has a hyperbolic locally maximal set A. This 

(a) A is a closed invariant subset in Rd; 
(b)  there exists a bounded open subset V c Rd such that A c V ,  

means [15] 

A =  f i  f"(V);  
"=-ED 

(9) 

(c) A is a hyperbolic subset for f; for x E R  we denote by E""(x) the stable and 
unstable subspaces at x;  they have properties that 

F ( x )  @ W ( x )  = Rd dfE"-"(x) = Es'(f(x)) 

and for any n 3 0 

Ildf3ll <CA" llull U E E'(x) 

Ildf:u[l >c-'A-" llvll U E E"(x). 

where c>O,O<A<l do not depend on n , x  and u. 
In fact one can construct families of stable and unstable cones 

C'(x, a), Cu(x, a) c Rd (cf [15]; a is 'the angle of the cone at x E V )  having the 
properties: 

cyx, a )  n cyx, a) = o 
dfC% a) c CYf (xh a )  d f W ,  a) Cs(f(x), a) 

and for any n > 0 for which f k ( x )  E V ,  k = 0,. . . , n 

Ildf3ll ScoA" ll4 
Ildf3II ~c; '~i"lluIl  

U E cyx, a) 
U E cyx, a) 

where co>O is a constant independent of n,x and U. Conversely, if we have two 
families of cones Csc(x, a), satisfying the above properties one can introduce stable 
and unstable subspaces at any x E A by setting 

~ y x )  = n df-ncvyx),  a), ~ " ( x )  = n dycyf-yx), a). 
"20 n>0 

Put 

The cones P + ( x , a )  are respectively stable and unstable and introduce the 
hyperbolic structure on V ,  i.e. 

dF,(x)cu(x, a )  c cyFo(x), a) dF,@(x, a) 3 P(F,(x), a) 
and for any n 3 0 for which F~17+m'k(x) E v ,  k = 0,1,. . . , n 

I/ dF&'Cm)nu I/ < CIA; /Iu I[ 
IjdF$'+")"u 11 > C;'A;" I[ U 11 

'U E P(x, a) 
U E P ( X , ( Y )  

where C,, 0 < A l  < 1 are constants independent of x, U, n, 
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Moreover, let us consider the set 
&+m 

i = l  
A,= @ A; A,-A 

For any x E A,, x = (xlr. . . , xlScm), xi E Rd one can define &invariant stable and 
unstable subspaces at x by setting 

Theorem 1. There exists x o  > 0 such that for any x ,  1x1 G xo 

and hyperbolic; 
1. the map & has an invariant set i\oc Y, &(Av) = A. which is iocally maximal 

2. if x f 0, the map F, has a hyperbolic locally maximal set A, c P. 

The fact that the second statement follows from the first one is'essentially proved 
in [20,21]. However for the sake of completeness and reader's convenience we 
present the full proof of theorem 1 in the appendix. 

For each y E A, one can construct stable and unstable smooth local submanifolds 
which we denote by V","(y). They have the following properties: for any y E A, 

(1) Y E  V Y ( y ) :  
(2)  T , V Y ( y )  = E Y ( y ) :  
(3) F,(V",Y)) = v:(F,(Y)), F i ' ( V 3 Y ) )  = V w 3 Y ) ) ;  
(4) for any n 3 0 

f(F",Y'), F X Y ) ) S  CL1'PL:P(Y',Y) i f y ' E V : ( y )  

f ( K Y Y ' ) ,  K " ( Y ) )  ~C' : 'P" , (Y ' ,Y)  if y' E V:(x )  

where CL"Z0, O < h , < p L , < l  are some constants and p ( y ' , y )  is the distance 
between y ' ,  y E (Rd)"+"'. 

2. Hyperbolic properties of travelling waves along tangent directions 

We shall study equation (5)  assuming that x f 0. Denote by Yx c (Rd)" the set of 
solutions of this equation. The relations (6) defme the map from (Rd)"+"' into Yx 
which we denote by x.. Consider also the shift S,:Y,+ Yx, (S&)(k) = *(k + l), * E wx. 

Proposition 2. (1) x. is one-to-one onto Yx satisfying 

X ~ Q E  =sxoxx. (11) 

In other words the sequence x x ( x ) ( k )  satisfies equation (5). 

bounded domain then I I ~ ~ ( x ) l l ~ , , ~ ,  < for any q1 > 1, q2> 1. 
(2)  If ~ E ( R ~ ) " + ~  is a point such that the trajectory {F:(x)} remains in a 
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Proof: The first statement immediately follows from (5) and the definitions. Given 
x E (R"))"+m we have that 
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if -1s - m S k S -1 
Xx(x)(k)  = (F:+Yx)) / s+m i fk>O 

{::)k+ls+m(x)), if k S  -Is - m  - 1 
where ( x ) ~  means the k-coordinate of x. This implies the second statement. U 

Theorem 2. (1) For any q1 > 1, q2> 1 the map xx I A, is a continuous imbedding 
into 

(2) The set A , , , , ~ , = x ~ ( A , ) ~ ~ ~ , . , ~ ~ ~ ~ ~ ~ ~ , ~ , ~ ~  is closed and invariant 
under S,; the map S, 1 Y,,,,q, is a homeomorphism. 

