Nonlinearity 6 (1993) 429-455. Printed in the UK

Travelling waves in lattice models of multi-dimensional and
multi-component media: I. General hyperbolic properties

V Afraimovichii and Ya Pesini$

+Department of Radio-Physics, Nizhny Novgorod State Umversnty, Gagarina, 23
Nizhny Novgorod Russia 603600
# Department of Mathematics, Pennsylvania State University, 335 McAllister Buildmg,
University Park, PA 16802, USA

Received 5 January 1993
Accepted by Y Sinai

Abstract, We study the stability of motion in the form of travelling waves in lattice
models of unbounded multi-dimensional and multi-component media with a nonlinear
prime term and small coupling depending on a finite number of space coordinates.
Under certain conditions on the nonlinear term we show that the set of travelling waves
running with the same sufficiently farge velocity forms a finite-dimensional submanifold
in infinite-dimensional phase space endowed with a special metric with weights. It is
‘almost’ stable and contains a finite-dimensional strongly hyperbolic subset invariant
under both evolution operator and space translations. ’

PACS numbers: 0340K, 0550

Introduction

Recently many chain and lattice models of non-equilibrium media with dissipation
and energy pumping have been of great interest (cf for example [1,2]). There is a
deep physical reason for this. Some experimental works (cf experiments with
convection in [3,4], Taylor—Dean flow [5], Faraday turbulent ripples [6]) showed
that particle-like localized structures can arise in a medium if the energy pumping
is large enough. These structures have mdividual degrees of freedom and each of
them can be described by means of finite-dimensional dynamical systems, thus
dynamlcs of the medium is treated as a result of an interaction of these subsysterns
This is the way to build a phenomenological lattice model. For example, it is known
that some types of motions of non-equilibrium media can be described by a space-
and time-discrete version of the Ginzburg-Landau equation. In the case of
one-component and one-dimensional media this Jeads to the equation {1,2,7, 8]

w(n +1) = u(n) — (1 = iBu(n) ju(n) + 2 (w;_1(n) — 2u;(n) + tp11(n))
u(n)eC,n,jeZ

where 8 and x are real numbers. In the more general case when the medium is
one-dimensional but multi-component we have

w(n+1) = FEun), B) + y(u;(n) — u;-1 (1)) + »(w;—1(n) = 2u5(n) + u,14(n))
§ Partially supported by NSF Grant DMS-9102887.
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where u(n)eR" or u(n)eC". Here the equation u{n + 1) = F(4(n), B) describes
the dynamics of an individual system and v, » characterize the connection between
them (y reflects the non-mutual coupling between elements and x is the coefficient
(or the matrix) of diffusion and is usually sufficiently small). For simplicity assume
that the medium is homogenous. Therefore the function F does not depend on f.
The case of inhomogeneous media is still very difficult for rigorous investigation.
Physicists also consider a more general case (cf for instance, (1,2, 9-11])

u(n + 1) =fls(n)) + ng Qus()kZ]-0) n,jel

where fis a Cz-d1ffeomorphlsm, g is C*map and u;(n) e R?. This equation is called
the evolution equation. Our aim is to study stability of motions in lattice models of
the above type for unbounded media and therefore with infinite-dimensional phase
space of states. Let us note that these models are used in physics to describe media
.with the behaviour in the inner part of spatial region independent of the behaviour
on the boundary. For such media (and such models) the physical reasons for the
appearance of finite-dimensional limit sets are not well understood. On the other
hand, some computer simulations of the szburg Landau equation display
finite-dimensional attractors.

In this paper we are interested in the solutions of the evolution equation in the
form of travelling waves

u{n) = p(lj +mn)

where m/l is the ‘velocity’ of the wave and ¢ ={y(k)} is a function
(k =Ij + mn + m). We describe the behaviour and stability of travelling waves in the
case when

m>[s+1.

From a physical viewpoint this case corresponds to travelling waves with ‘large’
velocity and as experiments show they appear to be stable in a large domain of
parameter space.

The evolution equation can be solved if boundary conditions are fixed. For
space-unbounded models this can be done by fixing the growth rate of solutions at
infinity along spatial coordinates. In other words we will consider only the solutions
u(n) = (u;(n)) which satisfy

(]n)ll 3 llu;(n)IF'

fla
}u(n) n‘h’qz B 120 aq; j<0 Q2

where ||| is a norm in R? and ¢;>1, ¢,>1. If u(n) = (15(n)) is a travelling wave
then the growth of perturbations along this solution can have different rates in
forward and backward directions. That is why, in order to analyse the stability of
such a solution, we work with different g, and g,.

As soon as the boundary conditions are fixed the evolution equation can be
treated as an infinite-dimensional dynamical system with the phase space

M‘hﬂz_{u ( ) I|u||q1q2<°°}

and the evolution operator

D,.(u) = (f () + wg({udiZi-)) u = ().
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Mg, 4, 18 a Banach space with the metric ||-||,, .- One of the important features of
dynamics of unbounded media is that the evolution operator @, is not differentiable
in the sense of Freshet but only in the sense of Gautex (i.e. it is differential only
along directions corresponding to finite-dimensional perturbations). It may lead to
an instability along some infinite-dimensional directions. Moreover, it may also
happen that a strongly linearly stable stationary solution is not isolated.

Usually a travelling wave is 2 bounded solution of the evolution equation.
Nevertheless, its small perturbations running with the same velocity can spread out
along spatial coordinates with an exponential rate. If a travelling wave is stable a
small perturbation tends to zero in each coordinate when time tends to infinity.
However, this convergence to zero is not uniform over coordinates. The metrics with
weights |-|l,,,, allow one to take this phenomenon into account. Such metrics were
introduced in [16] to study hyperbolic properties of spatiallty homogeneous solutions
and to establish the existence of finite-dimensional attractors in the systems w1th
drifted coupling (‘drift’ systemms).

Let u(n)=(u4(n)) be a solution of the evolution equation representing the
travelling wave u,(n) = (lj + mn). It is easy to see that the function ¢ should satisfy
the following ‘travelling wave equation’

Yk} =f(plk —m)) + 2g({(k —m + =)

where k =[j +mn + m is the ‘travelling coordinate’. Weg first shall study hyperbolic
properties of the solutions of this equation. For ¢;>1, ¢,>1 denote by
W, g1.q0. & g, 4. the set of solutions of the travelling wave equation.

Let us introduce the shift S.:W, ;. 5, W g0 (S} (k)= ¢(k +1). Obviously,
it acts as the nonlinear operator given by the right-hand side of the travelling wave
equation.

If q; and g, are large enough (where ¢, does not depend on x but ¢, does) we
will show that there exists a smooth imbedding

X : Rd(ls-‘-m) - Mm 92

with y (R¥*™y=w_ ¢ This means that W, ., is a smooth d(ls+m)-
dimensional submanifold in ., ... Moreover, we will show that the travelling wave
equation generates a map

F .Rd(ls-!-m)__) Rd([s+m)
s

such that the diagram

d(lstm) >
R ly-“ F1,92 = qu-az

F‘i ' ls,
Rdw*m} _x_") ly"-m-‘?zc‘/ﬂ‘?l.qz
is commutative. The map F, is a multi-dimensional version of the famous Hénon
map. For x #0 it is a C-diffeomorphism while F, is not invertible.

Let us now assume that the prime nonlinear term in the evolution equation is a
map possessing a hyperbolic locally maximal closed invariant set A<R? (cf
definition below). We will show that in this case the map F, for all sufficiently smail
x also possesses.a locally maximal closed invariant hyperbolic set A,. The problem
of the existence of A, for F, is a classical problem of small perturbations of the
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smooth map K, with the hyperbolic locally maximal invariant closed set A,
However, as we mentioned above, F; is not invertible. Such a situation was
considered in [20,21], but for the sake of the reader’s convenience we present a
method of solving this problem in the appendix.

