Contents

Prefe	асе		vi
Intro	ductio	n	1
1	The	concept of nonuniform hyperbolicity	6
	1.1	Motivation	6
	1.2	Basic setting	10
		1.2.1 Exponential splitting and nonuniform hyperbolicity	10
		1.2.2 Tempered equivalence	11
		1.2.3 The continuous-time case	12
	1.3	Lyapunov exponents associated to sequences of matrices	13
		1.3.1 Definition of the Lyapunov exponent	13
		1.3.2 Forward and backward regularity	15
		1.3.3 A criterion of forward regularity for triangular matrices	23
		1.3.4 The Lyapunov–Perron regularity	29
	1.4	Notes	31
2	Lyap	punov exponents for linear extensions	33
	2.1	Cocycles over dynamical systems	33
		2.1.1 Cocycles and linear extensions	33
		2.1.2 Cohomology and tempered equivalence	35
		2.1.3 Examples and basic constructions	38
	2.2	Hyperbolicity of cocycles	39
		2.2.1 Hyperbolic cocycles	39
		2.2.2 Regular sets of hyperbolic cocycles	42
		2.2.3 Cocycles over topological spaces	44
	2.3	Lyapunov exponents for cocycles	45
	2.4	Spaces of cocycles	49
3	Regu	larity of cocycles	51
	3.1	The Lyapunov–Perron regularity	51
	3.2	Lyapunov exponents and basic constructions	55

ii		Contents	
	3.3	Lyapunov exponents and hyperbolicity	57
	3.4	The Multiplicative Ergodic Theorem	62
		3.4.1 One-dimensional cocycles and Birkhoff's Ergodic	
		Theorem	63
		3.4.2 Oseledets' proof of the Multiplicative Ergodic Theorem	63
		3.4.3 Lyapunov exponents and Sub-Additive Ergodic Theorem	68
		3.4.4 Raghunathan's proof of the Multiplicative Ergodic	
		Theorem	69
	3.5	Tempering kernels and the Reduction Theorems	74
		3.5.1 Lyapunov inner products	75
		3.5.2 The Oseledets–Pesin Reduction Theorem	76
		3.5.3 A tempering kernel	79
		3.5.4 Zimmer's amenable reduction	81
		3.5.5 The case of noninvertible cocycles	81
	3.6	More results on the Lyapunov–Perron regularity	82
		3.6.1 Higher-rank Abelian actions	82
		3.6.2 The case of flows	87
		3.6.3 Nonpositively curved spaces	91
	3.7	Notes	93
4	Metl	hods for estimating exponents	95
	4.1	Cone and Lyapunov function techniques	95
		4.1.1 Lyapunov functions	96
		4.1.2 A criterion for nonvanishing Lyapunov exponents	98
		4.1.3 Invariant cone families	101
	4.2	Cocycles with values in the symplectic group	102
	4.3	Monotone operators and Lyapunov exponents	106
		4.3.1 The algebra of Potapov	106
		4.3.2 Lyapunov exponents for \mathcal{J} -separated cocycles	108
		4.3.3 The Lyapunov spectrum for conformally Hamiltonian	
		systems	113
	4.4	A remark on applications of cone techniques	117
	4.5	Notes	118
5	The	derivative cocycle	119
	5.1	Smooth dynamical systems and the derivative cocycle	119
	5.2	Nonuniformly hyperbolic diffeomorphisms	120
	5.3	Hölder continuity of invariant distributions	123
	5.4	Lyapunov exponent and regularity of the derivative cocycle	127
	5.5	On the notion of dynamical systems with nonzero exponents	130
	5.6	Regular neighborhoods	131
	5.7	Cocycles over smooth flows	134
	5.8	Semicontinuity of Lyapunov exponents	136