(3) The sets 

V%,,,(+) = x x ( V 2 Y x )  n Ad, ,  + = x&) 
are 'traces' of stable and unstable local topological submanifolds in Adq,,,; this 
means that they consist of points U  EA,,^,,^^ lying in a small niehgbourhood of + in 
Atq,,,, such that 

lim IlK(+) - SXu)llq,,: = 0 

lim llS;"(+) - . S ~ U ) I I , , , ~ ~  = 0 

if U E V:,,,,g2(+); 
n+lD 

if U E V L d 2 ( + ) .  
n-a 

Proof: Given q, > 1, qz > 1, E > 0 there exists N > 0 such that for any x E A, 

This implies the &st statement. The others follow from here and theorem 1. 0 

From now on we assume that in addition to (1) the function g satisfies the 
following condition: for any x = (x l , .  . . , x ~ + ~ ) ' E  Rd(*+') the matrix dg /dx l (x )  is 
invertable and 

Theorem 3. Assume that f and g satisfy conditions (l), (8) and (12). There exist 
qf"'>l,q$o'(x)>l such that for a n y q l ~ q ~ ' ) , q q , ~ q $ ' ) ( x )  

(1) the map x. is a smooth imbedding of (Rd)"" into Adq,,& for x E (Rd)"'" the 
differential dx.(x) is given as following: dx.(x)u = q where U E (Rd)"" and q 
satisfies the relationship 

q ( k )  = df(+(k - m))q(k - m )  + n: 2 aiq(k - m + li) (13) 
i=--s 

with 

smooth submanifoidh Adq,,& 



Travelling waues in lattice models 441 

(4) the set A,a,,,, =xx(A,) CY,,,,,,, is closed and invariant under S,. 
(5) A,,9,,, is a hyperbolic locally maximal set for S, (with respect to Y,,,,,,) 

with 

E>.&a2(@) = ~x.(W'(x)), @ = x&) 
as a stable and unstable subspaces at @ E A,,9,a2 and 

V>&:(@) =xx(VY(x)), @ =x&) 
as stable and unstable local smooth submanifolds in Yv,,,., respectively. 

Prooj! For x ,  v E (Rd)"+" define 

if -Is - m  < k <  -1 
q(x, U) = (dfYl(x)vX+m i f k a O  (14)~ t:2 +~s+m(x)v)l if k < -Is - m  - 1 

where (U)* means the k-coordinate of vector U. It is easy to see that q(x,v)(k) 
satisfies (13). The trivial calculation shows also that 

= I O  E 0 ... 
I 

\ o  0 0 ... E o /  
where the entries in the first line are either equal to 0 or have the form 
(l/x)(ag/dx,)-'g with /lg\[ E-M. This and assumptions (1) and (12) imply that 

IldFlI <MI lldFilll <MAX) 
where Mi > 0 and M2(x)  > 0 are constants. In particular, q(x, U )  E Atq,,, for some 
q1 > 1, q2 > 1, q1 does not depend on x (but qz does: moreover q2+ m as x + 0). It 
follows from (1) that 

xeR* SUR s + m ,  l l~ (x ,U) l lq l .q2~ c llvll 

where C = S U ~ , , ~ ~ ~ ~ + ~ ~  l\dF..(x)\\. Now using (l), (12), (14) it is not difficult to veri$ 
that 

l l ~~ (x+v ) -x~ (x ) -q (x , v ) ) ( k ) l l < {  llv/I2 i f k > 0  

where C1 > 0, C2 > 0 are constants independent of x, U, k (but C, depends on x'). 
This means that q(x, .) = dxx(x) .  The latter implies statements 1 and 2. The others 

0 

We shall study stability properties of solutions of equation (2) in form (4). Given 

if - l s - m G k S l  

if k S -1s - m - 1 1 1 ~ 1 1 2  h-Is-m 

follow from them, (11) and theorem 2. 

@ eyIlx define U(@) = ( u ( @ ) ~ )  = (@(O)). 



442 

Proposition 3. If $  EA^,,^^ for some q, > 1, qz > 1 then U($) E &q{,q+ 

Proof: We have that 
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Let us introduce the map aw:Yx,,,q,+Aq{,,i by setting a,@= U(@), 

Proposition 4. (1) ax OS: = @% 0 a,; (2) a, is a one-to-one map on Yx.q,,ql. 