It is easy to see now that the set

A‘*;G:-Qz = x’c(A”) < lp%ﬂh‘lz

is locally maximal closed invariant hyperbolic for the map S,. This describes the
hyperbolic property of the restriction S, | W, ,, ¢,

In fact for arbitrary ¢;>1, g.>1 one can still construct the map yx, which is
correctly defined on A, and is a homeomorphism onto its image. In this case
Asgra My, 4, 18 ‘topologically hyperbolic’ in the sense that one can conmstruct
‘traces’ of stable and unstable local manifolds which lie in A, , ., (cf theorem 2
below). However, in general, %, cannot be extended to R¥“*™ such that A,,,, ., is
not contained in any even topological finite-dimensional submanifold in ./, ,..

The next step in our study is to describe stability of a travelling wave ¢ = {{(k)}
in directions transversal to W, Let us introduce the ‘travelling evolution

#4192
operator’ Q, in M, ,, acting by the formula

(Quw)(ke) = f(Wimn) + 28 (Wi m+tli=—s)

where w = (w,) € M, 4, It is easy to see that

Ox ¥ ara, = 11 W 4105

This means that solutions of the travelling wave equations are the fixed points for

Q...

We construct a filtration of affine subspaces

VSO Vs,—l Vs, 2 . C,/%

G 1 qz %9192 %192 T1.G2

such that @, is contracting along each V;'f'ql 4, With parameters of contraction

(C(k), v), C(k)>0,0<vy <1. The union
Vife:h q2 = U Vi‘fqlﬂz
j=0

is everywhere dense in /#, ,, and is a non-uniformly stable affine subspace for O, at

the point . Let us note that the above filtration can be constructed for arbitrary
g:>1, >4, where g{®>1 is 2 constant independent of x. In particular, the
situation can occur when the set A, , o, is only topologically hyperbolic while the
map g, is differentiable and exponentially stable along each V57, .

In order to complete our consideration we have to pass from the travelling
wave equation to the evolution equation. Assuming again that ¢; and g, are
sufficiently large we associate with each #eW¥,, , the solution u(¥) of the
evolution equation such that u()(j) = (). This induces the map a,, from ¥, , ,,
onto the set

Aocigrgr = a, (Y., 1az)

such that a,.(¢) = u(¥). L, 4,4, is the set of solutions of the evolution equation in

the form of travelling waves. It is crucial here that x(#) no longer belongs to #,, ,,,
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but to My 4. It is also worthwhile emphasizing that, as we show, the map «, is
injective (this is due to our assumption that the velocity of the wave is given by
relatively prime numbers m, /). This implies that the evolution operator ®, is
invertable on f,, .. Besides, this set is a smooth d(/s +m)-dimensional
submanifold in /4. We will also show (cf proposition 4 below) that the diagram

ax
Ipx.qx.qz > d“-‘hﬂ: = '/%qﬁ.qﬁ

5‘;‘1 l“’x

o

lpx.qi.q; > o graz & ‘/Mqi,q‘z

is commutative. The set
A

X192 = a‘x(AX-ql.‘Iz) < ‘ggu.qm:

is locally maximal hyperbolic closed invariant. For arbitrary g, >1, g,>1 this set
can be still defined to be a topologically hyperbolic subset in #, . in the above
sense.

Now let us describe the stability of travelling waves in directions transversal to
A .04, Usually one can expect stability in the sense of damping of perturbations
running together with the travelling wave. This means that stability is non-
stationary. In addition it is, as a rule, non-uniform along spatial coordinates. This
leads to the following definition. ’

Let us fix u e M, ,,, g2>1, g2>1 and consider its semi-trajectory u(n) = ®(u),
n>0. We call a two-parameter family of subspaces € < T,u)fly, 4,0 k €Z, n >0, the
non-stationary invariant filtration if

(1) they form a filtration: &> &&*;

(2) they are invariant: there exists r >0 such that d®, s < &%

The non-stationary invariant filtration is referred to as infinitesimally stable if there
exist @ >0, 0< y <1, such that for any k>0, p >0, n>0 and any 5 € "

|d®m Elql,qz = Ck\p’yn Il ”thh

where C,, >0 is a constant independent of 7.

The above definition expresses stability with respect to the differential of the
evolution operator. We now consider local stability with respect to the evolution
operator itself. We call a two-parameter family of submanifolds 7<=/, .,
u(n) e V¥ the non-stationary invariant filtration if

(1) they form a filtration: V&> V5%,

(2) they are invariant: there exists r >0 such that @, (¥%) < V1.

The non-stationary invariant filtration is said to be locally stable if there exist ¢ >0,
0<y <1, such that for any k>0, p >0, n>0 and any ve ¥5**"

19%v) — w1 g0:= Cp¥" * 10 = u(O)llg, 0,

where Cy, >0 is a constant independent of #. -
Let us now define the extension &, of «, onto /1, ,. by setting

(W) = (wz) w=(w;) e Mg,
as well as the extension S, of §, by setting

S’x(W) = (Wk+1) w = (W) e"%qmz'



434 V Afraimovich and Ya Pesin

We shall show (cf proposition 6 below) that the diagram

'/%Q‘IlQZ = J“‘fﬁi‘f&

Q,,°S’,:'l lq’x

M —
quL92 qt.qb

is commutative (let us note again that Q, | ¥, 4,4, =, 5. | ¥y 4,4, = S). Using this
we shall prove that

Vi= Vi o)) = @ (VG a{w®))
where u(n)= &,(w(n)), u(n)=d5u(0)), keZ, n>0 form a non-stationary mn-
variant filtration which is locally stable with respect to ®,. Moreover, the set

vs’vqhqz(u) = U oy.s ’qqu(u)

is everywhere dense in J, 4.

Now we can describe the entire picture of the hyperbolic behaviour of travelling
waves, Fix any g, >q®>1, g,>1 where ¢{” is a constant independent of ». Take
any /,m>Is+1 and choose g:(1) > 1 such that ¢,(!) =g;, i =1,2. The solutions of
the evolution equatmn in the form of travelling waves moving w1th the veloc1ty mfl
form a set 47 gy S Manqe It contains a finite-dimensional subset 27 x50
which is invariant under the evolution operator and topologically hyperbolic with
respect to the metric |||l 4,4, in #,, 4,- It can be constructed as pointed out above. If
g1(!) and g,(I) turn out to be large enough (such that g,(/). does not depend on x but
q2(D) does) then &3 (.- 1S @ smooth d(ls + m)-dimensional submanifold in /,, ,,
and L7 .40 becomes a hyperbolic subset in the ‘usual sense. If g;() > g{” then
any travelling wave lying in an affine subspace Vi) = Mg, q,, converges to
A5 han and the union of these affine subspaces is everywhere dense. If, in
addition to that g,(!) is large enough (depending again on x) then V%% o 7.y(%) is
transversal to the tangent space to &i% (.4, at 4 Let us notice that for any distinct
pairs (4, my), (L, m,) the sets LW, ooy and L%y, .y are disjoint and therefore
the corresponding spaces ¥%5 .4.n(#) are also disjoint.

As we have seen above, parameters ¢;.g» play an important role in our
construction and deeply refiect a smooth topological structure of hyperbolic sets for
the evolution operator. When these parameters increase one can observe two critical
phenomena. The first is due to the transition from g, <g® to g,>¢{® (with any
g»>1), while the second corresponds to the transition over g,=g3”(x). For
1<g,<q{® and g,>1 the set &, ,, is topologically hyperbolic as a subset in
A, 4.0 But its stability in ‘transversal’ directions is not clear yet. When g, > g{* the
set &, .. becomes non-uniformly stable along the filtration ¥3% .., k €Z. In fact,
given u € &, ;. ,,, this filtration appears when g, exceeds some critical value q“”(u)
(such that ¢{¥ =sup,. ﬂmmqm)(”)) If g, exceeds g (x) then &, 4, ,, becomes a
smooth submanifold and %, ; ,, is a hyperbolic subset in the usual sense.