		Contents	iii
6	Exa	mples of systems with hyperbolic behavior	138
	6.1	Uniformly hyperbolic sets	138
		6.1.1 Hyperbolic sets for maps	138
		6.1.2 Hyperbolic sets for flows	142
		6.1.3 Linear horseshoes	144
		6.1.4 Nonlinear horseshoes	146
	6.2	Nonuniformly hyperbolic perturbations of horseshoes	152
		6.2.1 Slow expansion near a fixed point	152
		6.2.2 Further modifications	154
	6.3	Diffeomorphisms with nonzero exponents on surfaces	158
		6.3.1 Nonuniformly hyperbolic diffeomorphisms of the torus	158
		6.3.2 A nonuniformly hyperbolic diffeomorphism on the sphere	re163
		6.3.3 Nonuniformly hyperbolic diffeomorphisms on compact	
		surfaces	164
		6.3.4 Analytic diffeomorphisms	166
	6.4	Pseudo-Anosov maps	167
		6.4.1 Definitions and basic properties	167
		6.4.2 Smooth models of pseudo-Anosov maps	171
	6.5	Nonuniformly hyperbolic flows	182
	6.6	Some other examples	185
	6.7	Notes	188
7	Stab	le manifold theory	189
	7.1	The Stable Manifold Theorem	189
	7.2	Nonuniformly hyperbolic sequences of diffeomorphisms	192
	7.3	The Hadamard–Perron Theorem: Hadamard's method	193
		7.3.1 Invariant cone families	194
		7.3.2 Admissible manifolds	198
		7.3.3 Existence of (s, γ) - and (u, γ) -manifolds	201
		7.3.4 Invariant families of local manifolds	204
		7.3.5 Higher differentiability of invariant manifolds	207
	7.4	The Graph Transform Property	208
	7.5	The Hadamard–Perron Theorem: Perron's method	208
		7.5.1 An Abstract Version of the Stable Manifold Theorem	209
		7.5.2 Smoothness of local manifolds	218
	7.6	Local unstable manifolds	223
	7.7	The Stable Manifold Theorem for flows	223
	7.8	C^1 pathological behavior: Pugh's example	224
	7.9	Notes	227
8	Basi	c properties of stable and unstable manifolds	229
	8.1	Characterization and sizes of local stable manifolds	229

iv		Contents	
	8.2 8.3 8.4 8.5 8.6	Global stable and unstable manifolds Foliations with smooth leaves Filtrations of intermediate local and global manifolds The Lipschitz property of intermediate foliations The absolute continuity property	232 234 235 239 244
	87	 8.6.1 Absolute continuity of holonomy maps 8.6.2 Absolute continuity of local stable manifolds 8.6.3 Foliation that is not absolutely continuous 8.6.4 The Jacobian of the holonomy map Notes 	245 255 258 259 261
0	Smor	not massures	201
9	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Ergodic components Local ergodicity The <i>s</i> - and <i>u</i> -measures The leaf-subordinated partition and the <i>K</i> -property The Bernoulli property The continuous-time case Notes	262 262 267 284 287 292 300 305
10	Meas	sure-Theoretic Entropy and Lyapunov exponents	307
	10.1 10.2 10.3 10.4 10.5 10.6	Entropy of measurable transformations The Margulis–Ruelle inequality The topological entropy and Lyapunov exponents The entropy formula Mañé's proof of the entropy formula Notes	307 308 311 315 318 328
11	Stabl	le ergodicity and Lyapunov exponents	329
	11.1 11.2 11.3 11.4 11.5 11.6	Uniform partial hyperbolicity and stable ergodicity Partially hyperbolic systems with nonzero exponents Hyperbolic diffeomorphisms with countably many ergodic components Existence of hyperbolic diffeomorphisms on manifolds Existence of hyperbolic flows on manifolds Foliations that are not absolutely continuous	329 332 340 352 374 382
	11.7 11.8	Open sets of diffeomorphisms with nonzero exponents Notes	387 388
12	Geod	lesic flows	389
	12.1 12.2 12.3 12.4	Hyperbolicity of geodesic flows Ergodic properties of geodesic flows Entropy of geodesic flows Topological properties of geodesic flows	389 398 409 412

		Contents	v
	12.5	The Teichmüller geodesic flow	414
	12.6	Notes	420
13	SRB	measures	422
	13.1	Definition and ergodic properties of SRB measures	422
	13.2	The characterization of SRB measures	426
	13.3	Constructions of SRB measures	428
	13.4	Notes	435
14	Нуро	erbolic measures: entropy and dimension	436
	14.1	Pointwise dimension and the Ledrappier-Young entropy formul	a 436
		14.1.1 Local entropies	437
		14.1.2 Leaf pointwise dimensions	441
		14.1.3 The Ledrappier–Young entropy formula	453
	14.2	Local product structure of hyperbolic measures	454
	14.3	Applications to dimension theory	465
	14.4	Notes	466
15	Нуре	erbolic measures: topological properties	467
	15.1	Closing lemma	467
	15.2	Shadowing lemma	476
	15.3	The Livshitz theorem	478
	15.4	Hyperbolic periodic orbits	479
	15.5	Topological transitivity and spectral decomposition	487
	15.6	Entropy, horseshoes, and periodic points	487
	15.7	Continuity properties of entropy	490
Bibliography		497	