Proof: (1) It follows from (2), (15) that 

Q x ( 4 Q ) j )  ( f ( u ( $ ) j )  + ~~(Iu(J1)ili~;-$ 
= ( f ( $ ( l j ) )  + xg($(li)@3) = a,(*(@ + m)) =a, os:(@). 

(2) Assume in contrast that there exist two functions $', $"E Y,,q,,, such that 
U($') = U($"). This means that $ ' ( l j )  = U((/) for any j EZ but $'(ko) + $"(ko) for 
some ko E Z. Set k(n,j)  = nm + lj, n 0. We will show by 'induction over n that 
$'(k(n, j ) )  = $"(k(n, j ) )  for all n * O .  For n = 0 it i s  obvious. Suppose that it holds 
for all 0 S n S N. It follows from (5) and our induction assumption that 

$'(k(N + 1, j ) )  = $'(Nm + lj + m )  = f ($'(Nm '+ l j ) )  
+ xg({+'(Nm + l j  + Zi).&,) = f ($"(Nm + 0)) 
+ xg({v(Nm + l j  + li)E==_,) = $"(k(N + 1,j)). 

Since m and I are relatively prime numbers for any k EZ one can find n,  j ,  n 0 such 
0 th,at mn + l j  = k. This implies the desired result. 

Denote by 

-%4,.42 = a x ( y x * 1 , 9 )  

the set of solutions of equation (2) in the form of travelling waves (4) lying in 

Corollary. The evolution map 
homeomorphism. 

is one-to-one on 9P,,q,,qr and, hence, is a 

Proof: This follows directly from statement 2 of theorem 2 and statement 1 of 
proposition 4. 0 

The next two theorems follow from propositions 3,4, and the corollary. 

Theorem 4 
(1) The set 2z,q,,q2 = C Y ~ ( A ~ , ~ , , ~ J  is closed and invariant under CP,. 
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(2) The sef; 

e:,.,&) = 4V~:,,,*($)h U = ad$) 
are ‘traces’ of stable and unstable local topological submanifolds, in Aqiai (cf 
theorem 2). 

Theorem 5. Assume that f , g  satisfy conditions (l), (8). (12) and q1==qi0), 
q2 2 q$”(x) (cf theorem 3). Then 

(1) the map CY, 1 Ur,,,,, is a smooth mapping into A,<,9i; in particular the set 
d,,,,,, is a smooth finite-dimensional (of dimension d(ls + m ) )  submanifold in 

(2) 2?xe,,,.q, is a hyperbolic locally maximal set for @% (with respect to d,,qlAt) 
~ d . &  

with 

E&,,&) = k(E:,.,2($)) U = %(*) 

E$,,&) = CY%(v:$,,,2($)) U =CY.(@) 
as stable and unstable subspaces at U ~ 9 ~ , , , , ~ ~  and 

as stable and unstable local smooth submanifolds in ~4.,~,,,~ respectively. 

3. Stability properties of travelling waves in transversal directions 

We shall study stability properties of equation (5) in directions ‘transversal’ to the 
set Yx,,,.92, q,  > 1, q2 > 1 (see theorems 2 and 3). Let us introduce the operator Q ,  
by setting for any { W ~ } C A ~ , , ~  

QA{w.J) = { f ( ~ k - m )  + xg({wk-m+d=-s)}. 
The trajectories {Q:({wk})}, n €2, correspond to waves running with velocity 

mll. The solution of (5) represent those of them which are stationary. Others are 
non-stationary ones. It is clear that Q,l’Yx,q,42 = Idllyvqlai. The nonlinear operator Q. 
has a special ‘drift’ form. Operators of such a type have been studied in [16]. 

Proposition 5. For any q ,  > 1, q2 > 1 
(1) Qx is a map from A,,.,, into itself: 
(2) Qx is differentiable in the sense of Gautex and its Gautex differential at a 

point {wk} is given by the linear map 

( d Q a ) ( k )  = f ’ ( w k - m ) w m  + x a d k  - m + 
,=-I 

where a, = (dg /dwk-m+, ; ) ( {wk-m+, i~=-~) .  

Prooj? This is the same as for proposition 1. 0 

EY~,, , , ,~.  We shall describe subspaces on which the action of dQx is 
contracting. Given’ k E B+ define E2,$,4*($) = {q  EA^,,^: 7 = (v j )  where qj = 0 for 
j G  k}. It i s  easy to see that these subspaces have the following properties: 

Let us fix 
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(1) E:$,.q2($) form a filtration: E2&,92(+) 3 E$%&(b); 

(2) if = E:$?f;) then EZ,.,A$) = jtl,,.& 
(3) dQ2Z$,.,J$) - x4,.42 

__ 
~~ 

Es,k+m- I 

The following result shows that the above subspaces are stable with respect to de.. 