Let us emphasize that ¢{” and g5?(x) depend on the velocities of travelling
waves but they are uniformly bounded from above.

So far we have considered only one-dimensional multi-component models.
However the multi-dimensional models are also of great interest; for example,
spacetime-discrete versions of the generalized Ginzburg-Landau equation, the
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Kuramoto—-Sivashinsky equation, reaction—-diffusion equation and the Huxley equa-
tion are of this type. They describe the appearance and interaction of structures in
non-equilibrium media and have recently become the subject of study. For instance,
the discrete version of the two-dimensional Huxley equation has the form

w0+ 1) = uy, 5 (n) + af (w;, ;,(n))
+ %(un—l,fz(n) - 4“;'1»;2(”) + uft'l-l-iz(n) + u.lbfz—l(n)
+ uit,f2+1(n))'

It was considered in [22].

The methods of study presented in this paper work in the multi-dimensional case
as well as in the one-dimensional one. The main reason for this is that the
‘travelling wave equation’ is still one-dimensional with respect to the travelling
variable while the dimension of the domain of values of function  depends on the
dimension of the medium. That is why the solutions of the travelling wave equation
inherit the same properties and their hyperbolic behaviour in the space #,, ,, can be
described by the imbedding map x,.. The next trassition to the travelling waves
solution of the original evolution equation is given by another imbedding e,. It is
defined as o, (¢())=¢({@.})), where I=(l,...,L), =0, i=1,...,¢ is the
‘wavevector’, j = (ji,. . . ,j:) € Z° and ¢ is the dimension of the medium (here (7, ), is
the usual scalar product). The map «, is well-defined as a map into a space
Ms05.0 Where Ga(l) = (q¥), Go(D) =(g5), i =1,...,t and Mz 4,q consists of all
the functions u:Z'— R?, u = (u(j)) for which

“u(]ls L a.’r)”
ul-l"‘—2‘=§...§ - — < ®
lullz@.2.0 < ey q ()

(bere q(ji) = g/ if j;=0 and q(ji) = gz ** if j; <0).

As we can see, despite the multi-dimensionality of the medium, the type of
metric we use to express the hyperbolic behaviour depends on two parameters g, g»
in the one-dimensional case. After that the picture of hyperbolic behaviour
described above in the one-dimensional case can be reproduced (with few and
almost trivial modifications) in the multi-dimensional case.

Although we consider only muiti-component media (with at least two com-
ponents) our methods may also work in the one-component case. The reason is that
we use essentially information about the hyperbolic behaviour of the map F,. It can
be studied, and turns out to be sufficiently strongly hyperbolic even if the map f does
~ not have a non-trivial hyperbolic set or is not invertible. This can often occur when. f
is one-dimensional [19]. '

1. Definitions and general properties of travelling waves

Given g, >1, g, >1 let us consider the set

'/%‘Ihq,“. = {u L Rd: u= (”j)jeZ» ”lé ”q;,qz = E “uj“ + Z ” ui}" < 00}

=0 g1 j<o0 42

(here ||-|| is a norm in the Euclidean space R?). It is easy to see that 4, . is the
Banach space with the norm {|-||4, ;..
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Let f:R?— R? be a' diffeomorphism of class C?, g:(R¥)***— R? a map of class
C*s=0) and »>0 a real number. Define the map P,:4, ,,— (R*)* by the
formula

192

P, (u) = (f(“ y+ xg({u,}*’_,_s)) u=(u )e“/ﬂfn g2°

Proposition 1. Assume that there exists M >0 such that for /=1,2

!

g
— (X1 X)) S

5! 1)

sup |dT.| <M sup su
xeR4

1<i=2¢-+1 x,€

Then for any g, >1, g,>1

1. @, is a map from 4, ,, into itself;

2. ®, is differentiable in the sense of Gautex and its Gautex differential at a
point i = (u;) is given by the linear map

+s

(dq)xn)(f) =f,( ) 72; + a;n;

=j i—8
where

g .
“= (fiZis)-

Proof. We have under these assumptions that

Hq)xu "‘hyqzs‘ ;}[”f(u,)ﬂ +x ”g({u;}j —.r) ”:l 4 Z [”f( 1)" [lg({ul}fﬁ_ )”]

q1 j<ol g3’ qz’

o [V@—1O1, , Ieiti) ~5O1 1O - 150}
j=0 71 g gl .
3 [V@=IOL fetuo) 6O, 1O+ 1gON]

j=<0 g2’ 92 g2
SM(Z"—”}"—f 3 3 B0+ 1s00- 3 v
cu( 3 1ex 55 L) o+ g0 3 v
j==w 4 j=—wi=j-s 4 jm—s
em3 3 Mo 5, 5 M,

1

+ M2 +1)- g ||u||q‘qz+(||f(0)ll+%||g(0)“)( 1“7—[——1)

S I]ufl s &l
Foa S 2 el 5 570 II II
j=0t=j=s j==si=j—s

where g = max{q,, g,}. This proves the first statement. In order to prove the second
one we have to estimate the norm of the vector (®,(x + &) —®,(u) —dd, - £);in
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R?. Evidently, it is less than M - sup,_;<, || &/|>. The second statement follows from
here. O

Fix ueM, , and consider the sequence of points u(n)=®(x) such that
u(0) = u. We have

wn+1) =) + wgQumbis)  jeZn>o0. @
Let us fix m,leZ" that are relatively prime numbers such that
m=ls+ 1. 3)
We are looking for a special trajectory {u(n)} of the form
w(n) = y(lj + mn) = y(k —m) k=Ij+mn+m. 4)
Here y:Z—R? is a function (let us note that for any k there exist j,n such that

lj + mn = k). Trajectory (4) represents a ‘travelling wave’ with ‘velocity’ m/l. It
follows from (2) that ¢ should satisfy the relation

(k) = f(dk —m)) + xg({P(k —m + iDfias). _ ©)

We shall show (cf below, proposition 2) that the function ¢ is uniquely defined
by (5) if we know the values

X, =y(—~m—Is+p+1) p=1,...Is+m ' (6)

In order to describe the set of all the travelling waves let us start by considering the
map , .

E:(RYYE™ — (RO H™, E(X1y - -« 5 Xisam) = (Fas -+ « s Xpstm)

where

X1 =X, Xp=X35..., x—ls-i-m—l = Xiseems

f£s+m =f(xls+1) + "g({xp(i)};?= =s/> P(l) = I(S + l) +1.

(™)

First we shall study hyperbolic properties of the map F, for small enough ». It is

det ;Tg] for any x=(x;)e(RH)*,
1t

easy to see that |det(dF,(x))| ==

i=1,...,Is +m. We shall assume that

a
det ——g?# 0 for any x = (x;) e (R)*>*1, (8)
1

It follows from (8) that F, is a diffeomorphism of class-C? for any x #0.
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Consider the map f. Assume that it has a hyperbolic locally maximal set A. This
means [15]

(a) A is a closed invariant subset in RY;

(b) there exists a bounded open subset ¥V =R“ such that A<V,

A= (V) | ©)

(¢) A is a hyperbolic subset for f; for x e A we denote by £%(x) the stable and
unstable subspaces at x; they have properties that

Ef(x)® E“(x)=R? dfE™“(x) = E**(f(x))
and for any n=0

ldfzvl| <cA” [v|| veE(x)

ldfzvll =™ A" |lvf ve E“(x).

where ¢ >0,0 <A <1 do not depend on #,x and v.

