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5.3 Hölder continuity of invariant distributions 123
5.4 Lyapunov exponent and regularity of the derivative cocycle 127
5.5 On the notion of dynamical systems with nonzero exponents 130
5.6 Regular neighborhoods 131
5.7 Cocycles over smooth flows 134
5.8 Semicontinuity of Lyapunov exponents 136



Contents iii

6 Examples of systems with hyperbolic behavior 138
6.1 Uniformly hyperbolic sets 138

6.1.1 Hyperbolic sets for maps 138
6.1.2 Hyperbolic sets for flows 142
6.1.3 Linear horseshoes 144
6.1.4 Nonlinear horseshoes 146

6.2 Nonuniformly hyperbolic perturbations of horseshoes 152
6.2.1 Slow expansion near a fixed point 152
6.2.2 Further modifications 154

6.3 Diffeomorphisms with nonzero exponents on surfaces 158
6.3.1 Nonuniformly hyperbolic diffeomorphisms of the torus 158
6.3.2 A nonuniformly hyperbolic diffeomorphism on the sphere163
6.3.3 Nonuniformly hyperbolic diffeomorphisms on compact

surfaces 164
6.3.4 Analytic diffeomorphisms 166

6.4 Pseudo-Anosov maps 167
6.4.1 Definitions and basic properties 167
6.4.2 Smooth models of pseudo-Anosov maps 171

6.5 Nonuniformly hyperbolic flows 182
6.6 Some other examples 185
6.7 Notes 188

7 Stable manifold theory 189
7.1 The Stable Manifold Theorem 189
7.2 Nonuniformly hyperbolic sequences of diffeomorphisms 192
7.3 The Hadamard–Perron Theorem: Hadamard’s method 193

7.3.1 Invariant cone families 194
7.3.2 Admissible manifolds 198
7.3.3 Existence of (s,γ)- and (u,γ)-manifolds 201
7.3.4 Invariant families of local manifolds 204
7.3.5 Higher differentiability of invariant manifolds 207

7.4 The Graph Transform Property 208
7.5 The Hadamard–Perron Theorem: Perron’s method 208

7.5.1 An Abstract Version of the Stable Manifold Theorem 209
7.5.2 Smoothness of local manifolds 218

7.6 Local unstable manifolds 223
7.7 The Stable Manifold Theorem for flows 223
7.8 C1 pathological behavior: Pugh’s example 224
7.9 Notes 227

8 Basic properties of stable and unstable manifolds 229
8.1 Characterization and sizes of local stable manifolds 229



iv Contents

8.2 Global stable and unstable manifolds 232
8.3 Foliations with smooth leaves 234
8.4 Filtrations of intermediate local and global manifolds 235
8.5 The Lipschitz property of intermediate foliations 239
8.6 The absolute continuity property 244

8.6.1 Absolute continuity of holonomy maps 245
8.6.2 Absolute continuity of local stable manifolds 255
8.6.3 Foliation that is not absolutely continuous 258
8.6.4 The Jacobian of the holonomy map 259

8.7 Notes 261
9 Smooth measures 262

9.1 Ergodic components 262
9.2 Local ergodicity 267
9.3 The s- and u-measures 284
9.4 The leaf-subordinated partition and the K-property 287
9.5 The Bernoulli property 292
9.6 The continuous-time case 300
9.7 Notes 305

10 Measure-Theoretic Entropy and Lyapunov exponents 307
10.1 Entropy of measurable transformations 307
10.2 The Margulis–Ruelle inequality 308
10.3 The topological entropy and Lyapunov exponents 311
10.4 The entropy formula 315
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