Theorem 6. Assume that f and g satisfy conditions (1) and (8). There exists a 
constant q(')> 1 with $e following property: for any q1 Z q?), qz > 1 and k E Z one 
can find a constant C(k)=C(q , .q ; ,k )>O such that for any I,+EY~,~~,,~, 

E E",.,,9,($), n 3 0 

lldQ:(~)TII,,,,,<C(k). Y" I I ~ l l a l , q ~  
where y, 0 < y < 1 is a constant independent of k ,  n. 

PFOO~: First of all we show that dQx is a bounded linear operator. Our arguments 
generalize those we have used in the proof of proposition 1 (which is essentially the 
same if one assumes below m = 0). Let q E J M ~ , , , ~ .  We have by virtue of (1) 

where 

Let us now estimate these values. It is clear that 

where q = max{q,, 43, and 
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It follows from here that 

IldQJI eEf,Mqm+&(1 + x(zS + 1)). 

Let us fix first k<O. Define n,(k)= +l. One can verify that 

We assume that l / q ,  and x are so small as to satisfy the inequality 

From this and (15) we have - ,  

lldQE7 jl < Y n - d h )  . @(h) 
1171141.42. 

Consequently, denoting y-"O(") . p(') = C(k)  the. required inequality follows. The 
case k > 0 can be established in the same way. U 

Now we are able to formulate the final result describing linear stability properties 
of solutions + E E ~ ~ , , ~ ~  for big enough q,,q? It follows from theorems 3-6 and 
proposition 5. ,. . 

Theorem 7. Assume thatfand g satisfy conditions (l), (S), (12). Then for any small 
enough x and q,  satisfying'(16) and also ql" qy, qz*q ! (x )  (see theorem 3) 

(1) the set Yx,ql,q~ is a bite-dimensional smooth submanifold in 
(2) the map Qx possesses a closed invariant subset Ax,a,n2cY,,q, , ,  which is a 

finite-dimensional hyperbolic locally maximal set with respect to Y%,,& 
(3) for any there exists a finite-dimensional stable subspace 

E;,,,,,(@), a bite- dimensional^ unstable subspace E:,q,,qz(~), and an infinite- 
dimensional stable everywhere dense subspace E::,,,>(+); the first two generate the 
tangent space T,Yz,q& the intersection of.any two of them is 0. 
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We complete the above consideration by constructing a filtration of stable 
smooth manifolds corresponding to Q E Y ~ , ~ , ~ ~ ,  Q = (I),), k EZ. Denote 

V?$,,92(+) = {w E Aq,41.41: w = (wi), wj = Qj for j s k}. 

This is an affine space of infinite co-dimension passing through Q. It has the 
following properties. 

Theorem S. For any Q EY, ,~ , ,~ ,  with q1 satisfying (16) 
(1) ~$<,,JI)) form a filtration: vL$,,ql($) 3 v";t',t&($); 
(2) if V::;,,q2(I)) =Ukee V2,&ap(Q) then it is everywhere dense in 
(3) V;:a,,,($) is invariant under Q ,  in the following sense: 

ay+".-/$ QX(V%,.*?(Q)) v*,4,,9* 

(4) V;;,,, is stable: for any w E V2a,,q2 and n P 0 

IIQ.,(w)-Q.,(Q)IIq,.,,. CI(~)Y" .  IIw -W11q1.q2 

where C,(k)= C,(q, ,q2,k) is a constant and y is a constant independent of k (cf 

(5 )  if, in addition, q1 3 qy, 'q2 3 q:(x)  then V::,$,i2(Q) is transversal to W,,q,,q, 
(16)); 

and V%,q2(I)) n Yx"l,.q2 = IQ]. 
ProoJ In fact the only property which needs to be checked is the property (4). It 
can be proved in the same way as theorem 6 by using the property (3) with the 
following modification: in stead^ of d e , ( + )  we have to consider d e , ( $  + m) for 
someOSrk1.  II] 

The previous results have an auxiliary character but we will use them to study 
stability properties of equation (2) along travelling waves in the space A,,,,, in the 
direction transversal to .dxa,,rr. 

We extend the map ax from YvIL"l,,91 to A,,,9, by the following formula 

d,w = .(w) = ((Zi(w)k) = (wq) 
for any w  EA^,,,^. Let us also consider the shift $*:A,,,q2+A,,4r, 
(S,w)(k) = w(k + 1). 

It is easy to see that s, 1 Yx,ql.qz = S,. 

Proposition 6. (1) If w EA,,,& then U ( W ) E A ~ ( . ~ ~ ;  (2) the map 6, is a linear 
bounded operator; (3) E , O Q , O S : = C J ~ O Z ~ .  , 

Proof The first statement can be proved as in proposition 3. The second one is 
obvious. It follows from the definition of d,, Q. and 3, that 

~ * o Q , o Z Y w ) j  = Q.oRXw)q =f(w,j) + 4 { w q + d = - J  

CJxoa*({wjN = @.(IW,jH = V(wq) + 4 { w f j + , , L J } .  