In fact one can construct families of stable and unstable cones
C*(x, a), C*(x, a) =R? (cf [15]; a is 'the angle of the cone at x € V) having the
properties: :

Clx,a)NC*x,a)=0

dfC*(x, a) = C*(f(x), @) dfC(x, a) = C(f(x), @)
and for any n =0 for which f*(x)eV, k=0,...,n

ldf vl < cod” [[v || veC(x, a)

ldfzull =csAs” v veCx, a)

where ¢, >0 is a constant independent of #,x and v. Conversely, if we have two
families of cones C*“(x, «) satisfying the above properties one can introduce stable
and unstable subspaces at any x € A by setting

E*(x) = () df "C(F"(x), @), E*(x) = () df"C*(f " (x), ).

Put

- Is+m - Is+m
V=9V vi=sv o Cxe)= D CUe) x =)
i=1

i=1

The cones C™*(x, a) are respectively stable and unstable and introduce the
hyperbolic structure on V, i.e.

dFy(x)C*(x, @) = C*(Fy(x), a) AR Ci(x, @)= C5(Fy(x), @)

and for any n =0 for which F&*™#(x)eV, k=0,1,...,n

[Pl <Cat ol veli(x, o) 1)
4P = Coa ol veC¥(x, @)

where Cy, 0 <A; <1 are constants independent of x, v, a.



Travelling waves in lattice models 439

Moreover, let us consider the set
- Is+m |
= @ Ai AIE A'
i=1

For any xeAg, x=(x1,...,X5em), X;=R? one can define dFy-invariant stable and
unstable subspaces at x by setting

Is+m
E%-u(x)___.. @ ES.u(xl).

Theorem 1. There exists %y > 0 such that for any 2, || < %

1. the map F, has an invariant set Ay= V', Fy(Ag) = Ao which is locally maximal
and hyperbolic;

2. if % #0, the map F, has a hyperbolic locally maximal set A, = V.

The fact that the second statement follows from the first one is essentially proved
n [20,21]. However for the sake of completeness and reader’s convenience we
present the full proof of theorem 1 in the appendix.

For each y e A, one can construct stable and unstable smooth local submanifolds
which we denote by V3*(y). They have the following properties: for any y € A,

(1) ye V().

@) T,V = EX(y)

(3) V(YN S VUE(Y), FII(VUAy) S VUF' (D)

(4) for any n=0

pPFUY ), FuyN < CPulp(y’,y) if y' e Vily)
P(FZ(y"), FM(y) = Clulp(y',y) if y’ e Vi(x)

where C{’>0, 0<A,<p, <1 are some constants and p(y’,y) is the distance
between y’, ye(Rd)"*”‘

2. Hyperbolic properties of travelling waves along tangent directions

We shall study equation (5) assuming that x # 0. Denote by ¥, = (R?)? the set of
solutions of this equation. The relations (6) define the map from (R*)**” into W,
which we denote by y,. Consider also the shift §,.:W¥,— W¥,, (S.¥)(k) = ¢k +1),
yeV,.

Proposition 2. (1) x.. is one-to-one onto W, satisfying

ZuoE = S,00. | . a1

In other words the sequence ¥,(x)(k) satisfies equation (5).
(2) If xe(R*)**™ is a point such that the trajectory {F7(x)} remains in a
bounded domain then ||x.(x),, ., <> for any g, >1, g,> 1.
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Proof. The first statement immediately follows from (5)‘ and the definitions. Given
x e (RS we have that

€33 if ~Is-m<k<-1
2)(K) = ) FL 005 m if k=0
(B0 ifk<~ls—m—1
where (x), means the k-coordinate of x. This implies the second statement. O

Theorem 2. (1) For any q,>1, g;>1 the map .| A, is a continuous imbedding

mto M, .. et

(2) The set A, 4 0=X{A) Sy 0, N, =W, 44, 18 closed and invariant
under S,; the map S, | ¥, ,, ,, is 2 homeomorphism.
(3) The sets

Vi o) = 2 (VEE) N AL, = 2.(5)

are ‘traces’ of stable and unstable local topological submanifolds in #,,,,; this
means that they consist of points v e A, ;, ., lying in a small niehgbourhood of ¢ in
My, 4, Such that

Tim [1S2() = S20) s = if v € Vg, n();

lim [15.%(4) = 2" W)l g0, = 0 if veViga(y)

Proof. Given q,>1, q2> 1, £ >0 there exists N >0 such that for any x e A,

k=—N g:"° kaeN Q1
This implies the first statement. The others follow from here and theorem 1. 0

From now on we assume that in addition to (1) the function g satisfies the
following condition: for any x = (Xs,...,Xz4+1) e RA®*D the matrix dg/ox,(x) is
invertable and

(—(x)) ‘ <. (12)

sup ax
1

xeRd(Z!+l)
Theorem 3. Assume that f and g satisfy conditions (1), (8) and (12). There exist
g >1, g®(x)>1 such that for any q, = q{®, g, = q{"(x)
(1) the map yx,, is a smooth imbedding of (R?)**™ into M, ,.; for x € (R?)** the
differential dy,.(x) is given as following: dy.(x)v =7 where ve(RY)*™™ and 7
satisfies the relationship

5

(k) = df ((k ~m)mGk —m) +x >, am(k ~m+1) - (13)

i==3

with
({4’(" m+ li)fi=—;)

(2) SUDy = metts+m) ”dx:c(x)uq\qz S
(3) the set W, 4, = xx(R")(’“"" is a finite-dimensional (of dimension d(Is + m))

smooth submanifold in #,, ,.;
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(4) the set A, 4, 4 = XalAy) W g,q, 18 Closed and invariant under S,.
(5) Axg,.q, is a hyperbolic locally maximal set for S, (with respect to W, ..)
with

Ei".,l;l.qz(l?’j) = dx%(‘E&?‘;u(x))J !!t = Z%(x)
as a stable and unstable subspaces at e A, , ,, and

Viiaa¥) = 2V X)), ¥ = 2.(x)
as stable and unstable local smooth submanifolds in W, , .. respectively.

Proof. For x,ve(RY)**™ define

(V) if ~ls—m=<sk=<-1
n(x,v) = ([@dF )i em if k=0 (14)
(EY* 5" (x W), ith<—ls—m—1 —

where (v), means the k-coordinate of vector v. It is easy to see that n(x,v)(k)
satisfies {13). The trivial calculation shows also that

-
0 ... 2 \ax,
e 0o ...
0 E O
o 0 0 ... E 0

where the entries in the first line are either equal to 0 or have the form
(1/2)(9g/éx,)"'g with ||Z| < M. This and assumptions (1) and (12) imply that

14E, || < M; 1dF | < My(x)

where M, >0 and M,(x)>0 are constants. In particular, n(x,v)e#,, ,, for some
g1>1, g,>1, g, does not depend on x (but g, does; moreover g, — « as x—0). It
follows from (1) that

=
L Sup M0 9)ige, <C V]

where C = sup, cpuesm |dF,(x)}]. Now using (1), (12), (14) it is not difficult to verify
that

0 if —ls—m<k<1
(el + ) = 22 (x) = n(x, v))(K)]) <9 CF v)? ifk>0
CoEm5m u]? ifks<—Is—m—1

where C,>0, C,>( are constants independent of x, v,k (but C, depends on x).
This means that n(x, '} = dy.(x). The latter implies statements 1 and 2. The others
follow from them, (11) and theorem 2. |

We shall study stability properties of solutions of equation (2) in form (4). Given
Yy e W, define u(y) = (u(y);) = (&),
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Proposition 3. If yre M, ., for some g, >1, g;>1 then u(y) e My 4.