On the other hand 

This proves the third statement. 0 

Let us define for U E I P P . , ~ , , ~ ~ ,  U = a;(w), w EY,: 
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(1) Subspaces 

gs.k xg,,q&O = d&E,&,(w); 

(2) Submanifolds corresponding to Z?:$,,q2(u) 

~;:,,&) = W % A w ) )  

The following results describes stability of the evolution operator in 
directions transversal to SZ.4,,q2. 

Theorem 9. If (l), (8), (16) hold then for any U ~ 9 1 ~ , ~ ~ , ~ ~  with q1 satisfying (16). 
1. the subspaces F;,:,4z(u) possess the following properties: 
(a) they form the filtration: 

g3.k 
. ,q,,9&4) = %%2tu); 

(6) if Z?2z,.q2(u) = UkEB %';$2,q2(u) then it is everywhere dense in Aq{& 
( c )  d@P,Z?2:,,q2(u) c Z?t$;&(@x(u))(d@', is the Gautex differential of ax; cf 

( d )  For any U E 

proposition 1); 
TJ E %2gr(u), n 2 0 

Ild@:(&h Ilqj.q$S C(WY'" ~IITJllq(gi 
where C(Lk) > 0, 0 < y < 1 are constants from theorem 6; 

2. the manifolds V$,,qa(@) for any I) E S Z , ~ , , ~ ~  have the following properties: 
(a)  they form a filtration 

v̂:",,,,,(.) = K%m; 
(b) if V;,;,JU) = UkEH V2$,,q2(u) then it is everywhere dense in 
( c )  V!&,Ju) is invariant under @%, 

( d )  'V2$,.q2(u) is stable i.e. for any ii E V::,Ju), n > 0 

ll@%fi) - @ % ~ ) l l q ~ , q < ~  Cl(lk)y'" 1111 - illqj.qi. 

where C,(lk) > 0 is the constant from theorem 8. 

Proof: The statements l(a) and l(b) are obvious. It follows from proposition 6 that 

d@,F&,= d@P,odZ.,E$!$,,q,= dciixodQ,odS,E;,q,,q, -In S l k  

=da,odQ ES,Ik-*= dc Elk-" = g3.k-9 
x x41.91 x X 4 1 . 9 1  x.91.9:' 

This proves the statement l(c). To verify l ( d )  let us first note that for any n >O one 
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can easily conclude from proposition 6 that 
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i l x ~ ( Q , ~ s ~ ~  = @:oilx. 

Since Q, and 3: are commutative we have 

(Q,osZY = Q:oS:". 
This implies that 

5% 0 Q:--gy = @Eo ti,. 

It follows from here that 

dti;,.dQj: I EsJk  =d@j:.d&, I EIY+hn=d@j: I gr++mn X . 9 l . 9 i  % 91m xL11.92 . 
Let us note that obviously for any .$E A9,,, 

lldfix.$llq\,q~ II 51Iq,,qv 

Now the statement l(d) follows from theorem 6. The statements 2(a)-(d) can be 
0 

Remark. The statements l(c), 2(c) show that a perturbation h(n) = (hj(n)) of a 
travelling wave solution u(n) = (U&)) = (@(U +mn)) moves under the evolution 
operator in the direction of this solution on the distance equals to the length of the 
interaction. The statements l(d), 2(d) mean that those of the perturbations which 
run together with the travelling wave with the same velocity mll (Le. having the 
form hj(n) = .f0+,&)) are damped in time under the evolution operator. 

proved in the same way. 

Let us also note that the family of subspaces 

hd2f - %29,,&4(nN s k u(n) =@:(U) 
forms a non-stationary filtration invariant and infinitesimally stable with respect to 
d@, and the family 

yi Ef yo  w . 9 M n ) )  
forms a non-stationary filtration invariant and stable with respect to QX. 

We now formulate a result describing infinitesimal stability properties of the 
solutions of equation (2) in the form (4) of travelling waves (compare with theorem 

Theorem IO. Assume that f and g satisfy conditions (l), (a), (12). Then for any small 
enough x and sufficiently large q,, q2 (q2 depends on x but q 1  does not; cf theorem 

7). 

(1) the set d.n\,9h, 
(2) the map possesses a closed invariant set 2x,q,.9rcdpe,,9,,9, which is a 

finite-dimensional hyperbolic set; 
(3) for any U ~ d ~ , ~ , , ~ ~  there exists a finite-dimensional stable subspace 

k?2,9,,q&), a kite-dimensional unstable subspace k?&,,,, and an infinite- 
dimensional everywhere dense subspace @:,,,(U); the first two generate the 
tangent space T,dap,,,,9,; the intersection of any two of them is 0; 

(4) the above subspaces are integrable: there exist finite-dimensional stable and 
unstable manifolds Y:;r.q~(u) corresponding to g:&&) and an infinite- 
dimensional manifold T;:,Ju) corresponding to %'~Z,&(U). 

a finite-dimensional smooth submanifold in Aq\,9b; 
3) 
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4 Travelling waves in multi-dimensional and multi-component media 

In this section we shall show that our methods work in the case of multi-dimensional 
models. We give necessary definitions and formulate main results~ while the 
corresponding proofs can be conducted in the same way. 

Given g1 = (q,;), q2 = (qzi) ,  ql;  > 1, qzi > 1, i = 1, . , t let us consider the set 

where q( j ; )  = qGi if j i  > 0 and q( j i )  = q;)! if j ;  < 0. 
It is easy to see that 
Letf:Rd+Rd be a diffeomorphism of class C2,g:(Rd)'2"+1)'+Rd a map of class 

C2(s>O) and x > O  a real number. Define the map @x:Afl,q2+(Rd)g' by the 
formula 

where U = (~6)) and Fl= Zic1 [jil. 

Proposirion 7. Assume that there exists M > 0 such that for 1 = 1,2 

is a Banach space with the norm ll.llq,,q2. 

@%(U) = ( f (U6) )  + xg(IuOlF-i,~J) 

for any ?, 14 < s and any point ~u 6) E R(zrtl)'. 
Then for any g1 = (SI,), q2 = (qzi), qI i  > 1, q2; > 1, i = 1,. . . , f 
(1) @% is a map from A,,.q2 into itself; 
(2) 

point U = (~6)) is given by the h e a r  map 
is differentiable in the sense of Gautex and its Gautex differential at a 

( d @ d O  =f7(u6))d7) + -2 a0116j 
li-jlss 

where 

For~any U  EA^,,,^ let us denote by ZAG, n)  = (@:u)c). It satisfies 

u6,  n + 1) =f(uG, n)) + ig({u(T, n)}t-&) (is) 
n a o ,  u(j,O)=uG). 

Let us fix m, II.. . . , I ,  EZ+ such that 

(2) the numbers ll,,. . . , I ,  have the common divisor 1; in particular, the equation 

The second condition implies that the numbers l l , .  . . , l,, m have the common 

The travelling wave is a solution of (18) in the form 

. .  
(1) m a s  I ,  + 1; 

l l x l  + . . . + l,xr = k has a solution in the set of integers for any k E Z. 

divisor 1 but is more strong than the condition we have used in the case f = 1. 

u6 ,n )  = $((I,:) +mn) ='$(i - m )  

where (7,:) =X i= ,  I j ; ,  k = 0,:) + mn + m and $:Z+ Rd is a function. It satisfies ' 
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the equation 
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+(k) =f(+,(k - m))  + d + ( k  - m + ( t , b ) X i l d .  (19) 

The function $ is uniquely defined by (19) if we know the values (6) where 
I = Zf-l 1;. 

Let us introduce the 'travelling wave' map 
- F, : (Rd)"" + (Rd)"" 

. f , = X * , . f ~ = X 3 , .  . . ,X , s+m- l -x&+m,  

F % ( X l , . . .  , x i s + m ) = ( % , . . .  ,Xi*+m) 

where 

- - 
(20) 

Is,+, = f  (XkC1) + 4 { x p & d ,  P O  = 1s + cr, b + 1. 
We will assume that for any x = (xi)  E (Rd)(>+*)' the function g satisfies (8) and 

(12). The following result describes hyperbolic properties of the map F, given by 
(20). 

Theorem 11. If fpossesses a hyperbolic locally maximal set A (d (9)) then the map 
F, satisfies the statements in theorem 1. 

The hyperbolic properties of solutions of equation (19) in the space A9,,9r, 
q1 > 1, qz> 1 can be studied in the way described above without any modifications. 
We formulate the find results. Denote by Y, the set of solutions of (19). The 
relations (20) define a map x~:(Rd)'+"'+Yx. We also consider the shift 
&:YX-+Yx, (S,+)(k)= +(k+1), (IIEY~. 

Theorem 12. (1) xX is one-to-one map onto Yx satisfying (11). 
(2) For any q1 > 1, q2 > 1 the statements of theorem 2 hold. 
( 3 )  Assume that f and g satisfy conditions (17), @)-and (12). There exist 41') > 1, 

qho'(x) >1 such that for any q1 aqi'), q Z 3 q i o ) ( x )  the statements of theorem 3 hold. 

We will use the previous notation YIlx,9,n2 for the set of travelling waves from YX 
belonging to A9,#* and A,,,,, = x.(A,)  CY^,^,., for the hyperbolic set into 
~..'7,#*. 