Proof. We have that

j=0 ‘11 ;<o 2

-3 !I‘P(Zj)li Y ]l'#(lf)ll< D Illll(k)li £y lll!f(k)ll

j=0 41 7<0 k=0 Ch k<0

- "lp‘“ql q2° O

Let us introduce the map a, :W, ,, .~ My o by setting a, b = u(p).

Proposition 4. (1) a,°S%=®,°a,; (2) a, is a one-to-one map on ¥, g, ;..

Proof. (1) It follows from (2), (15) that
D, (w(W)) = (fu(y)y) + xgQu(y)tizi-s) .
= (f{@{) + »g(P(li)i5-0) = e ($(§f + m)) = a, o SHY).

(2) Assume in contrast that there exist two functions ¢, ¢"eW, , . such that
u(y') = u(¥"). This means that ¢'(5j) = ¢"([f} for any jeZ but ¥'(ko) # ¥"(ko) for
some koeZ. Set k(n,j)=nm +1j, n=20. We will show by induction over » that
' (k(n,j)) = ¢"(k(n,j)) for all n=0. For n =0 it is obvious. Suppose that it holds
for all 0=<n <N. It follows from (5) and our induction assumption that

Y'(k(N+1,7))=¢'(Nm +lj +m)=f(§'(Nm + Ij))
+ug({Y' (Nm + [j + ID}i=—) = F(¥"(Nm + [j))
+ wg({W"(Nm + I + =) = " (k(N + 1,)). -
Since m and [ are relatively prime numbers for any k € Z one can find #, j, n = 0 such

that mn + Ij = k. This implies the desired result. O

Denote by

‘ng,qmz = ax(wx,qmz)

the set of solutions of equation (2) in the form of travelling waves (4) lying in #y 4.

Corollary. The evolution map &, is one-to-one on &, , ., and, hence, is a
homeomorphism.

Proof. This follows directly from statement 2 of theorem 2 and statement 1 of
proposition 4. . O

The next two theorems follow from propositions 3, 4, and the corollary.

Theorem 4
(1) The set S;,qhq% =, (A, 4,.4,) is closed and invariant under P,.
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(2) The sets f

Vg u) = o, (Via, qz('p))’ u=a,l(y)

are ‘traces’ of stable and unstable local topological submanifolds in y . (cf
theorem 2).

Theorem 5. Assume that f,g satisfy conditions (1), (8)., (12) and g,=q{,
g> = g$ (%) (cf theorem 3). Then
(1) the map a, | ¥, 4, is 2 smooth mapping into ., .. in particular the set

o is a smooth finite-dimensional (of dimension d(is +m)) submanifold in

*q1.92
ahab
l(2) &Lrara, 1§ 2 hyperbolic locally maximal set for ®,, (with respect to &, , ,.)
with
Eean 02(‘”) =de.(Exg, qz(lp)) u=a, (i)
as stable and unstable subspaces at # € Z, 4, ,, and
chc}le qz(u) = a%(ViJ:h 42(1!’)) u= a,‘(lfl)

as stable and unstable local smooth submanifolds in &/, 4, ., respectively.

3. Stability properties of travelling waves in transversal directions

We shall study stability properties of equation (5) in directions ‘transversal’ to the
set W, ;2 @1>1, g2>1 (see theorems 2 and 3). Let us introduce the operator Q,,
by setting for any {w.} < M, 4,

0.(W)) = 1 (W) + g (Womaso -}

The trajectories {Q%({w;})}, neZ, correspond to waves running with velocity
m/l. The solution of (5) represent those of them which are stationary. Others are
non-stationary ones. It is clear that Q. |w,, . = ]‘pm o Lhe nonlinear operator Q,
has a special ‘drift’ form. Operators of such a type have been studied in [16].

Proposition 5. For any ¢, >1, g,>1

(1) Q. is a map from #,, ,. into itself;

2) 0, is differentiable in the sense of Gautex and its Gautex differential at a
point {w,} is given by the linear map

S5

(dQ.0)K) = ' Wieem) e + % 2>, am(k —m + i)

where a, = (38/ Wi—m +1i)({Wk—m+!i}“§=-s)-
Proof. This is the same as for proposition 1. O
Letus fix y eW, 4, 4, We shall describe subspaces on which the action of dQ, is

contracting. Given keZ™ define ELY () ={n e, ,,:m = (n;) where n; =0 for
<k}. It is easy to see that these subspaces have the following properties:



444 V' Afraimovich and Ya Pesin

(1) ESX o.(¢) form a filtration: ES%  (¢) > ESETL (40);

(2) it Ei:;l qz(¢) = Uk eZ E&k sqz(lﬁ) then Ei:; 42('10) qn a2
(3) dQ.Eg () S Eiﬁfé’? ().

The following result shows that the above subspaces are stable with respect to 40,

Theorem 6. Assume that f and g satisfy conditions (1) and (8). There exists a
constant g{” > 1 with the following property: for any g, =g g,>1and keZ one
can find a constant Clk)=C(q1.q2,k)>0 such that for any $eW,

71 EEN: W1y qz(‘\l’) n’
1dQ%(#)0 0. Ck) - ¥* 1 l41.0,
where y,0 <y <1 is a constant independent of k, ».

+d1,927

Proof. First of all we show that d@Q, is a bounded linear operator. Our arguments
generalize those we have used in the proof of proposition 1 (which is essentially the
same if one assumes below m = 0). Let e #,, ... We have by virtue of (1)

Hden ”ql = 2 |[(de7?);” 2 ||(de"?)1|i<M( 2 A(1)+ 2 A(2)+ Z A(B))

J=== jm=—co i=0 j=m
where
(G —m)l S n(—m + )]
)y LN A
A= Sl +xi§sq§j-m+li),qz-m+li
o G -m) - s n( ~m+5)|
A,F _qlzj-ml . qjl . qz—li—nq + ,.=2._s q‘z’._m_‘_m - q’; .qz_”.__m—;m
J=m+li~<0
¢ 3 lnGomri)
= R
J—m+li=0
InG =ml In(j —m+ )|
AJ(S) _*;—'m—m* x 2 jomyl m—f
a1 q1 i==~s 41 *q1

Let us now estimate these values. It is clear that

ap=gges- (LU=, InG-m+ DI

R
@ — mes_{IMG—m)ll Lo mom+ ) S i m L)
AJ' )S‘q * ( q|2j—m| o izs q|2;~m+lx| T f;_s ;i—m-f-li
J—m <0 J—maliz0

where g = max{q,, g2}, and

AP < gt (“"?(J m)|| 2 2 - m+lz)|[)

1; =1 r—m +&
f ——
Consequently,

1dQunll 4,0, < Mg™ (1 + %(25 + 1)) [ 0llgq
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It follows from here that
def

14Q..[| < C = Mg™+5(1 + x(2s + 1))

m+Is—k

Let us fix first £<(0. Define no(k)-—"[m_ 5T 1}-i-l. One can verify that

Qn“(k)Ex T2 Ef‘J;ql U
for some kg, > Is + m. Besides, we have from above
14Qun g1 =< €™ - 101}, , (15)
Let us now take n >ny(k) and 7 = dQ™*n. We have that
dQhm = dQr™" W - dQWn = dQr~®q.

Forany £ =(§) with §=0ifj=m +1Is

= 1(dQ.&); = — +1
"deflqu,qz =j=m§+:[s+l ”( 3}16) " =M: —m§k+1 (Hjjl(] )“ A—E—s ”qgjl(_}m-'.l:nQI iz‘“)
1 .
SM ’ (q_in qT s (2S + l)) ||§" qungz*

We assume that 1/g, and » are so small as to satisfy the inequality

y"“’fM(l p (25+1))<1 , (16)

g7 ?—k
From this and (15) we have
Q5| < v~ - EO |19l g0

Consequently, denoting y~"* . C*) = C(k) the.required inequality follows. The
case k& >0 can be established in the same way. O

Now we are able to formulate the final result describing linear stability properties
of solutions ¢ W, . for big enough g,,¢.. It follows from theorerns 3-6 and
proposition 5.

Theorem 7. Assume that f and g satisfy conditions (1), (8), (12). Then for any small
enough » and g, satisfying (16) and also g, = ¢%, ¢ = g5(») (see theorem 3)

(1) the set W, , ., is a finite-dimensional smooth submanifold in /4, .;

(2) the map Q, possesses a closed invariant subset A, , ., <%, , 4, Which is a
finite-dimensional hyperbolic locally maximal set with respect to ¥, , .

(3) for any ¢eA,,, there exists a finite-dimensional stable subspace

E 4.2{¥), a finite-dimensional unstable subspace E%, . (¢), and an infinite-

dimensional stable everywhere dense subspace E%5 ,(#); the first two generate the
tangent space T,W, , ,.; the intersection of-any two of them is 0.
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We complete the above consideration by constructing a filtration of stable
smooth manifolds corresponding to E% . (), ¢y € ¥, 4 o ¥ =(4,), k € Z. Denote

Vf":“'qz('ﬁ) =W edly,g:w=(w),w=4y;forj=< k}.

This is an affine space of infinite co-dimension passing through . It has the
following properties. '

Theorem 8. For any W, .. with a satisfying (16)
(1) V£ . (¢ form a fltration: V%, mOES VL (4);

%1492

(2) i V550:(¥) = Ukez Vi, o) then it is everywhere dense in My, .,
(3) V£ (%) is invariant under Q, in the following sense:
QulVidena)) = Viara “(¥).

(4) Vi . is stable: for any we V5% - and n =0

||Q§(W) Q:(%L')"q, q:""' Cl(k)'y "W lp”ql g2

where Cy(k)=C,(g1,92,k) is a constant and vy is a constant mdependent of k& (cf

(16));

5) if, in addition, ql;qu, g.= g3(x) then VX () is transversal to W, ,
th#fz G192

and V%4 (W) N, 4 0= {0}

Proof. In fact the only property which needs to be checked is the property (4). It
can be proved in the same way as theorem 6 by using the property (3) with the
following modification: instead. of dQ..(¥) we have to consider 40, (¥ + ) for
some 0<r<1. O

The previous results have an auxiliary character but we will use them to study
stability properties of equation (2) along travelling waves in the space Mgy,q, 10 the
direction transversal to &, ;, -

We extend the map «, from ¥, ,. ;. to M, ,, by the following formula

&.w =u(w)=(uw)))=(wy)

for any wedl,,, Let us also consider the shift I,:dly q—> Mg
Sw)k)=wk+1).
It is easy to see that 5, | W, 4,4, = S.-

Proposition 6. (1) If weJ&iqI 4, then u(W)E./%qg ab (2) the map @&, is a linear
bounded operator; (3) &,°Q,°S7 =P, &,

»

Proof. The first statement can be proved as in proposition 3. The second one is
obvious. It follows from the definition of &,., @, and S, that

&x e Qx OSI:(W)J; = Qx os;n(w)/j =f(wij) + xg({wlj+li}‘::= -—-.s')'
On the other hand

@, ° &, (wh) = Pullwyh) = {f (wy) + 28 (Wyafi=-)¥
This proves the third statement. ) O

Let us define for u e, ,. 4, 4 = o, (w), w e ¥,
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(1) Subspaces

%s.k

ena2l) = d&”Ej"j‘,;l-QZ(w);

(2) Submanifolds corresponding to &% (1)
‘V;’flhﬂ(‘u ) =a, (Vi’fg 1142(W)) ’

The following results describes stability of the evolution operator ®, in
directions transversal to ., 4, 4,

Theorem 9. 1f (1), (8), (16) hold then for any u e &Qx‘;,b,,z with g, satisfying (16).
1. the subspaces €% . (u) possess the following properties:
(a) they form the filtration:

gjﬁ{fl 1 :42(u) = gfﬂ’,’;téz(u ) :

(b) if €55 o (w)=Ukez €5 () then it is everywhere dense in My 4;

% 1.q2

(c) d®,%5% . (u)= €L (D,(u))(dD, is the Gautex differential of @,; cf
proposition 1);
(d) for any u e My 4, 1€ ELTU), n =0

14D @) Nl ghas < CARYY™ 1 41,08

where C(lk) >0, 0 <vy <1 are constants from theorem 6;
2. the manifolds 3% _ (¢) for any ¢ e &, 4 ., have the following properties:
(a) they form a filtration

cy/'s.k

vara) 2 Vg au);

(b) if V55 0() = Ukez V3% 0(%) then it is everywhere dense in My 0
(c) V5%, 4.(u) is invariant under @,

D..(Viiluat)) = Vgl uw));
(d) V5%, 4,(u) is stable i.e. for any & € V3%, (1), n>0

D) — D)l gt.q8, < Colll)y™ 17 — 1l g5 -

where C,(lk) >0 is the constant from theorem 8.

Proof. The statements 1(a) and 1(b) are obvious. It follows from proposition 6 that

sk — dd o dr ISk g~ Sm sk

dd)xgx,qm: =dd,, °d§¥xEx.q.,q2 =dé&,°dQ, odeEx-ql.ch
I sik—m _ 1~ lhk=Is _ cpsk=s
- daxon"E"lh-qz "da%E%JIhQZ - gnm.q:‘

This proves the statement 1(¢). To verify 1(d) let us first note that for any » >0 one
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can easily conclude from proposition 6 that
&, (QyoS) =0 @,
Since Q, and 87 are commutative we have
(Quo8%) = Q%o 85"
This implies that |
&0 Que S =Pod,.
It follows from here that
da,-dQlr | ES% . =d®Teda, | ESEHmn = ddl | ghktm,

x4 1.2

Let us note that obviously for any {e#,, 4,

Nd&.€ligtas = 1€ g0

Now the statement 1(d) follows from theorem 6. The statements 2(a) (d) can be
proved in the same way. O

Remark. The statements 1(c), 2(c) show that a perturbation i(n)= (h;(n)) of a
travelling wave solution u(n) = (u;(n)) = (¥(/j + mn)) moves under the evolution
operator in the direction of this solution on the distance equals to the length of the
interaction. The statements 1(d), 2(d) mean that those of the perturbations which
run together with the travelling wave with the same velocity m/{ (i.e. having the
form h;(n) = &+ ms(n)) are damped in time under the evolution operator.

Let us also note that the family of subspaces

gt ) u(n) =0

forms a non-stationary filtration invariant and infinitesimally stable with respect to
d®, and the family

YEE Yk (u®n)

forms a non-stationary filtration invariant and stable with respect to ®,.

We now formulate a result describing infinitesimal stability properties of the
solutions of equation (2) in the form (4) of travelling waves (compare with theorem
7.