Consider now the operator Q, given by the formula 

Qx({wJ)  = i f  ( ~ k - m )  + d { w * - m + ( i i h = J }  

where w = {wk} ~l,,,~,. This map satisfies statements of proposition 5 and theorems 
6, 7 with respect to the filtration of subspaces + E Y ~ , ~ , , ~ ~ .  I f f  and g 
satisfy conditions (17), (S),  (12) then theorem 8 holds wIth respect to the filtration of 
affine subspaces Vc$,.,,(+). 

We shall study stability properties of solutions of (18) in the form of travelling 
waves. Given +E%', define ax(+) = (u(+)c)) = (+@,7)). 

Proposition 7. If + E  for some q, > 1, q2 > 1 then U(+) E Ac,( i ) ,~~g)  where 
&(i) = (&, (~20) = (qi), z = 1,. . . , t. 
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Proof. Let I)  EA,,,,^. We have 

Consider some 7 = (jl,. . . , j,) such that 0,:) = k and assume that jm, 3 0,. . . , j., 2 0 
while jp ,  < 0, . . . , jo,-n < 0. Then 

Q = 4 ( j l )  . . . . . 4( jz)  = 4+&l+...+L L - ( l n , j n , + . . . + ~ ~ , . ~ j ~ , . ~ )  ’42 
Suppose lirst that k =I,, j a ,  + . . . + l.,j., - (lo,jo, + . . . + lo,-n jo,J 2 0. It is easy to 
see that 

Q = 4k( ‘ ~ ) l ~ , ~ = ~ + . . . + / ~ ~ j ~ ~ - k  .. 
2 414.. 

where the power I,, jml + . . . + lagjmp - k = A(k,?) 3 0. If k < 0 then 

Q = q2)k - W n ,  +-.. +h,-pjs,.g) 

where the power k - (lo, j a ,  +. . . + !o,-pko,.p) = B(k,?) >O. It follows from what  was^ 
said above that 

One can show that 

This implies the desired result. 

The next statement can be proved as proposition 4. 

Proposition 8. (1) a, OS:: = @% 0 ax: (2) a,  is one-to-one map on Yx,q,,2. 

U 

Proof The first statement follows from the definitions. To show the second. it is 
sufficient to repeat arguments in proposition 4 and to notice that according to our 
assumption for any k e H  there exists 7= ( j , , .  . . ,j,) and n 2 0  such that 

U 

is one-to-one map 

0,;) + mn = k. 

In particular. this result implies that the evolution operator 

We extend the map a, from Y,,,,,, onto A41,4r by setting for any w E J X ~ , , , ~  
on the set & ~ , ~ ~ . c 2 ( i )  = dW,,,,,,). 

H,w = .(w) = ((u(w)C))) = (WQ,;)). 

Proposition 9. (1) If w ~JX,;,,~_then u(w) E A ~ , Q ) , ~ ~ ( ~ .  (2) The map 6 ,  is a linear 
bounded operator. (3) 6,~Q,~S::=@.,~&,,. (Recall that &w(k)  = w ( k + 1 ) . )  

Proof We will prove only  the^ third statement. One can see that 

~ x o Q z o S 3 ~ ) i =  Q,o%(w)(i,:) = f ( w ~ , ; ) )  + xg({w&sJ. 
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e, E )  + mn = e, T). Therefore 
._ , 

dZ,odQ" [ =d@;odh,odS;""'[ E:f$2=d@P::odZ, [E,,&, S . ( i F ) + m n  
24 *.q,r92 

= dwxodCx I dQE I g3'.F - x.91.m =.m&(i> 
This immediately implies (21). The inequality (22) can be proved in the same way. 

Remark. It is worthwhile to emphasize that, in the multidimensiwal case, due to 
our strong assumption about I , ,  . . . ,1, the estimations of damping (21), (22) take 
place for any n 3 0 while in the one-dimensional case they hold, in general, only for 
n =In', n' EZ+ (cf theorem 9). 
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Appendix. Proof of theorem 1. 

Denote by A. = nkIo F$(&). First.we prove the following statement. 

Lemma 1. For any y E& there exists a sequence of points yk E Ac, such that yo = y, 
&(Yk)=Yk+i, k E Z  

Proof: It follows from the definition-of A. that for +ny y E& and k > O  there~exists a 
point yk E & such that F t ( y k )  = y. Given m > 0 consider a sequence of points 
{yi") = Fg-"(yk)}. Let m = 1. One ' can find a subsequence {y& converging to a 
point y(-'). It is easy to see that &($-I)) = y. For m = 2 there exists a subsequence 
ky' of the sequence k,'" such that y &  tend to a pointy(-') and &(y@) =y!$. This 
gives us that &(y(-*)) =~y(-'). Continuing, this process one can construct a sequence 
of points {y(-")} such that F,(y(-")) = Y ( - ~ + ' ) .  In particular, this 'implies that 
y(-") E & for all m > 0. Define now yk = y(-k) if k,< 0, yo = y ,  yk = F;(y) for k > 0. 