Theorem 10. Assume that fand g satisfy conditions (1), (8), (12). Then for any small
enough x and sufficiently large g,, g> (g, depends on » but g, does not; cf theorem
3)

(1) the set &, 4 4, is a finite-dimensional smooth submanifold in 4 ,1;

(2) the map ®, possesses a closed invariant set &, ,, < &, 4 4 Which is a
finite-dimensional hyperbolic set;

(3) for any uesl,,, there exists a finite-dimensional stable subspace

&, 4.0,(#), a finite-dimensjonal unstable subspace @rgna» and an infinite-

dimensjonal everywhere dense subspace %7 ..(u); the first two generate the
tangent space T, 4, . .., the intersection of any two of them is 0;

(4) the above subspaces are integrable: there exist finite-dimensional stable and
unstable manifolds ¥%% . («) corresponding to &7 ,(u) and an infinite-
dimensional manifold %35, ., () corresponding to €7 ,.(«). ' ‘
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4, Travelling waves in multi-dimensional and multi-component media

In this section we shall show that our methods work in the case of multi-dimensional
models. We give necessary definitions and formulate main results while the
corresponding proofs can be conducted in the same way.

Given §; = (g1:), G2 = (qa), g1: > 1, g2>1,i=1,...., t let us consider the set

M= {2 B = ez Wil =S .. S gLzl

where ¢(j;) = g}, if j;>0 and q(i) = gz if j; <0.

It is easy to see that /z, 3, is a Banach space with the norm |[|-| 7, 7,

Let £:RY— R“ be a diffeomorphism of class C?, g: (IR")‘Z““’ — R? a map of class
C*(s=0) and x>0 a real number. Define the map ®,:.4; ;— (RY)* by the
formula

D, (u) = (F()) + %g({u@)}i—ss))
where u = (u(f)) and [j| = =i, il

Proposition 7. Assume that there exists M >0 such that for /=1,2

sup ldE <M |sM (17)

10

for any 7, 7| <s and any point u(j) e R&*+?

Then for any 4, = (qy.), 2= (@), qu>1, 9> 1, i=1,. .. ,¢t

(1) @, is a map from Mz, 5, into itself;

(2) @, is differentiable in the sense of Gautex and its Gautex differential at a
point u = (u(j)) is given by the linear map

d@,m)() = (“(1))1?0) s EI‘J a@m@)
. i==j|=s

where

)= 2E (u@hr-ss 1 = (1))

For any u e Mz ;, let us denote by u(j, n) = (Pru)(j). It satisfies
u(f,n +1)=f(u(, n)) + xg((u n)}i-siss) 18y

n=0, u(f,0)=u@).

Let us fix m, l1,...,L, eZ™ such that

(1)m>s§l,1l+1 S .

(2) the numbers /;,. ..,/ have the common divisor 1; in particular, the equation
Lxi+...+lx,=khasa solution in the set of integers for any ke Z.

The second condition implies that the numbers /,...,/, m have the common
divisor 1 but is more strong than the condition we have used in the case r=1.

The travelling wave is a solution of (18) in the form '

u(i,n)=9((,J) + mn) =gk — m)
where (1,7) =3\ Lji, k=(I,/)+mn+m and ¢:Z—R? is a function. It satisfies ~
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the equation

Y(k) = F (ke — m)) + xg (W (k — m + (I, )hnss)- (19)

The function ¢ is uniquely defined by (19) if we know the values (6) where
=21
Let us introduce the ‘travelling wave’ map
E(RYS+m — (REYs+m Fx1, s Xtam) = (Fs e o o s Figom)
where

-fl =X2, fz = X3y 0 )fIS'i‘M"l = Xis4+mo»
fls+m =f(xls+1) + xg({xp(t_')}ﬁss)s p(;) = IS + (?7 ;) + 1
We will assume that for any x = (x;) e (R?)***1 the function g satisfies (8) and

(12). The following result describes hyperbolic properties of the map F, given by
(20).

(20)

Theorem 11. If f possesses a hyperbolic locally maximal set A (cf (9)) then the map
F, satisfies the statements in theorem 1.

The hyperbolic properties of solutions of equation (19) in the space 4, ,,,
q,:>1, g>>1 can be studied in the way described above without any modifications.
We formulate the final results. Denote by W, the set of solutions of (19). The
relations (20) define a map yx,:(R)**"—W,. We also consider the shift
SeiW. =W, (S)k)= gk +1), g e,

Theorem 12. (1) x.. is one-to-one map onto W, satisfying (11).

(2) For any g, >1, g,>1 the statements of theorem 2 hold.
(3) Assume that f and g satisfy condmons (17), (8) and (12). There exist ¢{® > 1,
g(») >1 such that for any ¢, = ¢{?, g, = g{?(x) the statements of theorem 3 hold.

We will use the previous notation ¥, , ., for the set of travelling waves from ¥,
belonging to J, ., and A, ; .= X(A.) W, 4.4 for the hyperbolic set into
\Ir,‘,qqu. . .

Consider now the operator O, given by the formula

Q..(w.)) = {fWim) + 28 Wk —m+@Dhires)t

where w = {w,} e 4, ,,. This map satisfies statements of proposition 5 and theorems
6, 7 with respect to the filtration of subspaces ES% (#), $eW,, .- If fand g
satlsfy conditions (17), (8), (12) then theorem 8 holds with respect to the filtration of
affine subspaces V3% _ ().

We shall study stability properties of solutions of (18) in the form of travelling
waves. Given ¢ e ¥, define e, (¢) = (u(¥)(j)) = (g[f(l M.

Proposition 7. If lﬁe./ﬂq 4, Tor some g;>1, g,>1 then u(y)eMzam 50 where
‘h(l) (D), fh(l) g, i=1,...,¢
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Proof. Let yed,, . We have
s S L@l )]l

i1 Jr q(h) M Q(Jr) - keZ (7,}:)=kq(jl) Teee” Q(]r) )
Consider some j = (ji, ... ,j;) such that (/,/) =k and assume that j,,>0,...,j, =0
while jg, <0,...,Jjg_, <0. Then

Q=q(h) - .. q(j;) = grvia™Helagy Coviort-Hapin-p)

Suppose first that k=1, ]a‘ et o ju, = Ugja, + ... tg._,jp,.,)=0. It is easy to
see that :

(N 5.0.5.0 =

Q= 45(91‘}2)1°'}“’+"'H””j"”ak
where the power L, jo, +. .. + 1o jo, —k = A(k,]) =0. If k <O then
Q = g5 (g qp)* Vit Harploncy)

where the power k — (Ig g, +... +lg_kg_) = B(k,j)>0. It follows from what was._
said above that

_s le@®)I L, 5 lv)] 1

i<o g3° =k ‘(q 142)P ¢ DI g5 @5 (g1g2) 2D

lall 70,20 =

One can show that

max{ Z . = } = constant.
an=r (qrg2) ¢’ (7,,-)2:,‘ (9:192) 0D
k=0 £<O

This implies the desired result. O

The next statement can be proved as proposition 4.

Proposition 8. (1) a,,°S =®,°a,: (2) a, is one-to-one mapon ¥, , ..

Proof. The first statement follows from the definitions. To show the second, it is
sufficient to repeat arguments in proposition 4 and to notice that according to our
assumption for any keZ there exists j=(j,...,j) and n>0 such that
@) +mn=k. : O

In particular, this result implies that the evolution operator @, is one-to-one map
on the set ‘Qg"ﬁl(ﬁﬁz(ﬂ = ax(q’qu,qg)°
We extend the map «, from ¥, ,, ,, onto 4, ., by setting for any we #, ,,

a.w =u(w) = (W)= w).