Let us fix y E & and consider the sequence of points {yk} constructed in lemma 1. 
It is easy to see that there exists ro>O such that for any k EZ the map Fo can be 
represented in the form 

6 ( 6 , 1 1 )  = ( A d  + g ? ' ( 5 , ~ ) ,  Bwv +d2'(5, T ) )  

(5, II),gi*)(C, 7)) is well-defined when 6 , ~  €B ( y k ,  ro) and 
where 5 E & ( Y d ,  II E E;(Yk), AK dF,/sb(yk)l B k  = d&[s;(yk), gd6,17) = (Si1' 

. ,  

Consider now the map F, for  small^ enough x. 
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Lemma 2. There exist x ,  > 0 and r, 0 < r < r, such that for any 1x1 < xo the map F, 
can be written in the above local coordnates as 

(A/;[ + gg?(C, v) ,  B ~ T  + g@(C, 7)) 

V Afraimovich and Ya Pesin 

F&, 7) 

where l1gk+ -gkilcx<&(x) and s ( x ) + O  as x+O. 
If Ak were invertible with llAL1ll uniformly bounded from above over k one 

could apply the well known approach due to Anosov and Alekseev [17,18] to 
construct smooth stable and unstable local F,-invariant manifolds in B(yk, r )  for 
each k E Z and x ,  r to be small enough. The points of their intersection would form 
F,-trajectory close to sequence {yJ. In our case detAK = 0. However, it is still 
possible to construct unstable F,-invariant local smooth manifolds V.,,+ CB(yk, r ) ,  
k EZ. Moreover, V,,k for each k has the following property: there exists a smooth 
function [x ,k(q)  defined in a ball B"(yk, r,) in the space Et(yk) of radius r,, 0 < rl < r 
(rl does not depend on k )  such that 

= GraphISdq) ,  17 EB"(Y~, rlN. 
One can see that F, is invertable on V,,k, F;'(Vxa) C V,,k-, and the intersection 
n;,oF;'(V,a+L) consists of only one point z , , ~ E B ( ~ ~ ,  r ) .  

Consider the inverse limit (Cl, U) of the endomorphism (A,, Po) where n consists 
of all sequences {yk} with yke& and F , (Y~)=Y~+~,  ~ E Z ,  and U is the 
shift to the right: ~ ( { y ~ } ) = { y ~ + ~ } .  One can endow !2 with the metric 
P({Y3, {YB) = E;=-* ly; -yWk1. 

Lemma 3. (1) There exists a continuous map h, :S-t P such that h, 0 U = F, 0 h,; h, 
is a homeomorphism for x # 0. (2) The set A, =~hx(Cl) 'is F.-invariant closed locally 
maximal and hyperbolic. 

Proot (1). It is not difficult to verify that the map h, associating to each {yk} E bL the 
point z,,~ E P has all the desired properties. In fact, continuity of h, can be proved 
by standard arguments [17]. To prove injectivity let us consider two sequences {y;}, 
{yi} such that y,! f yrfor some i EL If y: and yi belong to the same unstable leaf V,,, 
then the distance between F;(y:) and F,"(y:') become big enough so that the 
corresponding points z:,;+~ and z:,~+< do not coincide. 

Assume now that y: and yylie on different leaves but z : , ~  =z:,;. It is obvious that 
p(y,LP,z&) <constant and p(yi"-,, z:,;-J <constant uniformly over p 20 .  Since 
z' x.<-.D . = z:,;-, this implies that ~ ( y ( - ~ . y : ) - ~ )  <constant. Therefore p(Vh,  V&) s 
constant Ap,  0 < A < 1. This means that y( and j('be1ong to the same leaf. 

(2) First we will prove that A, is locally maximal. Namely we will show that 

I n d e e d , i f y ~ n ~ . ~ F ~ ( ~ )  thenfor anyj>O,p>Oanypointy'=(x,, ..., &+,) 
from the set F-j(y) belongs to nkEzF('s+m)(k-p)(C). This and the definition of the 
map Z$ implies that X ~ E ~ ) ~ ~ ~ F * - ~ ( P ) .  Since A is locally maximal (cf (9)) we can 
conclude from here that xi EA for all i = 1,. . . , Is + m, so yj E &. This means that 
Y 

Now we will prove that A, is locally maximal. Given y EA, consider {yk}.Q, 
yo = y. For any k E Z one can construct a stable local manifold V'(yk). We show now 
that & has a local product structure in the following sense. Take any y, z €Ao and 



Travelling waves in lattice models 455 

any {yd, { Z ~ E  8, yo = y ,  zo = z. Denote wA = V"(y,) n Kk(zk). Since I\o is locally 
maximal it is easy to see that {wk}eQ. In particular V s ( y )  n V,,(Z)E&. It follows 
from the first statement that for small enough x # 0 the set Ax has also the local 
product structure in the usual sense and, hence, is locally maximal. U 
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