Proposition 9. (1) If we M, ,, then u(w)e Mz aza (2) The map &, is a linear
bounded operator. (3) &,°0,°8% = ®, o &,. (Recall that S,w(k) = w(k+1))

Proof. We will prove only the third statement. One can see that
@ ° Qu o STW)5= Q.o ST(W)a 5 = Fwap) + xg (wnhiies)-
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On the other hand
®, 0 a, (w) = D, (wip) ={f(wap) + xg{wenhi=s)t O
Introduce now the set

g" FDG0 = ax(Axm qz)

the subspaces

Conman) =da,(ELg o)) u=a($)¥ehgq

%‘i'f;_t(.i)ﬁz(?)(u) =dé %(E; Sll;kq)z(lp)) u= &%(lf’l)’ ‘lf Eq’xﬂh‘h
the local manifolds
v .q;(!),qz(l)(u) axCVx ql,qz(‘p)) u= O!,"((P'), ¢ € Ax’q'.’qz
and the affine subspaces ‘
Vb aan@) = a (Vi) =), 4 €Wrgygr

Az 18 2 set of travelling wave solutions of equation (18), . 7¢.5@ is @
locally maximal hyperbolic subset in &, 5.z The subspaces &b mamlu) are
stable and unstable in tangent directions at . The local manifolds V%@ 5,0 (%)
form stable and unstable sets at « in tangent direction. The subspaces %,,‘qlc,}.qzm(u)
form a non-stationary invariant filtration infinitisimally stable under d®, and affine
subspaces V3% 7 7@ form a non-stationary invariant filtration stable under ®,.
They also satisfy theorems 4, 5,9, 10. In particular, we have

(1) &8 dm0W) < €200
and
Vb aam®) < Voo if (1, k1) = (1, k2);
2) A, (1) € EIBLn (@, (u))
and

O (VEE s () © VEER-Lon (D, (w));

€ for any u e.Mz,7;0, 1 € €207 =0
142 70050 < CEYY" 11l 7.0.2.0 (21)
and for any i € V3% 3 5.n(1), n =0
”‘I)n(“) @, (u)”qx(l) qz(l)\cl(k)Y % = «ll 7,020 (22)
where 7= nf, ~ (n = 1)k and 7 is one of the integer solutions of the equation
| CR=GRtm @)

(equation (23) has at least one integer solution due to our assumption about
[1, - l )
We shall explain (21) and (22). Let us first notice that by virtue of (23)
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(I, k) + mn = (I, 7). Therefore
dd,odQy | EsTR = doda, odS;™ | B3R, = ddreda, | ESTR

%91.92 %5312 *%,q1.92

=d®roda, | 54D, = d¥% | €55.m.0.0)

%G 1,92

This immediately implies (21). The inequality (22) can be proved in the same way.

Remark. 1t is worthwhile to emphasize that, in the multidimensional case, due to
our strong assumption about /j,. ..,/ the estimations of damping (21), (22) take
place for any » =0 while in the one-dimensional case they hold, in general, only for
n=In',n eZ* (cf theorem 9).
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Appendix. Proof of theorem 1.
Denote by Ag= (k=0 Fo(Ao). First we prove the following statement.

Lemma 1. For any y € A, there exists a sequence of points y, € Ay such that y,=y,
F(¥i) = Yer1, ke L. '

Proof. Tt follows from the definition of A, that for any y € A and k >0 there exists a
point y,eA, such that F§(y.)=y. Given m >0 consider a sequence of points
{y¢™ = F& (3 Let m=1. One can find a subsequence {y{)} converging to a
point y©2. 1t is easy to see that Fy(y‘~") =y. For m =2 there exists a subsequence
k@ of the sequence k£ such that y} tend to a point y(™ and Fy(y{) = yi@. This
gives us that By(y?) =yL. Continuing this process one can construct a sequence
of points {y"™} such that F(y“™)=y "D, In particular, this implies that
¥y e A for all m > 0. Define now y, =y if k <0, yo=y, yx = F5(y) for k> 0.

Let us fix y e Ay and consider the sequence of points {y,} constructed in lemma 1.
It is easy to see that there exists r,>>0 such that for any ke Z the map F, can be
represented in the form

Ro(€,m) = (AxE +88(&, 1), Bim +g2(€, m))

where £eEi(ye), meEg(ye), Av=db E(ye)s B, =dF
(£, 1), g2(¢, 7)) is well-defined when &, 1 € B(yy, o) and

(Is+m)n (Is+m)n -1
(=)
k=1

A
Consider now the map F, for small enough s.

By 8ilé )= (g™

< C,AT

<CA | g0, =(0,0)  dgi(0,0)=(0,0).

k=1
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Lemma 2. There exist x7>0 and r, 0 <r =<r, such that for any |x|=< %, the map F,
can be written in the above local coordinates as

E(£ 1) = (AwE + gUE ), Bum + g2A(E, 1))

where |\gs.. — &ellct < e(x) and g(x)—0 as x— 0.

If A, were invertible with ||A;'| uniformly bounded from above over k one
could apply the well known approach due to Anosov and Alekseev [17,18] to
construct smooth stable and unstable local F -invariant manifolds in B{y,r) for
each keZ and x, r to be small enough. The points of their intersection would form
F, -trajectory close to sequence {y.}. In our case detA, =0. However, it is still
possible to construct unstable F,-invariant local smooth manifolds V,, . <B(y, 1),
keZ. Moreover, V,, , for each & has the following property: there exists a smooth
function £, x(7n) defined in a ball B“(y,, ;) in the space Eg(y.) of radius r,0<r, <r
(r; does not depend on k) such that

Vx,k = Graph{gx.k(n)i n éBu(yka rl)}'

One can see that E, is invertable on V, g, F,'(V, ) <V, -, and the intersection
{ im0 F'(V,.s+s) consists of only one point z,, . & B(yi, 7).

Consider the inverse limit (2, o) of the endomorphism (A, F,) where Q consists
of all sequences {y,} with y,eA; and FR(y) =Ye+1» k€Z, and o is the
shift to the right: o({y)={yi+1}- One can endow Q with the metric
oy (i) = 2R=—w Iy — "Uzlkl

Lemma 3. (1) There exists a continuous map 4, :Q— V such that ko0 = F, ¢h,; h,
is a homeomorphism for % 0. (2) The set A, =4, (Q) is F,-invariant closed locally
maximal and hyperbolic. . .

Proof. (1). 1t is not difficult to verify that the map %, associating to each {y.}c Q the
point z,0e V has all the desired properties. In fact, continuity of %, can be proved
by standard arguments [17]. To prove injectivity let us consider two sequences {y;},
{y#} such that y; # y}for some i eZ. If y; and y; belong to the same unstable leaf V,,
then the distance between Fi(y;) and Fy(y) become big enough so that the
corresponding points z,m,,, and z,, ;.. do not coincide.

Assume now that y, and y;lie on different leaves but z,,; =z . It is obvious that
P(Yi-p» Tny—p) <constant and p(y;/_,, z%,-,) <constant uniformly over p =0. Since
Zyj-p = Zn;-p this implies that p(yi,.yi~,)<constant. Therefore p(V},;, Vi) <
constant A7, 0 < A <1. This means that y; and y/belong to the same leaf.

(2) First we will prove that Ay is locally maximal. Namely we will show that

= (1) F&(V).
keZ

Indeed, if y €[ rez F*(V) then for any j =0, p =0 any point ¥/ = (X, .. . , Xs4m)
from the set F7/(y) belongs to { ez F@ %P (V). This and the definition of the
map F, implies that x; e{ 0 F¥P(V). Since A is locally maximal (cf (9)) we can
conclude from here that x;eA for all i=1,...,Is +m, so y;e Ay This means that
y €A,

Now we will prove that A, is locally maximal. Given y e A, consider {y.}eQ,
Yo =Y. For any k € Z one can construct a stable local manifold V*(y,). We show now
that A, has a local product structure in the following sense. Take any v,z € Ay and
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any {y.}, {2} €Q, yo=y, 20=z. Denote w; = V°(y,) N Vou(zs). Since Ay is locally
maximal it is easy to see that {w,} e Q. In particular V*(y) N Vyy(z) € Ag. It follows
from the first statement that for small enough x # 0 the set A, has also the local
product structure in the usual sense and, hence, is locally maximal. O
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